Reduction of Ultrafiltration Membrane Fouling by the Pretreatment Removal of Emerging Pollutants: A Review
Abstract
:1. Introduction
2. EPs and Pretreatment Processes
2.1. Environmental Risks of EPs
2.2. Removal Mechanism of EPs by Pretreatment Processes
3. Contribution of Pretreatment Scheme for EP Removal
3.1. Coagulation/Flocculation
3.2. Adsorption
3.3. AOPs
3.4. Environmental Risk Associated with Pretreatment Processes
4. Contribution of the Pretreatment Process to the Mitigation of Membrane Pollution
4.1. Coagulation/Flocculation
4.2. Adsorption
4.3. AOPs
5. Conclusions and Expectations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Y.; Yu, G. Materials innovation for global water sustainability. ACS Mater. Lett. 2022, 4, 713–714. [Google Scholar] [CrossRef]
- Eggensperger, C.G.; Giagnorio, M.; Holland, M.C.; Dobosz, K.M.; Schiffman, J.D.; Tiraferri, A.; Zodrow, K.R. Sustainable living filtration membranes. Environ. Sci. Technol. Lett. 2020, 7, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ren, S.; Qiu, X.; Zhao, S.; Wang, R.; Wang, Y. Electroactive ultrafiltration membrane for simultaneous removal of antibiotic, antibiotic resistant bacteria, and antibiotic resistance genes from wastewater effluent. Environ. Sci. Technol. 2022, 56, 15120–15129. [Google Scholar] [CrossRef]
- Napper, I.E.; Davies, B.F.R.; Clifford, H.; Elvin, S.; Koldewey, H.J.; Mayewski, P.A.; Miner, K.R.; Potocki, M.; Elmore, A.C.; Gajurel, A.P.; et al. Reaching new heights in plastic pollution—Preliminary findings of microplastics on mount everest. One Earth 2020, 3, 621–630. [Google Scholar] [CrossRef]
- Munari, C.; Infantini, V.; Scoponi, M.; Rastelli, E.; Corinaldesi, C.; Mistri, M. Microplastics in the sediments of Terra Nova Bay (Ross Sea, Antarctica). Mar. Pollut. Bull. 2017, 122, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, Y.; Liu, X.; Zhao, J.; Liu, R.; Xing, B. Interaction of microplastics with antibiotics in aquatic environment: Distribution, adsorption, and toxicity. Environ. Sci. Technol. 2021, 55, 15579–15595. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 2017, 7, 46687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasperi, J.; Wright, S.L.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.; Kelly, F.J.; Tassin, B. Microplastics in air: Are we breathing it in? Curr. Opin. Solid State Mater. Sci. 2018, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Pruden, A. Antimicrobial resistance in the environment: Informing policy and practice to prevent the spread. Environ. Sci. Technol. 2022, 56, 14869–14870. [Google Scholar] [CrossRef]
- Ferreira, C.; Abreu-Silva, J.; Manaia, C.M. The balance between treatment efficiency and receptor quality determines wastewater impacts on the dissemination of antibiotic resistance. J. Hazard. Mater. 2022, 434, 128933. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Jahan, Z.; Sher, F.; Khan Niazi, M.B.; Kakar, S.J.; Gul, S. Nano architectured cues as sustainable membranes for ultrafiltration in blood hemodialysis. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 128, 112260. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, S.; Zhang, X.; Jia, W.; Zou, Z.; Wang, Q. Application of sodium alginate as a coagulant aid for mitigating membrane fouling induced by humic acid in dead-end ultrafiltration process. Sep. Purif. Technol. 2020, 253, 117421. [Google Scholar] [CrossRef]
- Berlot, G.; Di Bella, S.; Tomasini, A.; Roman-Pognuz, E. The effects of hemoadsorption on the kinetics of antibacterial and antifungal agents. Antibiotics 2022, 11, 180. [Google Scholar] [CrossRef]
- Ding, J.; Wang, S.; Xie, P.; Zou, Y.; Wan, Y.; Chen, Y.; Wiesner, M.R. Chemical cleaning of algae-fouled ultrafiltration (UF) membrane by sodium hypochlorite (NaClO): Characterization of membrane and formation of halogenated by-products. J. Membr. Sci. 2020, 598, 117662. [Google Scholar] [CrossRef]
- Cao, D.Q.; Wang, X.; Wang, Q.H.; Fang, X.M.; Jin, J.Y.; Hao, X.D.; Iritani, E.; Katagiri, N. Removal of heavy metal ions by ultrafiltration with recovery of extracellular polymer substances from excess sludge. J. Membr. Sci. 2020, 606, 118103. [Google Scholar] [CrossRef]
- Palika, A.; Rahimi, A.; Bolisetty, S.; Handschin, S.; Fischer, P.; Mezzenga, R. Amyloid hybrid membranes for bacterial & genetic material removal from water and their anti-biofouling properties. Nanoscale Adv. 2020, 2, 4665–4670. [Google Scholar]
- Shi, D.; Zeng, F.; Gong, T.; Li, J.; Shao, S. Iron amended gravity-driven membrane (IGDM) system for heavy-metal-containing groundwater treatment. J. Membr. Sci. 2022, 643, 120067. [Google Scholar] [CrossRef]
- Yasui, M.; Iso, H.; Torii, S.; Matsui, Y.; Katayama, H. Applicability of pepper mild mottle virus and cucumber green mottle mosaic virus as process indicators of enteric virus removal by membrane processes at a potable reuse facility. Water Res. 2021, 206, 117735. [Google Scholar] [CrossRef]
- Zhang, J.; Nguyen, M.N.; Li, Y.; Yang, C.; Schafer, A.I. Steroid hormone micropollutant removal from water with activated carbon fiber-ultrafiltration composite membranes. J. Hazard. Mater. 2020, 391, 122020. [Google Scholar] [CrossRef]
- Shen, X.; Gao, B.; Guo, K.; Yu, C.; Yue, Q. PAC-PDMDAAC pretreatment of typical natural organic matter mixtures: Ultrafiltration membrane fouling control and mechanisms. Sci. Total Environ. 2019, 694, 133816. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Wei, D.; Zhang, S.; Ren, Q.; Shi, J.; Liu, L. Removal of antibiotic resistance genes from swine wastewater by membrane filtration treatment. Ecotoxicol. Environ. Saf. 2021, 210, 111885. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Wang, H.; Su, L.; Zhang, R.; Cao, R.; Wang, L.; Lou, Z. Molecular transformation and composition flow of dissolved organic matter in four typical concentrated leachates from the multi-stage membrane system. J. Environ. Manag. 2022, 310, 114759. [Google Scholar] [CrossRef] [PubMed]
- Krzeminski, P.; Feys, E.; Anglès d’Auriac, M.; Wennberg, A.C.; Umar, M.; Schwermer, C.U.; Uhl, W. Combined membrane filtration and 265 nm UV irradiation for effective removal of cell free antibiotic resistance genes from feed water and concentrate. J. Membr. Sci. 2020, 598, 117676. [Google Scholar] [CrossRef]
- Yu, S.; Wang, J.; Zhao, Z.; Cai, W. Simultaneous coupling of fluidized granular activated carbon (GAC) and powdered activated carbon (PAC) with ultrafiltration process: A promising synergistic alternative for water treatment. Sep. Purif. Technol. 2022, 282, 120085. [Google Scholar] [CrossRef]
- Michael, S.G.; Drigo, B.; Michael-Kordatou, I.; Michael, C.; Jager, T.; Aleer, S.C.; Schwartz, T.; Donner, E.; Fatta-Kassinos, D. The effect of ultrafiltration process on the fate of antibiotic-related microcontaminants, pathogenic microbes, and toxicity in urban wastewater. J. Hazard. Mater. 2022, 435, 128943. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Liang, H.; Ding, A.; Tang, X.; Liu, B.; Zhu, X.; Gan, Z.; Wu, D.; Li, G. Ferrous iron/peroxymonosulfate oxidation as a pretreatment for ceramic ultrafiltration membrane: Control of natural organic matter fouling and degradation of atrazine. Water Res. 2017, 113, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Gray, H.E.; Powell, T.; Choi, S.; Smith, D.S.; Parker, W.J. Organic phosphorus removal using an integrated advanced oxidation-ultrafiltration process. Water Res. 2020, 182, 115968. [Google Scholar] [CrossRef]
- Zhang, S.; Hedtke, T.; Zhu, Q.; Sun, M.; Weon, S.; Zhao, Y.; Stavitski, E.; Elimelech, M.; Kim, J.H. Membrane-confinediron oxychloride nanocatalysts for highly efficient heterogeneous fenton water treatment. Environ. Sci. Technol. 2021, 55, 9266–9275. [Google Scholar] [CrossRef]
- Du, X.; Yang, W.; Liu, Y.; Zhang, W.; Wang, Z.; Nie, J.; Li, G.; Liang, H. Removal of manganese, ferrous and antibiotics from groundwater simultaneously using peroxymonosulfate-assisted in-situ oxidation/coagulation integrated with ceramic membrane process. Sep. Purif. Technol. 2020, 252, 117492. [Google Scholar] [CrossRef]
- Xu, M.; Luo, Y.; Wang, X.; Zhou, L. Coagulation-ultrafiltration efficiency of polymeric Al-, Fe-, and Ti- coagulant with or without polyacrylamide composition. Sep. Purif. Technol. 2022, 280, 119957. [Google Scholar] [CrossRef]
- Guo, Y.; Liang, H.; Li, G.; Xu, D.; Yan, Z.; Chen, R.; Zhao, J.; Tang, X. A solar photo-thermochemical hybrid system using peroxydisulfate for organic matters removal and improving ultrafiltration membrane performance in surface water treatment. Water Res. 2021, 188, 116482. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Teng, J.; Liao, B.Q.; Li, R.; Lin, H. Molecular insights into the impacts of iron(III) ions on membrane fouling by alginate. Chemosphere 2020, 242, 125232. [Google Scholar] [CrossRef] [PubMed]
- Ólafsdóttir, D.; Wu, B. Combined alginate-humic acid fouling mechanism and mitigation during microfiltration: Effect of alginate viscosity. J. Water Process Eng. 2021, 39, 101852. [Google Scholar] [CrossRef]
- Wang, N.; Li, X.; Yang, Y.; Zhou, Z.; Shang, Y.; Zhuang, X. Photocatalysis-coagulation to control ultrafiltration membrane fouling caused by natural organic matter. J. Clean. Prod. 2020, 265, 121790. [Google Scholar] [CrossRef]
- Hashino, M.; Hirami, K.; Katagiri, T.; Kubota, N.; Ohmukai, Y.; Ishigami, T.; Maruyama, T.; Matsuyama, H. Effects of three natural organic matter types on cellulose acetate butyrate microfiltration membrane fouling. J. Membr. Sci. 2011, 379, 233–238. [Google Scholar] [CrossRef]
- Tian, L.; Zhou, P.; Su, Z.; Liu, T.; Graham, N.; Bond, T.; Yu, W. Insights into the properties of surface waters and their associated nanofiltration membrane fouling: The importance of biopolymers and high molecular weight humics. Chem. Eng. J. 2023, 45, 138682. [Google Scholar] [CrossRef]
- Zhao, C.; Song, T.; Yu, Y.; Qu, L.; Cheng, J.; Zhu, W.; Wang, Q.; Li, P.; Tang, W. Insight into the influence of humic acid and sodium alginate fractions on membrane fouling in coagulation-ultrafiltration combined system. Environ. Res. 2020, 191, 110228. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Q.; Chen, C.; Li, T.; Liu, S.; He, Q.; Yang, P.; Bai, Y.; Liu, B. An efficient system of aerogel adsorbent combined with membranes for reuse of shale gas wastewater. Desalination 2022, 526, 115545. [Google Scholar] [CrossRef]
- Chen, Y.J.; Chen, Y.; Miao, C.; Wang, Y.R.; Gao, G.K.; Yang, R.X.; Zhu, H.J.; Wang, J.H.; Li, S.L.; Lan, Y.Q. Metal–organic framework-based foams for efficient microplastics removal. J. Mater. Chem. A 2020, 8, 14644–14652. [Google Scholar] [CrossRef]
- Liu, M.; Hata, A.; Katayama, H.; Kasuga, I. Consecutive ultrafiltration and silica adsorption for recovery of extracellular antibiotic resistance genes from an urban river. Environ. Pollut. 2020, 260, 114062. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Lin, S.; Zhou, X.; Dong, H.; Zhan, Y. Fate of antibiotics during membrane separation followed by physical-chemical treatment processes. Sci. Total Environ. 2021, 759, 143520. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Fu, L.; Zhao, M.; Liu, L.; Zhou, Y.; Yu, Y.; Wu, C. Potential for colloid removal from petrochemical secondary effluent by coagulation–flocculation coupled with persulfate process. Environ. Sci. Water Res. Technol. 2022, 8, 315–325. [Google Scholar] [CrossRef]
- Dias, M.F.; da Rocha Fernandes, G.; Cristina de Paiva, M.; Christina de Matos Salim, A.; Santos, A.B.; Amaral Nascimento, A.M. Exploring the resistome, virulome and microbiome of drinking water in environmental and clinical settings. Water Res. 2020, 174, 115630. [Google Scholar] [CrossRef] [PubMed]
- Hiller, C.X.; Schwaller, C.; Wurzbacher, C.; Drewes, J.E. Removal of antibiotic microbial resistance by micro- and ultrafiltration of secondary wastewater effluents at pilot scale. Sci. Total Environ. 2022, 838, 156052. [Google Scholar] [CrossRef]
- Marko, A.; Denysenkov, V.; Margraf, D.; Cekan, P.; Schiemann, O.; Sigurdsson, S.T.; Prisner, T.F. Conformational flexibility of DNA. J. Am. Chem. Soc. 2011, 133, 13375–13379. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z.; Qiang, Z.; Karanfil, T.; Yang, M.; Liu, C. The elimination of cell-associated and non-cell-associated antibiotic resistance genes during membrane filtration processes: A review. Sci. Total Environ. 2022, 833, 155250. [Google Scholar] [CrossRef]
- Bortot Coelho, F.E.; Deemter, D.; Candelario, V.M.; Boffa, V.; Malato, S.; Magnacca, G. Development of a photocatalytic zirconia-titania ultrafiltration membrane with anti-fouling and self-cleaning properties. J. Environ. Chem. Eng. 2021, 9, 106671. [Google Scholar] [CrossRef]
- Riquelme Breazeal, M.V.; Novak, J.T.; Vikesland, P.J.; Pruden, A. Effect of wastewater colloids on membrane removal of antibiotic resistance genes. Water Res. 2013, 47, 130–140. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, Z.; Yang, Y.; Sun, Y.; Yu, F.; Ma, J. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater. Environ. Pollut. 2019, 246, 26–33. [Google Scholar] [CrossRef]
- Mohana, A.A.; Rahman, M.; Sarker, S.K.; Haque, N.; Gao, L.; Pramanik, B.K. Nano/microplastics: Fragmentation, interaction with co-existing pollutants and their removal from wastewater using membrane processes. Chemosphere 2022, 309, 136682. [Google Scholar] [CrossRef]
- Zhang, Z.; Su, Y.; Zhu, J.; Shi, J.; Huang, H.; Xie, B. Distribution and removal characteristics of microplastics in different processes of the leachate treatment system. Waste Manag. 2021, 120, 240–247. [Google Scholar] [CrossRef]
- Enfrin, M.; Lee, J.; Le-Clech, P.; Dumée, L.F. Kinetic and mechanistic aspects of ultrafiltration membrane fouling by nano- and microplastics. J. Membr. Sci. 2020, 601, 117890. [Google Scholar] [CrossRef]
- Sun, F.; Xu, Y.; Li, M.; Zhang, Y.; Wang, Y.; Zhang, Y.; Zhang, D. Membrane cleaning of ultrafiltration in the combined membrane filtration processes and health risk assessment. J. Water Process Eng. 2020, 38, 101584. [Google Scholar] [CrossRef]
- Mondal, S.; Kumar Majumder, S. Fabrication of the polysulfone-based composite ultrafiltration membranes for the adsorptive removal of heavy metal ions from their contaminated aqueous solutions. Chem. Eng. J. 2020, 401, 126036. [Google Scholar] [CrossRef]
- Yang, B.; Gu, K.; Wang, S.; Yi, Z.; Zhou, Y.; Gao, C. Chitosan nanofiltration membranes with gradient cross-linking and improved mechanical performance for the removal of divalent salts and heavy metal ions. Desalination 2021, 516, 115200. [Google Scholar] [CrossRef]
- Gu, K.; Pang, S.; Yang, B.; Ji, Y.; Zhou, Y.; Gao, C. Polyethyleneimine/4,4′-Bis(chloromethyl) -1,1′-biphenyl nanofiltration membrane for metal ions removal in acid wastewater. J. Membr. Sci. 2020, 614, 118497. [Google Scholar] [CrossRef]
- Yang, B.; Wen, Q.; Chen, Z.; Tang, Y. Potassium ferrate combined with ultrafiltration for treating secondary effluent: Efficient removal of antibiotic resistance genes and membrane fouling alleviation. Water Res. 2022, 217, 118374. [Google Scholar] [CrossRef]
- Trevisan, R.; Uzochukwu, D.; Di Giulio, R.T. Pah sorption to nanoplastics and the trojan horse effect as drivers of mitochondrial toxicity and pah localization in zebrafish. Front. Environ. Sci. 2020, 8, 78. [Google Scholar] [CrossRef]
- Wang, R.; Ji, M.; Zhai, H.; Liu, Y. Occurrence of phthalate esters and microplastics in urban secondary effluents, receiving water bodies and reclaimed water treatment processes. Sci. Total Environ. 2020, 737, 140219. [Google Scholar] [CrossRef]
- Li, X.; Mei, Q.; Chen, L.; Zhang, H.; Dong, B.; Dai, X.; He, C.; Zhou, J. Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process. Water Res. 2019, 157, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Rehm, S.; Rentsch, K.M. LC-MS/MS method for nine different antibiotics. Clin. Chim. Acta 2020, 511, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; You, J.; Yin, S.; Yang, H.; He, S.; Feng, L.; Li, J.; Zhao, Q.; Wei, L. Extracellular polymeric substances—Antibiotics interaction in activated sludge: A review. Environ. Sci. Ecotechnol. 2023, 13, 100212. [Google Scholar] [CrossRef]
- Oberoi, A.S.; Jia, Y.; Zhang, H.; Khanal, S.K.; Lu, H. Insights into the fate and removal of antibiotics in engineered biological treatment systems: A critical review. Environ. Sci. Technol. 2019, 53, 7234–7264. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Mao, Y.; Dong, H.; Wang, Y.; Xu, L.; Liu, S.; Xu, Q.; Qiang, Z.; Ji, F. The ultrafiltration process enhances antibiotic removal in the full-scale advanced treatment of drinking water. Engineering, 2022; in press. [Google Scholar] [CrossRef]
- Kang, M.; Yang, J.; Kim, S.; Park, J.; Kim, M.; Park, W. Occurrence of antibiotic resistance genes and multidrug-resistant bacteria during wastewater treatment processes. Sci. Total Environ. 2022, 811, 152331. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, J.; Lu, T.; Zhang, K. Metagenomics revealed the mobility and hosts of antibiotic resistance genes in typical pesticide wastewater treatment plants. Sci. Total Environ. 2022, 817, 153033. [Google Scholar] [CrossRef]
- Babel, S.; Takizawa, S. Chemical pretreatment for reduction of membrane fouling caused by algae. Desalination 2011, 274, 171–176. [Google Scholar] [CrossRef]
- Liang, H.; Huang, X.; Wang, H.; Xu, W.; Shi, B. The role of extracellular organic matter on the cyanobacteria ultrafiltration process. J. Environ. Sci. 2021, 110, 12–20. [Google Scholar] [CrossRef]
- Feng, G.; Jia, R.; Sun, S.; Wang, M.; Zhao, Q.; Xin, X.; Liu, L. Occurrence and removal of 10 odorous compounds in drinking water by different treatment processes. Environ. Sci. Pollut. Res. 2020, 27, 18924–18933. [Google Scholar] [CrossRef]
- Anwar, N.; Rahaman, M.S. Membrane desalination processes for water recovery from pre-treated brewery wastewater: Performance and fouling. Sep. Purif. Technol. 2020, 252, 117420. [Google Scholar] [CrossRef]
- Alpatova, A.; Qamar, A.; Al-Ghamdi, M.; Lee, J.; Ghaffour, N. Effective membrane backwash with carbon dioxide under severe fouling and operation conditions. J. Membr. Sci. 2020, 611, 118290. [Google Scholar] [CrossRef]
- Real, F.J.; Benitez, F.J.; Acero, J.L.; Casas, F. Adsorption of selected emerging contaminants onto PAC and GAC: Equilibrium isotherms, kinetics, and effect of the water matrix. J. Enviro. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2017, 52, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Cai, L.; Li, K.; Li, J.; Du, X.; Li, G.; Liang, H. Deposition of powdered activated carbon (PAC) on ultrafiltration (UF) membrane surface: Influencing factors and mechanisms. J. Membr. Sci. 2017, 530, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Wu, C.; Yu, H.; Gao, S.; Li, G.; Cui, F.; Qu, F. Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water. Water Res. 2018, 132, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Wang, Y.; Yang, L.; Zhang, X.; Hong, Y.; Shen, L. A novel hydrogel based on Bletilla striata polysaccharide for rapid hemostasis: Synthesis, characterization and evaluation. Int. J. Biol. Macromol. 2022, 196, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Liao, Z.; Zhang, M.; Ni, L.; Qi, J.; Wang, C.; Sun, X.; Wang, L.; Wang, S.; Li, J. Sequential ultrafiltration-catalysis membrane for excellent removal of multiple pollutants in water. Environ. Sci. Technol. 2021, 55, 2652–2661. [Google Scholar] [CrossRef]
- Ding, Y.; Li, T.; Qiu, K.; Ma, B.; Wu, R. Membrane fouling performance of Fe-based coagulation-ultrafiltration process: Effect of sedimentation time. Environ. Res. 2021, 195, 110756. [Google Scholar] [CrossRef]
- Chang, X.; Lin, T.; Chen, W.; Xu, H.; Tao, H.; Wu, Y.; Zhang, Q.; Yao, S. A new perspective of membrane fouling control by ultraviolet synergic ferrous iron catalytic persulfate (UV/Fe(II)/PS) as pretreatment prior to ultrafiltration. Sci. Total Environ. 2020, 737, 139711. [Google Scholar] [CrossRef]
- Mousel, D.; Bastian, D.; Firk, J.; Palmowski, L.; Pinnekamp, J. Removal of pharmaceuticals from wastewater of health care facilities. Sci. Total Environ. 2021, 751, 141310. [Google Scholar] [CrossRef]
- Lumbaque, E.C.; Ludtke, D.S.; Dionysiou, D.D.; Vilar, V.J.P.; Sirtori, C. Tube-in-tube membrane photoreactor as a new technology to boost sulfate radical advanced oxidation processes. Water Res. 2021, 191, 116815. [Google Scholar] [CrossRef]
- Liu, P.; Qian, L.; Wang, H.; Zhan, X.; Lu, K.; Gu, C.; Gao, S. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes. Environ. Sci. Technol. 2019, 53, 3579–3588. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zeng, Y.; Zhao, Y.; Xiang, Y.; Li, Y.; Pan, X. Effects of advanced oxidation processes on leachates and properties of microplastics. J. Hazard. Mater. 2021, 413, 125342. [Google Scholar] [CrossRef]
- Shen, M.; Song, B.; Zhou, C.; Hu, T.; Zeng, G.; Zhang, Y. Advanced oxidation processes for the elimination of microplastics from aqueous systems: Assessment of efficiency, perspectives and limitations. Sci. Total Environ. 2022, 842, 156723. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Hou, R.; Wang, Y.; Zhou, L.; Yuan, Y. Surfactant-sodium dodecyl sulfate enhanced degradation of polystyrene microplastics with an energy-saving electrochemical advanced oxidation process (EAOP) strategy. Water Res. 2022, 226, 119277. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.-J.; Zhu, Z.-R.; Li, W.-H.; Yan, X.; Wei, W.; Xu, Q.; Xia, Z.; Dai, X.; Sun, J. Microplastics mitigation in sewage sludge through pyrolysis: The role of pyrolysis temperature. Environ. Sci. Technol. Lett. 2020, 7, 961–967. [Google Scholar] [CrossRef]
- Lessa Belone, M.C.; Kokko, M.; Sarlin, E. Degradation of common polymers in sewage sludge purification process developed for microplastic analysis. Environ. Pollut. 2021, 269, 116235. [Google Scholar] [CrossRef]
- Xu, Z.; Bai, X. Microplastic degradation in sewage sludge by hydrothermal carbonization: Efficiency and mechanisms. Chemosphere 2022, 297, 134203. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Chen, L.; Huang, X.; Pan, F.; Liu, L.; Dong, B.; Liu, H.; Li, H.; Dai, X.; et al. Changes in physicochemical and leachate characteristics of microplastics during hydrothermal treatment of sewage sludge. Water Res. 2022, 222, 118876. [Google Scholar] [CrossRef]
- Dalmau-Soler, J.; Ballesteros-Cano, R.; Boleda, M.R.; Paraira, M.; Ferrer, N.; Lacorte, S. Microplastics from headwaters to tap water: Occurrence and removal in a drinking water treatment plant in Barcelona Metropolitan area (Catalonia, NE Spain). Environ. Sci. Pollut. Res. 2021, 28, 59462–59472. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, B.K.; Pramanik, S.K.; Monira, S. Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes. Chemosphere 2021, 282, 131053. [Google Scholar] [CrossRef] [PubMed]
- Enfrin, M.; Hachemi, C.; Callahan, D.L.; Lee, J.; Dumée, L.F. Membrane fouling by nanofibres and organic contaminants—Mechanisms and mitigation via periodic cleaning strategies. Sep. Purif. Technol. 2021, 278, 119592. [Google Scholar] [CrossRef]
- Enfrin, M.; Wang, J.; Merenda, A.; Dumée, L.F.; Lee, J. Mitigation of membrane fouling by nano/microplastics via surface chemistry control. J. Membr. Sci. 2021, 633, 119379. [Google Scholar] [CrossRef]
- Tadsuwan, K.; Babel, S. Unraveling microplastics removal in wastewater treatment plant: A comparative study of two wastewater treatment plants in Thailand. Chemosphere 2022, 307, 135733. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Bond, T.; Saboor Siddique, M.; Yu, W. The stimulation of microbial activity by microplastic contributes to membrane fouling in ultrafiltration. J. Membr. Sci. 2021, 635, 119477. [Google Scholar] [CrossRef]
- Fan, J.; Lin, T.; Chen, W.; Xu, H.; Tao, H. Control of ultrafiltration membrane fouling during the recycling of sludge water based on Fe(II)-activated peroxymonosulfate pretreatment. Chemosphere 2020, 246, 125840. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Jiang, B.; Zhang, C.; Zhang, L.; Zhang, L.; Sun, Y.; Yang, N. Co@N-C nanocatalysts anchored in confined membrane pores for instantaneous pollutants degradation and antifouling via peroxymonosulfate activation. J. Water Process Eng. 2022, 47, 102639. [Google Scholar] [CrossRef]
- Esfahani, A.R.; Zhai, L.; Sadmani, A.H.M.A. Removing heavy metals from landfill leachate using electrospun polyelectrolyte fiber mat-laminated ultrafiltration membrane. J. Environ. Chem. Eng. 2021, 9, 105355. [Google Scholar] [CrossRef]
- Li, B.; Ma, J.; Qiu, W.; Li, W.; Zhang, B.; Ding, A.; He, X. In-situ utilization of membrane foulants (FeO(x)+MnO(x)) for the efficient membrane cleaning. Water Res. 2022, 210, 118004. [Google Scholar] [CrossRef]
- Yang, Z.; Hou, T.; Ma, J.; Yuan, B.; Tian, Z.; Yang, W.; Graham, N.J.D. Role of moderately hydrophobic chitosan flocculants in the removal of trace antibiotics from water and membrane fouling control. Water Res. 2020, 177, 115775. [Google Scholar] [CrossRef]
- Lin, Y.C.; Zhuang, G.L.; Tasi, P.F.; Tseng, H.H. Removal of protein, histological dye and tetracycline from simulated bioindustrial wastewater with a dual pore size PPSU membrane. J. Hazard. Mater. 2022, 431, 128525. [Google Scholar] [CrossRef]
- Ma, D.; Ye, X.; Li, Z.; Zhou, J.; Zhong, D.; Zhang, C.; Xiong, S.; Xia, J.; Wang, Y. A facile process to prepare fouling-resistant ultrafiltration membranes: Spray coating of water-containing block copolymer solutions on macroporous substrates. Sep. Purif. Technol. 2021, 259, 118100. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Sun, M.; Cheng, L.; Wang, K.Y.; Liu, Y.; Zhu, J.Y.; Zhang, S.; Wang, C. Efficient removal of Ba(2+), Co(2+) and Ni(2+) by an ethylammonium-templated indium sulfide ion exchanger. J. Hazard. Mater. 2022, 425, 128007. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yue, Q.; Guo, K.; Bu, F.; Shen, X.; Gao, B. Application of Al species in coagulation/ ultrafiltration process: Influence of cake layer on membrane fouling. J. Membr. Sci. 2019, 572, 161–170. [Google Scholar] [CrossRef]
- Shen, X.; Gao, B.; Guo, K.; Yue, Q. Characterization and influence of floc under different coagulation systems on ultrafiltration membrane fouling. Chemosphere 2020, 238, 124659. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, M.; Wang, Q.; Zhang, X.; Peng, J.; Zhang, Y.; Wu, Q.; Duan, J.; Mao, X.; Tang, Z.; et al. Insights into the penetration of PhACs in TCM during ultrafiltration: Effects of fouling mechanisms and intermolecular interactions. Sep. Purif. Technol. 2022, 295, 121205. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. Application of ultrafiltration ceramic membrane for separation of oily wastewater generated by maritime transportation. Sep. Purif. Technol. 2021, 261, 118259. [Google Scholar] [CrossRef]
- Miao, R.; Ma, B.; Li, P.; Wang, P.; Wang, L.; Li, X.Y. Mitigation mechanism of ozonation in the casein fouling of ultrafiltration membranes: Possible application in dairy wastewater treatment. J. Membr. Sci. 2021, 629, 119307. [Google Scholar] [CrossRef]
- Feng, C.L.; Liu, C.; Yu, M.Y.; Chen, S.Q.; Mehmood, T. Removal performance and mechanism of the dissolved manganese in groundwater using ultrafiltration coupled with HA complexation. J. Environ. Chem. Eng. 2022, 10, 108931. [Google Scholar] [CrossRef]
- Huang, W.; Lv, W.; Zhou, W.; Hu, M.; Dong, B. Investigation of the fouling behaviors correlating to water characteristics during the ultrafiltration with ozone treatment. Sci. Total Environ. 2019, 676, 53–61. [Google Scholar] [CrossRef]
- Xing, J.; Du, L.; Quan, X.; Luo, X.; Snyder, S.A.; Liang, H. Combining chlor(am)ine-UV oxidation to ultrafiltration for potable water reuse: Promoted efficiency, membrane fouling control and mechanism. J. Membr. Sci. 2021, 635, 119511. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, K.; Chen, K.; Xue, Y.; Liang, J.; Cai, Y. Mitigation of organic fouling of ultrafiltration membrane by high-temperature crayfish shell biochar: Performance and mechanisms. Sci. Total Environ. 2022, 820, 153183. [Google Scholar] [CrossRef]
- Abd-Razak, N.H.; Pihlajamäki, A.; Virtanen, T.; John Chew, Y.M.; Bird, M.R. The influence of membrane charge and porosity upon fouling and cleaning during the ultrafiltration of orange juice. Food Bioprod. Process. 2021, 126, 184–194. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, L.; Yin, W.; Wang, Y.; Zhang, F.; Xing, L.; Zhou, Z. Effect of filter depth of biological activated carbon on fouling control of ultrafiltration: Performance and mechanism. J. Water Process Eng. 2020, 38, 101620. [Google Scholar] [CrossRef]
- Vroman, T.; Beaume, F.; Armanges, V.; Gout, E.; Remigy, J.-C. Critical backwash flux for high backwash efficiency: Case of ultrafiltration of bentonite suspensions. J. Membr. Sci. 2021, 620, 118836. [Google Scholar] [CrossRef]
- Yan, M.; Shen, X.; Gao, B.; Guo, K.; Yue, Q. Coagulation-ultrafiltration integrated process for membrane fouling control: Influence of Al species and SUVA values of water. Sci. Total Environ. 2021, 793, 148517. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, H.; Wei, G.; Ye, L.; Fan, G.; Fang, Q.; Rong, H.; Qu, F. Oxidation-enhanced ferric coagulation for alleviating ultrafiltration membrane fouling by algal organic matter: A comparison of moderate and strong oxidation. Algal Res. 2022, 63, 102652. [Google Scholar] [CrossRef]
- Chen, M.; Nan, J.; Ji, X.; Wu, F.; Ye, X.; Ge, Z. Effect of adsorption and coagulation pretreatment sequence on ultrafiltration membrane fouling: Process study and targeted prediction. Desalination 2022, 540, 115967. [Google Scholar] [CrossRef]
- Miao, R.; Yang, Z.; Feng, Y.; Wang, P.; Li, P.; Wang, L.; Li, X.Y. Mechanism of pre-ozonation in control of protein fouling of ultrafiltration membranes: Synergistic effect between ozone oxidation and aeration. J. Water Process Eng. 2021, 41, 102038. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Y.; Yu, X.; Kong, D.; Fan, X.; Wang, R.; Luo, S.; Lu, D.; Nan, J.; Ma, J. Peracetic acid integrated catalytic ceramic membrane filtration for enhanced membrane fouling control: Performance evaluation and mechanism analysis. Water Res. 2022, 220, 118710. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Hua, X.; Miao, R.; Ma, B.; Hu, C.; Liu, H.; Qu, J. Influence of floc charge and related distribution mechanisms of humic substances on ultrafiltration membrane behavior. J. Membr. Sci. 2020, 609, 118260. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, D.; Xu, C.; Zhong, J.; Chen, M.; Xu, S.; Cao, Y.; Zhao, Q.; Yang, M.; Ma, J. Synergistic oxidation—Filtration process analysis of catalytic CuFe2O4—Tailored ceramic membrane filtration via peroxymonosulfate activation for humic acid treatment. Water Res. 2020, 171, 115387. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.F.; Lin, Y.; Song, H.; Sun, H.; Shao, J. Efficient removal of antimony from aqueous solution by sustainable polymer assisted ultrafiltration process. Sep. Purif. Technol. 2021, 263, 118418. [Google Scholar] [CrossRef]
- Miao, R.; Feng, Y.; Wang, Y.; Wang, P.; Li, P.; Li, X.; Wang, L. Exploring the influence mechanism of ozonation on protein fouling of ultrafiltration membranes as a result of the interfacial interaction of foulants at the membrane surface. Sci. Total Environ. 2021, 785, 147340. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Shao, H.; Chen, G.; Dong, X.; Qin, S. Microstructure manipulation in PVDF/styrene-maleic anhydride copolymer composite membranes: Effects of miscibility on the phase separation. Sep. Purif. Technol. 2021, 263, 118371. [Google Scholar] [CrossRef]
- Kimura, K.; Kume, K. Irreversible fouling in hollow-fiber PVDF MF/UF membranes filtering surface water: Effects of precoagulation and identification of the foulant. J. Membr. Sci. 2020, 602, 117975. [Google Scholar] [CrossRef]
- Zhang, X.; Graham, N.; Xu, L.; Yu, W.; Gregory, J. The influence of small organic molecules on coagulation from the perspective of hydrolysis competition and crystallization. Environ. Sci. Technol. 2021, 55, 7456–7465. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Shen, X.; Liu, X.; Yang, W.; Zhao, S. Enhanced coagulation treatment of surface water benefits from Enteromorpha prolifera. J. Environ. Chem. Eng. 2022, 10, 107227. [Google Scholar] [CrossRef]
- Zou, Z.; Gu, Y.; Yang, W.; Liu, M.; Han, J.; Zhao, S. A modified coagulation-ultrafiltration process for silver nanoparticles removal and membrane fouling mitigation: The role of laminarin. Int. J. Biol. Macromol. 2021, 172, 241–249. [Google Scholar] [CrossRef]
- Cui, W.; Li, S.; Xie, M.; Chen, Q.; Li, G.; Luo, W. Performance of coagulant-aided biomass filtration to protect ultrafiltration from membrane fouling in biogas slurry concentration. Environ. Technol. Innov. 2022, 28, 102659. [Google Scholar] [CrossRef]
- Lu, S.; Liu, L.; Yang, Q.; Demissie, H.; Jiao, R.; An, G.; Wang, D. Removal characteristics and mechanism of microplastics and tetracycline composite pollutants by coagulation process. Sci. Total Environ. 2021, 786, 147508. [Google Scholar] [CrossRef]
- Skaf, D.W.; Punzi, V.L.; Rolle, J.T.; Kleinberg, K.A. Removal of micron-sized microplastic particles from simulated drinking water via alum coagulation. Chem. Eng. J. 2020, 386, 123807. [Google Scholar] [CrossRef]
- Zhou, Z.; Shen, Z.; Cheng, Z.; Zhang, G.; Li, M.; Li, Y.; Zhan, S.; Crittenden, J.C. Mechanistic insights for efficient inactivation of antibiotic resistance genes: A synergistic interfacial adsorption and photocatalytic-oxidation process. Sci. Bull. 2020, 65, 2107–2119. [Google Scholar] [CrossRef]
- Yang, Z.; Degorce-Dumas, J.R.; Yang, H.; Guibal, E.; Li, A.; Cheng, R. Flocculation of Escherichia coli using a quaternary ammonium salt grafted carboxymethyl chitosan flocculant. Environ. Sci. Technol. 2014, 48, 6867–6873. [Google Scholar] [CrossRef]
- Xie, A.G.; Cai, X.; Lin, M.-S.; Wu, T.; Zhang, X.-J.; Lin, Z.-D.; Tan, S. Long-acting antibacterial activity of quaternary phosphonium salts functionalized few-layered graphite. Mater. Sci. Eng. B 2011, 176, 1222–1226. [Google Scholar] [CrossRef]
- Cuthbert, T.J.; Hisey, B.; Harrison, T.D.; Trant, J.F.; Gillies, E.R.; Ragogna, P.J. Surprising antibacterial activity and selectivity of hydrophilic polyphosphoniums featuring sugar and hydroxy substituents. Angew. Chem. Int. Ed. 2018, 57, 12707–12710. [Google Scholar] [CrossRef] [PubMed]
- Loczenski Rose, V.; Mastrotto, F.; Mantovani, G. Phosphonium polymers for gene delivery. Polym. Chem. 2017, 8, 353–360. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, T.; Yang, Z.; Zhao, L.; Wu, W.; Yang, W.; Graham, N.J.D. Nitrogen-free cationic starch flocculants: Flocculation performance, antibacterial ability, and UF membrane fouling control. ACS Appl. Bio Mater. 2020, 3, 2910–2919. [Google Scholar] [CrossRef]
- Elsherbiny, A.S.; El-Hefnawy, M.E.; Gemeay, A.H. Linker impact on the adsorption capacity of polyaspartate/montmorillonite composites towards methyl blue removal. Chem. Eng. J. 2017, 315, 142–151. [Google Scholar] [CrossRef]
- Li, J.; Wang, B.; Chen, Z.; Ma, B.; Chen, J.P. Ultrafiltration membrane fouling by microplastics with raw water: Behaviors and alleviation methods. Chem. Eng. J. 2021, 410, 128174. [Google Scholar] [CrossRef]
- Long, Y.; You, X.; Chen, Y.; Hong, H.; Liao, B.Q.; Lin, H. Filtration behaviors and fouling mechanisms of ultrafiltration process with polyacrylamide flocculation for water treatment. Sci. Total Environ. 2020, 703, 135540. [Google Scholar] [CrossRef]
- Wu, S.; Hua, X.; Ma, B.; Fan, H.; Miao, R.; Ulbricht, M.; Hu, C.; Qu, J. Three-dimensional analysis of the natural-organic-matter distribution in the cake layer to precisely reveal ultrafiltration fouling mechanisms. Environ. Sci. Technol. 2021, 55, 5442–5452. [Google Scholar] [CrossRef] [PubMed]
- Zambianchi, M.; Khaliha, S.; Bianchi, A.; Tunioli, F.; Kovtun, A.; Navacchia, M.L.; Salatino, A.; Xia, Z.; Briñas, E.; Vázquez, E.; et al. Graphene oxide-polysulfone hollow fibers membranes with synergic ultrafiltration and adsorption for enhanced drinking water treatment. J. Membr. Sci. 2022, 658, 120707. [Google Scholar] [CrossRef]
- Khaliha, S.; Marforio, T.D.; Kovtun, A.; Mantovani, S.; Bianchi, A.; Luisa Navacchia, M.; Zambianchi, M.; Bocchi, L.; Boulanger, N.; Iakunkov, A.; et al. Defective graphene nanosheets for drinking water purification: Adsorption mechanism, performance, and recovery. FlatChem 2021, 29, 100283. [Google Scholar] [CrossRef]
- Deniere, E.; Van Langenhove, H.; Van Hulle, S.; Demeestere, K. The ozone-activated peroxymonosulfate process for the removal of a mixture of TrOCs with different ozone reactivity at environmentally relevant conditions: Technical performance, radical exposure and online monitoring by spectral surrogate parameters. Chem. Eng. J. 2023, 454, 140128. [Google Scholar] [CrossRef]
- Song, Y.; Xiao, M.; Li, Z.; Luo, Y.; Zhang, K.; Du, X.; Zhang, T.; Wang, Z.; Liang, H. Degradation of antibiotics, organic matters and ammonia during secondary wastewater treatment using boron-doped diamond electro-oxidation combined with ceramic ultrafiltration. Chemosphere 2022, 286 Pt 2, 131680. [Google Scholar] [CrossRef]
- Song, W.; Li, N.; Ding, S.; Wang, X.; Li, H.; Zhang, Y.; Feng, X.; Lu, J.; Ding, J. Nanofiltration desalination of reverse osmosis concentrate pretreated by advanced oxidation with ultrafiltration: Response surface optimization and exploration of membrane fouling. J. Environ. Chem. Eng. 2021, 9, 106340. [Google Scholar] [CrossRef]
- Zhou, S.; Zhu, J.; Wang, Z.; Yang, Z.; Yang, W.; Yin, Z. Defective MOFs-based electrocatalytic self-cleaning membrane for wastewater reclamation: Enhanced antibiotics removal, membrane fouling control and mechanisms. Water Res. 2022, 220, 118635. [Google Scholar] [CrossRef]
- Wu, Y.H.; Chen, Z.; Li, X.; Wang, Y.H.; Liu, B.; Chen, G.Q.; Luo, L.W.; Wang, H.B.; Tong, X.; Bai, Y.; et al. Effect of ultraviolet disinfection on the fouling of reverse osmosis membranes for municipal wastewater reclamation. Water Res. 2021, 195, 116995. [Google Scholar] [CrossRef]
- Guan, R.; Yuan, X.; Wu, Z.; Jiang, L.; Li, Y.; Zeng, G. Principle and application of hydrogen peroxide based advanced oxidation processes inactivated sludge treatment: A review. Chem. Eng. J. 2018, 339, 519–530. [Google Scholar] [CrossRef]
- Alresheedi, M.T.; Basu, O.D. Effects of feed water temperature on irreversible fouling of ceramic ultrafiltration membranes. J. Water Process Eng. 2019, 31, 100883. [Google Scholar] [CrossRef]
- Hube, S.; Wang, J.; Sim, L.N.; Ólafsdóttir, D.; Chong, T.H.; Wu, B. Fouling and mitigation mechanisms during direct microfiltration and ultrafiltration of primary wastewater. J. Water Process Eng. 2021, 44, 102331. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, L.; Ye, M.; Guan, Z.; Huang, J.; Liu, J.; Li, L.; Huang, S.; Sun, S. Evaluation of the dewaterability, heavy metal toxicity and phytotoxicity of sewage sludge in different advanced oxidation processes. J. Clean. Prod. 2020, 265, 121839. [Google Scholar] [CrossRef]
- King, D.J.; Noss, R.R. Toxicity of polyacrylamide and acrylamide monome. Rev. Environ. Health 1989, 8, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Tepe, Y.; Çebi, A. Acrylamide in Environmental Water: A review on sources, exposure, and public health risks. Expo. Health 2019, 11, 3–12. [Google Scholar] [CrossRef]
- Essaïed, K.A.; Brown, L.V.; von Gunten, U. Reactions of amines with ozone and chlorine: Two novel oxidative methods to evaluate the N-DBP formation potential from dissolved organic nitrogen. Water Res. 2022, 209, 117864. [Google Scholar] [CrossRef]
- Qian, Y.; Chen, Y.; Hu, Y.; Hanigan, D.; Westerhoff, P.; An, D. Formation and control of C- and N-DBPs during disinfection of filter backwash and sedimentation sludge water in drinking water treatment. Water Res. 2021, 194, 116964. [Google Scholar] [CrossRef]
- Xu, W.; Gao, B.; Wang, Y.; Yue, Q.; Ren, H. Effect of second coagulant addition on coagulation efficiency, floc properties and residual Al for humic acid treatment by Al13 polymer and polyaluminum chloride (PACl). J. Hazard. Mater. 2012, 215–216, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Reza, R.A.; Ahmed, J.K.; Sil, A.K.; Ahmaruzzaman, M. A Non-Conventional Adsorbent for the Removal of Clofibric Acid from Aqueous Phase. Sep. Sci. Technol. 2014, 49, 1592–1603. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Tang, L.; Wang, J.; Yu, J.; Zhang, H.; Yu, M.; Zou, J.; Xie, Q. Egg shell biochar-based green catalysts for the removal of organic pollutants by activating persulfate. Sci. Total Environ. 2020, 745, 141095. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Krukowska, J.; Thomas, P. Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem. Eng. J. 2017, 307, 353–363. [Google Scholar] [CrossRef]
- Xue, F.; Quan, Z.; Lei, X.; Mao, J.; Zhang, L.; Wang, L.; Zhu, H.; He, H. A biomimetic porous fibre bundle adsorbent for the rapid and complete removal of multiple low-level heavy metal ions. Chem. Eng. J. 2022; 140740, in press. [Google Scholar] [CrossRef]
- Yan, J.; Li, R. Simple and low-cost production of magnetite/graphene nanocomposites for heavy metal ions adsorption. Sci. Total Environ. 2022, 813, 152604. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Huang, W.; Yang, H.; Sun, S.; Yu, J. Recycling application of waste long-root Eichhornia crassipes in the heavy metal removal using oxidized biochar derived as adsorbents. Bioresour. Technol. 2020, 314, 123749. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chan, W.I.; Liao, P.H.; Lo, K.V. Disinfection and solubilization of sewage sludge using the microwave enhanced advanced oxidation process. J. Hazard. Mater. 2010, 181, 1143–1147. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Li, Y.F.; Li, T.Y.; Yao, J.L.; Zhang, J.F.; Wang, X.M. Identifying key residual aluminum species responsible for aggravation of nanofiltration membrane fouling in drinking water treatment. J. Membr. Sci. 2022, 659, 120833. [Google Scholar] [CrossRef]
- Yu, W.; Liu, M.; Graham, N.J.D. Combining magnetic ion exchange media and microsand before coagulation as pretreatment for submerged ultrafiltration: Biopolymers and small molecular weight organic matter. ACS Sustain. Chem. Eng. 2019, 7, 18566–18573. [Google Scholar] [CrossRef]
- Ding, Y.; Ma, B.; Liu, H.; Qu, J. Effects of protein properties on ultrafiltration membrane fouling performance in water treatment. J. Environ. Sci. 2019, 77, 273–281. [Google Scholar] [CrossRef]
- Hu, M.; Zhao, L.; Yu, N.; Tian, Z.; Yin, Z.; Yang, Z.; Yang, W.; Graham, N.J.D. Application of ultra-low concentrations of moderately-hydrophobic chitosan for ultrafiltration membrane fouling mitigation. J. Membr. Sci. 2021, 635, 119540. [Google Scholar] [CrossRef]
- Yu, C.; Gao, B.; Wang, W.; Xu, X.; Yue, Q. Alleviating membrane fouling of modified polysulfone membrane via coagulation pretreatment/ultrafiltration hybrid process. Chemosphere 2019, 235, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Lin, T.; Jiang, F.; Zhang, X. Impacts on characteristics and effluent safety of PVDF ultrafiltration membranes aged by different chemical cleaning types. J. Membr. Sci. 2021, 640, 119770. [Google Scholar] [CrossRef]
- Ren, L.; Yu, S.; Yang, H.; Li, L.; Cai, L.; Xia, Q.; Shi, Z.; Liu, G. Chemical cleaning reagent of sodium hypochlorite eroding polyvinylidene fluoride ultrafiltration membranes: Aging pathway, performance decay and molecular mechanism. J. Membr. Sci. 2021, 625, 119141. [Google Scholar] [CrossRef]
- Xie, J.; Yang, Y.; Zhang, H.; Chen, S.; Lv, Z.; Zhou, Y.; Qi, J.; Sun, X.; Li, J. ZIF-67 derived Co/N carbon hollow fiber membrane with excellent decontamination performance. Chem. Eng. J. 2023, 451, 138403. [Google Scholar] [CrossRef]
- Wei, S.; Du, L.; Chen, S.; Yu, H.; Quan, X. Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance. Front. Environ. Sci. Eng. 2020, 15, 11. [Google Scholar] [CrossRef]
Membrane Material | Pollutant Type (Concentration) | Pretreatment Method | Interception Capability | Separation Mechanism | TMP (MPa) | Membrane Flux (L/m2·h) | Removal Efficiency | Reference |
---|---|---|---|---|---|---|---|---|
PTFE | MPs (0.96 ± 0.46 item/L) | Coagulation/Adsorption | 1 μm | Adsorption/Size retention/Electrostatic repulsion | - | - | 80% | [90] |
PES | MPs | Adsorption/Coagulation | 0.74 μm (100 kDa) | Adsorption/Size retention/Electrostatic repulsion | 0.07 | - | 90% | [91] |
PSF | MPs | Adsorption | 30 kDa | Adsorption/Electrostatic repulsion | 0.128–0.32 | - | 70.7% | [53] |
PSF | MPs (10 mg/L) | Adsorption | 30 kDa | Adsorption | 0.2 | - | 75% | [92] |
PSF | MPs (10 mg/L) | Adsorption | 30 kDa | Electrostatic repulsion | 0.01 | - | - | [93] |
PES/PVP | MPs (77 ± 7.21 item/L) | AOPs | 0.1 µm | Adsorption/Size retention/Electrostatic repulsion | - | - | 96.97% | [94] |
PVDF | MPs (1 mg/L) | Adsorption | 15~25 μm (100 kDa) | Adsorption | 0.0002 | 10 | - | [95] |
hollow fiber | organic | Adsorption/Coagulation/AOPs | 50 kDa | Adsorption/Size retention | 0.05 | 400 | - | [96] |
MBR | OMP (<50 ng/L) | AOPs | 0.04 μm | Size retention | - | 5 | 80% | [80] |
Ce-Y-ZrO2/TiO2 | Animal protein/HA/Phenol | AOPs/Adsorption | 6 nm (19 kDa) | Adsorption /Size retention | 0.1 | 160 | - | [48] |
PVDF/Co@N-C | TC (20 mg·L−1) | AOPs | 2~80 nm | Adsorption/Size retention/Electrostatic repulsion | 0.1 | 636.0 | 99.3% | [97] |
Ceramic | Organic phosphorus (248 mg/L) | AOPs | - | Adsorption/Size retention | - | - | 83% | [28] |
Ceramic | NOM (5 mg/L) | AOPs | 300 kDa | Size retention | - | 100 | >80% | [29] |
PAA/PAH | HMIs | Adsorption | 1 kDa | Adsorption | 0.40–1 | >85% | [98] | |
PES | Fe2+ (1.0 mg/ L)/Mn2+ (6.1 mg/ L) | AOPs | 30 kDa | Electrostatic repulsion | 1 | - | >95% | [99] |
HF | Norfloxacin (0.1 μg/L)/Tylosin (0.1μg/L) | Coagulation | 0.03 μm (100 kDa) | Adsorption/Electrostatic repulsion | 0.002 | 20 | 80~90% | [100] |
(C/PVDF) | ARB/ARGs | AOPs | 30–80 nm | Size retention | 0.1 | 125 | 81.5% | [3] |
Ceramic | HMIs/Antibiotic | AOPs/Coagulation | 50 kDa | Size retention | 0.04 | - | - | [30] |
PPSU | ARB | Adsorption | 67 kDa | Electrostatic repulsion | 0.276 | 10–150 | 89% | [101] |
EPS | HMIs (0.02–0.16 mg/L) | Adsorption | 10 kDa | Adsorption | 0.2 | - | 94.8% | [16] |
PES | HMIs (20 mg/L) | Adsorption | 150 kDa | Adsorption | 0.004 | 3.5 | >90% | [18] |
PSF-b-PEG | BSA | Adsorption | 66 kDa | Electrostatic repulsion | 0.15 | 59 | 71% | [102] |
PVDF | ARGs | Adsorption | 100 kDa | Electrostatic repulsion | - | - | 99% | [26] |
ECM | ARGs | Adsorption | - | Electrostatic repulsion | - | - | 94.8% | [103] |
PES | NOM | Coagulation/Adsorption | 100 kDa | Adsorption/Size retention | 0.06 | - | - | [104] |
PES | NOM (5–50 mg/L) | Coagulation/Adsorption | 100 kDa | Adsorption/Size retention | 0.08 | - | - | [105] |
ZrO2 mono-tubular ceramic | BSA (10.0 g/L) | Adsorption | 50 nm | Adsorption/Size retention/ Electrostatic repulsion | 0.15 | - | 86.75 % | [106] |
tubular ceramic | organic compounds | Adsorption | 8 kDa | Size retention | 0.28–0.40 | 123 | 80% | [107] |
PVDF | Casein (1 g/L) | AOPs | 30 kDa | Size retention | 0.10 | - | - | [108] |
PES | Mn (II) | Adsorption | 30 kDa | Adsorption /Size retention | 0.05 | 100 | 95% | [109] |
PVDF | NOM | AOPs | 20 nm | Size retention | 0.30 | 60 | - | [110] |
PVDF | organic pollutants | AOPs | 150 kDa | Size retention | 0.1 | - | 94.9% | [111] |
PVDF | NOM (20 mg/L) | Adsorption | 100 kDa | Adsorption/Size retention | 0.1 | - | 83% | [112] |
RCA | Proteins (0.9 ± 0.1 mg/mL) | Adsorption | 100 kDa | Adsorption /Size retention | 0.1 | 75–132 | 97% | [113] |
hydrophilized polyethersulphone | Organics/ protein-like substances | Adsorption | 100 kDa | Adsorption/Size retention | 0.06 | - | 79.4/84.8% | [114] |
AOPs | NOM | AOPs | 150 kDa | Size retention | 0.0728 | 237 | 81.64% | [32] |
PES | EOM (7.08 μg/mg) | AOPs | 100 kDa | Size retention | 0.05 | - | - | [15] |
PVDF | BSA | Adsorption | 0.03 μm | Adsorption /Size retention/ Electrostatic repulsion | 0.2 | 103.8 | - | [115] |
PES | NOM | Adsorption | 100 kDa | Adsorption /Size retention | 0.08 | - | - | [116] |
PES | EOM | Adsorption/ AOPs | 100 kDa | Adsorption/ Size retention | 0.10 | - | - | [117] |
PVDF | organic | Coagulation /Adsorption | 100 kDa | Adsorption/ Size retention | 0.10 | 320 | 90.06% | [118] |
PVDF | BSA | AOPs | 67 kDa | Adsorption/Size retention/Electrostatic repulsion | 0.10 | 230–270 | 93% | [119] |
FeOCl-CM | BSA | AOPs | 300 kDa | Adsorption | 0.10 | - | 95% | [120] |
PVDF | NOM (5.7 mg/L) | Coagulation | 100 kDa | Adsorption | 0.10 | - | 94% | [121] |
CuFeCM | NOM (20 mg/L) | AOPs | 300 kDa | Adsorption | 0.10 | - | - | [122] |
PVDF | MPs (1 mg/L) | Adsorption | 100 kDa | Adsorption/Size retention/Electrostatic repulsion | 0.20 | 10 | - | [98] |
PES | HMIs | Adsorption | 50 kDa | Electrostatic repulsion | - | - | 94.7% | [123] |
PVDF/PES | BSA (10 mg/L) | AOPs | 100 kDa | Electrostatic repulsion | 0.10 | - | - | [124] |
PVDFSMANa | BSA (500 mg/L) | Adsorption | 100 kDa | Adsorption/Size retention/Electrostatic repulsion | 0.10 | 1014 | 98.9% | [125] |
PVDF | NOM | Coagulation | 150 kDa | Adsorption/Size retention/Electrostatic repulsion | - | 125 | - | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, G.; Yuan, X.; Li, P.; Yu, Y.; Yang, W.; Zhao, S. Reduction of Ultrafiltration Membrane Fouling by the Pretreatment Removal of Emerging Pollutants: A Review. Membranes 2023, 13, 77. https://doi.org/10.3390/membranes13010077
Zhang J, Li G, Yuan X, Li P, Yu Y, Yang W, Zhao S. Reduction of Ultrafiltration Membrane Fouling by the Pretreatment Removal of Emerging Pollutants: A Review. Membranes. 2023; 13(1):77. https://doi.org/10.3390/membranes13010077
Chicago/Turabian StyleZhang, Jianguo, Gaotian Li, Xingcheng Yuan, Panpan Li, Yongfa Yu, Weihua Yang, and Shuang Zhao. 2023. "Reduction of Ultrafiltration Membrane Fouling by the Pretreatment Removal of Emerging Pollutants: A Review" Membranes 13, no. 1: 77. https://doi.org/10.3390/membranes13010077
APA StyleZhang, J., Li, G., Yuan, X., Li, P., Yu, Y., Yang, W., & Zhao, S. (2023). Reduction of Ultrafiltration Membrane Fouling by the Pretreatment Removal of Emerging Pollutants: A Review. Membranes, 13(1), 77. https://doi.org/10.3390/membranes13010077