The Effect of Gap Reduction on Fluid Dynamics and Mass Transfer in Membrane Narrow Channels Filled with Novel Spacers—A Detailed Computational Study
Abstract
:1. Introduction
2. Geometry and Parameters
3. Numerical Simulations
- D′ = D(1 − h’); (m)
- D: Spacer filament diameter; (m)
- 2h: Gap thickness reduction; (m)
- h’ = h/D = 2h/H, Gap reduction parameter
- H = 2D, Nominal channel gap (h = 0); (m)
- G = (H − 2h) = 2D′, Gap thickness (m)
- U: Mean superficial axial velocity in the channel of gap G = 2D′= (H − 2h); (m/s)
- ν: Liquid kinematic viscosity; (m2/s)
- Dc: Species/salt diffusivity; (m2/s)
- k: Mass-transfer coefficient; (m/s)
4. Results and Discussion
4.1. General Flow-Field Characteristics
4.2. Wall Shear Stress and Mass-Transfer Characteristics
4.3. Friction Factor Correlations
4.4. Mass-Transfer Correlations
5. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 59–104. [Google Scholar] [CrossRef] [Green Version]
- Fimbres-Weihs, G.A.; Wiley, D.E. Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules. Chem. Eng. Process. Process Intensif. 2010, 49, 759–781. [Google Scholar] [CrossRef]
- Koutsou, C.P.; Karabelas, A.J.; Kostoglou, M. Membrane desalination under constant water recovery–The effect of module design parameters on system performance. Sep. Purif. Technol. 2015, 147, 90–113. [Google Scholar] [CrossRef]
- Koutsou, C.P.; Yiantsios, S.G.; Karabelas, A.J. Direct numerical simulation of flow in spacer-filled channels: Effect of spacer geometrical characteristics. J. Membr. Sci. 2007, 291, 53–69. [Google Scholar] [CrossRef]
- Abid, H.S.; Johnson, D.J.; Hashaikeh, R.; Hilal, N. A review of efforts to reduce membrane fouling by control of feed spacer characteristics. Desalination 2017, 420, 384–402. [Google Scholar] [CrossRef] [Green Version]
- Bucs, S.S.; Radu, A.I.; Lavric, V.; Vrouwenvelder, J.S.; Picioreanu, C. Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: A numerical study. Desalination 2014, 343, 26–37. [Google Scholar] [CrossRef]
- Haidari, A.H.; Heijman, S.G.J.; Van Der Meer, W.G.J. Optimal design of spacers in reverse osmosis. Sep. Purif. Technol. 2018, 192, 441–456. [Google Scholar] [CrossRef]
- Koutsou, C.P.; Yiantsios, S.G.; Karabelas, A.J. A numerical and experimental study of mass transfer in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number. J. Membr. Sci. 2009, 326, 234–251. [Google Scholar] [CrossRef]
- Amokrane, M.; Sadaoui, D.; Koutsou, C.P.; Karabelas, A.J.; Dudeck, M. A study of flow field and concentration polarization evolution in membrane channels with two-dimensional spacers during water desalination. J. Membr. Sci. 2015, 477, 139–150. [Google Scholar] [CrossRef]
- Karode, S.K.; Kumar, A. Flow visualization through spacer filled channels by computational fluid dynamics I.: Pressure drop and shear rate calculations for flat sheet geometry. J. Membr. Sci. 2001, 193, 69–84. [Google Scholar] [CrossRef]
- Saeed, A.; Vuthaluru, R.; Vuthaluru, H.B. Investigations into the effects of mass transport and flow dynamics of spacer filled membrane modules using CFD. Chem. Eng. Res. Des. 2015, 93, 79–99. [Google Scholar] [CrossRef]
- Jeong, K.; Park, M.; Oh, S.; Kim, J.H. Impacts of flow channel geometry, hydrodynamic and membrane properties on osmotic backwash of RO membranes—CFD modeling and simulation. Desalination 2020, 476, 114229. [Google Scholar] [CrossRef]
- Karabelas, A.J. Key issues for improving the design and operation of spiral-wound membrane modules in desalination plants. Desalination Water Treat. 2014, 52, 1820–1832. [Google Scholar] [CrossRef]
- Karabelas, A.J.; Kostoglou, M.; Koutsou, C.P. Modeling of spiral wound membrane desalination modules and plants–review and research priorities. Desalination 2015, 356, 165–186. [Google Scholar] [CrossRef]
- Kavianipour, O.; Ingram, G.D.; Vuthaluru, H.B. Investigation into the effectiveness of feed spacer configurations for reverse osmosis membrane modules using Computational Fluid Dynamics. J. Membr. Sci. 2017, 526, 156–171. [Google Scholar] [CrossRef] [Green Version]
- Koutsou, C.P.; Karabelas, A.J. Towards optimization of spacer geometrical characteristics for spiral wound membrane modules. Desalination Water Treat. 2010, 18, 139–150. [Google Scholar] [CrossRef]
- Karabelas, A.J.; Mitrouli, S.T.; Koutsou, C.P.; Kostoglou, M. Prediction of spatial-temporal evolution of membrane scaling in spiral wound desalination modules by an advanced simulator. Desalination 2019, 458, 34–44. [Google Scholar] [CrossRef]
- Kerdi, S.; Qamar, A.; Vrouwenvelder, J.S.; Ghaffour, N. Fouling resilient perforated feed spacers for membrane filtration. Water Res. 2018, 140, 211–219. [Google Scholar] [CrossRef]
- Kerdi, S.; Qamar, A.; Vrouwenvelder, J.S.; Ghaffour, N. Effect of localized hydrodynamics on biofilm attachment and growth in a cross-flow filtration channel. Water Res. 2021, 188, 116502. [Google Scholar] [CrossRef]
- Picioreanu, C.; Vrouwenvelder, J.S.; Van Loosdrecht, M.C.M. Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices. J. Membr. Sci. 2009, 345, 340–354. [Google Scholar] [CrossRef]
- Rice, D.; Barrios, A.C.; Xiao, Z.; Bogler, A.; Bar-Zeev, E.; Perreault, F. Development of anti-biofouling feed spacers to improve performance of reverse osmosis modules. Water Res. 2018, 145, 599–607. [Google Scholar] [CrossRef]
- Gu, B.; Adjiman, C.S.; Xu, X.Y. Correlations for Concentration Polarization and Pressure Drop in Spacer-Filled RO Membrane Modules Based on CFD Simulations. Membranes 2021, 11, 338. [Google Scholar] [CrossRef]
- Kostoglou, M.; Karabelas, A.J. A mathematical study of the evolution of fouling and operating parameters throughout membrane sheets comprising spiral wound modules. Chem. Eng. J. 2012, 187, 222–231. [Google Scholar] [CrossRef]
- Kostoglou, M.; Karabelas, A.J. Comprehensive simulation of flat-sheet membrane element performance in steady state desalination. Desalination 2013, 316, 91–102. [Google Scholar] [CrossRef]
- Karabelas, A.J.; Koutsou, C.P.; Kostoglou, M. The effect of spiral wound membrane element design characteristics on its performance in steady state desalination—A parametric study. Desalination 2014, 332, 76–90. [Google Scholar] [CrossRef]
- Karabelas, A.J.; Kostoglou, M.; Koutsou, C.P. Advanced dynamic simulation of membrane desalination modules accounting for organic fouling. J. Membr. Sci. Res. 2019, 5, 178–186. [Google Scholar]
- Lee, Y.M.; Wickert, J.A. Stress field in finite width axisymmetric wound rolls. J. Appl. Mech. 2002, 69, 130–138. [Google Scholar] [CrossRef]
- Johnson, J.; Busch, M. Engineering aspects of reverse osmosis module design. Desalination Water Treat. 2010, 15, 236–248. [Google Scholar] [CrossRef]
- Karabelas, A.J.; Koutsou, C.P.; Sioutopoulos, D.C. Comprehensive performance assessment of spacers in spiral-wound membrane modules accounting for compressibility effects. J. Membr. Sci. 2018, 549, 602–615. [Google Scholar] [CrossRef]
- Gao, Y.; Haavisto, S.; Li, W.; Tang, C.Y.; Salmela, J.; Fane, A.G. Novel approach to characterizing the growth of a fouling layer during membrane filtration via optical coherence tomography. Environ. Sci. Technol. 2014, 48, 14273–14281. [Google Scholar] [CrossRef]
- Karabelas, A.J.; Sioutopoulos, D.C. New insights into organic gel fouling of reverse osmosis desalination membranes. Desalination 2015, 368, 114–126. [Google Scholar] [CrossRef]
- Koutsou, C.P.; Karabelas, A.J.; Kostoglou, M. Fluid dynamics and mass transfer in spacer-filled membrane channels—Effect of uniform channel-gap reduction due to fouling. Fluids 2018, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Koutsou, C.P.; Karabelas, A.J. A novel retentate spacer geometry for improved spiral wound membrane (SWM) module performance. J. Membr. Sci. 2015, 488, 129–142. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Toh, K.Y.; Weihs, G.F. 3D CFD study of the effect of multi-layer spacers on membrane performance under steady flow. J. Membr. Sci. 2019, 580, 256–267. [Google Scholar] [CrossRef]
- Kerdi, S.; Qamar, A.; Alpatova, A.; Vrouwenvelder, J.S.; Ghaffour, N. Membrane filtration performance enhancement and biofouling mitigation using symmetric spacers with helical filaments. Desalination 2020, 484, 114454. [Google Scholar] [CrossRef] [Green Version]
- Qamar, A.; Kerdi, S.; Ali, S.M.; Shon, H.K.; Vrouwenvelder, J.S.; Ghaffour, N. Novel hole-pillar spacer design for improved hydrodynamics and biofouling mitigation in membrane filtration. Sci. Rep. 2021, 11, 6979. [Google Scholar] [CrossRef]
- Karabelas, A.J.; Koutsou, C.P.; CERTH. Membrane Modules Utilizing Innovative Geometries of Net-Type Feed Spacers for Improved Performance in Separations and Spacer-Fabrication Methods Therein. U.S. Patent No US 10,421,045B2, 24 September 2019. [Google Scholar]
- Hydranautics; RODESIGN. Hydranautics RO System Design Software, version 6.4 (c); Pretreatment and design limits section of help module; Hydranautics: Oceanside, CA, USA, 1998. [Google Scholar]
Parameter | Case 1 | Case 2 | Case 3 |
---|---|---|---|
Gap reduction parameter, h/D | 0.025 | 0.075 | 0.10 |
Re number | 84–255 | 73–233 | 66–216 |
Sc number | 1–1000 (in all cases) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saliakellis, P.; Koutsou, C.; Karabelas, A. The Effect of Gap Reduction on Fluid Dynamics and Mass Transfer in Membrane Narrow Channels Filled with Novel Spacers—A Detailed Computational Study. Membranes 2023, 13, 20. https://doi.org/10.3390/membranes13010020
Saliakellis P, Koutsou C, Karabelas A. The Effect of Gap Reduction on Fluid Dynamics and Mass Transfer in Membrane Narrow Channels Filled with Novel Spacers—A Detailed Computational Study. Membranes. 2023; 13(1):20. https://doi.org/10.3390/membranes13010020
Chicago/Turabian StyleSaliakellis, Panagiotis, Chrysafenia Koutsou, and Anastasios Karabelas. 2023. "The Effect of Gap Reduction on Fluid Dynamics and Mass Transfer in Membrane Narrow Channels Filled with Novel Spacers—A Detailed Computational Study" Membranes 13, no. 1: 20. https://doi.org/10.3390/membranes13010020
APA StyleSaliakellis, P., Koutsou, C., & Karabelas, A. (2023). The Effect of Gap Reduction on Fluid Dynamics and Mass Transfer in Membrane Narrow Channels Filled with Novel Spacers—A Detailed Computational Study. Membranes, 13(1), 20. https://doi.org/10.3390/membranes13010020