A Mechanistic Model for Hydrogen Production in an AnMBR Treating High Strength Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. AnMBR Setup and Operational Conditions
2.2. Modeling Hydrogen Production
2.2.1. Bioreactor Model Kinetics
- Degradation of particulate organic matter ρ1: Particulate matter is composed by macronutrients and dead biomass, which are hydrolyzed into amino acids, sugars, and long chain fatty acids (LCFA). This process is described in Equation (4).
- Fermentation of amino acids ρ2 and sugars ρ3: both processes were based on the Michaelis–Menten (MM) model (Equations (5) and (6)) and inhibited by pH.
- Anaerobic oxidation of LCFA ρ4: this process also follows a MM model; however, it presents inhibition due to acetate concentration, hydrogen concentration, and pH (Equation (7)).
- Anaerobic oxidation of intermediary products ρ5: for propionate, the expression for oxidation is given by Equation (8), following the MM model. This process is inhibited by acetate, hydrogen, pH level and ammonia concentration.
- Acetotrophic methanogenesis ρ6: based on the MM model and inhibited by pH level and ammonia concentrations.
- Hydrogenotrophic methanogenesis ρ7: based on the MM model and inhibited by ammonia and hydrogen concentrations (Equation (10)).
- Biomass decay ρ8–ρ13: first order kinetics was assumed for decay (Equation (11)).
- Bicarbonate and dissolved carbon dioxide equilibrium ρ14: described in Equation (12), the kinetic expression is based on the equilibrium Equation (13).
- Ammonia and ammonium equilibrium ρ15: described in Equation (14), the kinetic expression is based on the equilibrium Equation (15).
- Acetate and propionate protonation ρ16–ρ17: two pseudo equilibrium processes were considered (Equations (16) and (17)).
- Inhibition processes: the following non-competitive inhibition expressions were considered.
- Temperature dependency: expressed by Equation (22).
2.2.2. Membrane Model Kinetics
- BAP and UAP decay ρ18–ρ19: these processes were modeled following the expression developed by Jang et al., 2006 [20], which established MM mechanisms for the decay, as shown in Equations (23) and (24).
- EPS decay ρ20: first order kinetics was assumed for this process (Equation (25)).
- Fouling model: The accumulation of EPS density on the membrane surface (m) can be expressed as shown in Equation (26).
2.2.3. Liquid–Gas Mass Transfer
Units | mol-m3 | mgCOD-m3 | g-m3 | mol-m3 | mol-m3 | g-m3 | g-m3 | gCOD-m3 | gCOD-m3 | gCOD-m3 | gCOD-m3 | gCOD-m3 | gCOD-m3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n° component | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Process | |||||||||||||
ρ1 | 0.0004 | −0.0005 | 0.30 | 0.2 | |||||||||
ρ2 | 0.96 | 0.043 | −0.022 | 0.587 | 3.29 | 1.42 | −6.67 | ||||||
ρ3 | 0.96 | 0.091 | −0.07 | −0.08 | 3.29 | 1.42 | −6.67 | ||||||
ρ4 | 6.70 | 0.199 | −0.202 | −0.08 | 14.3 | ||||||||
ρ5 | 8.20 | 0.162 | 0.004 | −0.08 | 10.8 | −20 | |||||||
ρ6 | 39.0 | −0.006 | 0.618 | −0.08 | −40.0 | ||||||||
ρ7 | −22.0 | 21.0 | −0.353 | −0.006 | −0.08 | ||||||||
ρ8 | 0.003 | 0.045 | |||||||||||
ρ9 | 0.003 | 0.045 | |||||||||||
ρ10 | 0.003 | 0.045 | |||||||||||
ρ11 | 0.003 | 0.045 | |||||||||||
ρ12 | 0.003 | 0.045 | |||||||||||
ρ13 | 0.003 | 0.045 | |||||||||||
ρ14 | −1 | 1 | −1 | ||||||||||
ρ15 | −1 | 1 | 14.0 | −14.0 | |||||||||
ρ16 | −1 | 1 | −64.0 | 64 | |||||||||
ρ17 | −1 | 1 | −112 | 112 | |||||||||
ρ18 | |||||||||||||
ρ19 | |||||||||||||
ρ20 | |||||||||||||
n° component | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
Process | |||||||||||||
ρ1 | 0.45 | 0.05 | −1 | ||||||||||
ρ2 | 1-kEPS-k1 | k1 | kEPS | ||||||||||
ρ3 | 1-kEPS-k1 | k1 | kEPS | ||||||||||
ρ4 | −22.0 | 1-kEPS-k1 | k1 | kEPS | |||||||||
ρ5 | 1-kEPS-k1 | k1 | kEPS | ||||||||||
ρ6 | 1-kEPS-k1 | k1 | kEPS | ||||||||||
ρ7 | 1-kEPS-k1 | k1 | kEPS | ||||||||||
ρ8 | 0.8 | −1 | 0.2 | ||||||||||
ρ9 | 0.8 | −1 | 0.2 | ||||||||||
ρ10 | 0.8 | −1 | 0.2 | ||||||||||
ρ11 | 0.8 | −1 | 0.2 | ||||||||||
ρ12 | 0.8 | −1 | 0.2 | ||||||||||
ρ13 | 0.8 | −1 | 0.2 | ||||||||||
ρ14 | |||||||||||||
ρ15 | |||||||||||||
ρ16 | |||||||||||||
ρ17 | |||||||||||||
ρ18 | −1 | ||||||||||||
ρ19 | −1 | ||||||||||||
ρ20 | 1 | −1 |
2.3. Model Parameters and Numerical Techniques
2.4. Model Response and Sensitivity Analysis
Parameter | Value | Units | (°C−1) | Reference |
---|---|---|---|---|
0.25 | d−1 | 0.024 | [17] | |
4 | d−1 | 0.069 | ||
4 | d−1 | 0.069 | ||
0.6 | d−1 | 0.055 | ||
0.6 | d−1 | 0.055 | ||
0.37 | d−1 | 0.069 | ||
2 | d−1 | 0.069 | ||
0.8 | d−1 | 0.069 | ||
0.8 | d−1 | 0.069 | ||
0.06 | d−1 | 0.055 | ||
0.06 | d−1 | 0.055 | ||
0.05 | d−1 | 0.069 | ||
0.3 | d−1 | 0.069 | ||
0.07 | - | [20] | ||
0.4 | - | |||
50 | 0.069 | [17] | ||
50 | 0.069 | |||
1000 | 0.035 | |||
20 | 0.10 | |||
40 | 0.10 | |||
1 | 0.08 | |||
85 | - | [20] | ||
100 | - | |||
10 | - | [17] | ||
10 | - | |||
10 | −0.004 | |||
10 | −0.004 | |||
0.004 | ||||
0.063 | ||||
0.025 | - | |||
0.019 | - | |||
1500 | - | |||
3 | 0.08 | |||
1 | 0.08 | |||
0.01 | - | |||
- | ||||
25 | 0.061 | |||
17 | 0.086 | |||
0.05 | - | [20] | ||
0.02 | - | |||
0.1 | - | [25] | ||
5 | - | [33] | ||
- | - | [25] | ||
0.0013 | - | [21] | ||
- | ||||
m−1 | - | |||
58 | - | −0.002 | [17] | |
1.65 | - | 0.017 |
Case | COD (mg/L) | %Amino Acids | %Sugars | %Fatty Acids | %Inert Matter |
---|---|---|---|---|---|
A | 2000 | 30 | 20 | 45 | 5 |
B | 4000 | ||||
C | 7000 | ||||
D | 10,000 | ||||
E | 20,000 | ||||
1 | 10,000 | 100 | 0 | 0 | 0 |
2 | 0 | 100 | 0 | 0 | |
3 | 0 | 0 | 100 | 0 | |
4 | 30 | 20 | 45 | 5 | |
5 | 30 | 45 | 20 | 5 | |
6 | 31.3 | 46.3 | 21.3 | 0 | |
7 | 30 | 45 | 20 | 5 | |
8 | 31.66 | 31.66 | 31.66 | 5 | |
9 | 31.66 | 21.66 | 46.66 | 0 |
3. Results and Discussion
3.1. Steady State Analysis
3.2. AnMBR Model Behavior at Variable CODinlet and Substrate Composition
3.3. Sensitivity Analysis
3.4. Model Results for H2 Production
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boese-Cortés, I.; Díaz-Alvarado, F.A.; Prieto, A.L. Biocatalytic membrane reactor modeling for fermentative hydrogen production from wastewater: A review. Int. J. Hydrogen Energy 2023, 48, 13024–13043. [Google Scholar] [CrossRef]
- Goveas, L.C.; Nayak, S.; Kumar, P.S.; Vinayagam, R.; Selvaraj, R.; Rangasamy, G. Recent advances in fermentative biohydrogen production. Int. J. Hydrogen Energy. 2023. [Google Scholar] [CrossRef]
- Aziz, M.; Darmawan, A.; Juangsa, F.B. Hydrogen production from biomasses and wastes: A technological review. Int. J. Hydrogen Energy 2021, 46, 33756–33781. [Google Scholar] [CrossRef]
- Yang, W.; Cicek, N.; Ilg, J. State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America. J. Membr. Sci. 2006, 270, 201–211. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Mai, S.; Yang, C.; Wang, X.; An, Y.; Zhou, Z. Research and applications of membrane bioreactors in China: Progress and prospect. Sep. Purif. Technol. 2008, 62, 249–263. [Google Scholar] [CrossRef]
- Zielińska, M.; Ojo, A. Anaerobic membrane bioreactors (ANMBRs) for wastewater treatment: Recovery of nutrients and energy, and management of fouling. Energies 2023, 16, 2829. [Google Scholar] [CrossRef]
- Prieto, A.L.; Sigtermans, L.H.; Mutlu, B.R.; Aksan, A.; Arnold, W.A.; Novak, P.J. Performance of a composite bioactive membrane for H2production and capture from high strength wastewater. Environ. Sci. Water Res. Technol. 2016, 2, 848–857. [Google Scholar] [CrossRef]
- Kong, Z.; Li, L.; Wu, J.; Wang, T.; Rong, C.; Luo, Z.; Pan, Y.; Li, D.; Li, Y.; Huang, Y.; et al. Evaluation of bio-energy recovery from the anaerobic treatment of municipal wastewater by a pilot-scale submerged anaerobic membrane bioreactor (AnMBR) at ambient temperature. Bioresour. Technol. 2021, 339, 125551. [Google Scholar] [CrossRef]
- Zhang, M.-L.; Fan, Y.-T.; Xing, Y.; Pan, C.-M.; Zhang, G.-S.; Lay, J.-J. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass-Bioenergy 2007, 31, 250–254. [Google Scholar] [CrossRef]
- Karlsson, A.; Vallin, L.; Ejlertsson, J. Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. Int. J. Hydrogen Energy 2008, 33, 953–962. [Google Scholar] [CrossRef]
- Ren, N.; Wang, A.; Cao, G.; Xu, J.; Gao, L. Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges. Biotechnol. Adv. 2009, 27, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Aadil, R.M.; Ahmed, H.; Rahman, U.U.; Soares, B.C.; Souza, S.L.; Pimentel, T.C.; Scudino, H.; Guimarães, J.T.; Esmerino, E.A.; et al. Treatment and utilization of dairy industrial waste: A review. Trends Food Sci. Technol. 2019, 88, 361–372. [Google Scholar] [CrossRef]
- Panigrahi, S.; Dubey, B.K. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew. Energy 2019, 143, 779–797. [Google Scholar] [CrossRef]
- Banu, J.R.; Usman, T.M.; Kavitha, S.; Yukesh Kannah, R.; Yogalakshmi, K.N.; Sivashanmugam, P.; Bhatnagar, A.; Kumar, G. A critical review on limitations and enhancement strategies associated with biohydrogen production. Int. J. Hydrogen Energy 2021, 46, 16565–16590. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.A.; Vavilin, V.A. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.; Tilmans, S.H.; Chen, F.; Criddle, C.S. Anaerobic membrane bioreactor model for design and prediction of domestic wastewater treatment process performance. Chem. Eng. J. 2021, 426, 131912. [Google Scholar] [CrossRef]
- Siegrist, H.; Vogt, D.; Garcia-Heras, J.L.; Gujer, W. Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion. Environ. Sci. Technol. 2002, 36, 1113–1123. [Google Scholar] [CrossRef]
- Chen, R.; Nie, Y.; Hu, Y.; Miao, R.; Utashiro, T.; Li, Q.; Xu, M.; Li, Y.-Y. Fouling behaviour of soluble microbial products and extracellular polymeric substances in a submerged anaerobic membrane bioreactor treating low-strength wastewater at room temperature. J. Membr. Sci. 2017, 531, 1–9. [Google Scholar] [CrossRef]
- Maaz, M.; Yasin, M.; Aslam, M.; Kumar, G.; Atabani, A.; Idrees, M.; Anjum, F.; Jamil, F.; Ahmad, R.; Khan, A.L.; et al. Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. Bioresour. Technol. 2019, 283, 358–372. [Google Scholar] [CrossRef]
- Jang, N.; Ren, X.; Cho, J.; Kim, I.S. Steady-state modeling of bio-fouling potentials with respect to the biological kinetics in the submerged membrane bioreactor (SMBR). J. Membr. Sci. 2006, 284, 352–360. [Google Scholar] [CrossRef]
- Gautam, R.K.; Kamilya, T.; Verma, S.; Muthukumaran, S.; Jegatheesan, V.; Navaratna, D. Evaluation of membrane cake fouling mechanism to estimate design parameters of a submerged AnMBR treating high strength industrial wastewater. J. Environ. Manag. 2022, 301, 113867. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, A.; Zhou, J.L.; Altaee, A.; Li, D. Machine learning modeling and analysis of biohydrogen production from wastewater by dark fermentation process. Bioresour. Technol. 2022, 343, 126111. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ji, J.; Ni, J.; Wang, S.; Guo, Y.; Hu, Y.; Liu, S.; Huang, S.-F.; Li, Y.-Y. Application of deep learning for predicting the treatment performance of real municipal wastewater based on one-year operation of two anaerobic membrane bioreactors. Sci. Total Environ. 2022, 813, 151920. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Wu, Z.; Liu, Y.; Zheng, X.; Zhang, H.; Dong, R.; Qiao, W. Predicting membrane fouling in a high solid AnMBR treating OFMSW leachate through a genetic algorithm and the optimization of a BP neural network model. J. Environ. Manag. 2022, 307, 114585. [Google Scholar] [CrossRef]
- Nagaoka, S.H.; Ueda, A.M. Influence of bacterial extracellular polymers on the membrane separation activated sludge process. Water Sci. Technol. 1996, 34, 165–172. [Google Scholar] [CrossRef]
- Kunatsa, T.; Xia, X. A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement. Bioresour. Technol. 2022, 344, 126311. [Google Scholar] [CrossRef]
- Etuwe, C.N.; Momoh, Y.O.L.; Iyagba, E.T. Development of Mathematical Models and Application of the Modified Gompertz Model for Designing Batch Biogas Reactors. Waste Biomass-Valorization 2016, 7, 543–550. [Google Scholar] [CrossRef]
- Taheri, E.; Amin, M.M.; Fatehizadeh, A.; Rezakazemi, M.; Aminabhavi, T.M. Artificial intelligence modeling to predict transmembrane pressure in anaerobic membrane bioreactor-sequencing batch reactor during biohydrogen production. J. Environ. Manag. 2021, 292, 112759. [Google Scholar] [CrossRef]
- Ashok, M.; Kumar, M. Anaerobic Membrane Reactors for Biohydrogen Production; Elsevier: Amsterdam, The Netherlands, 2020; pp. 367–397. [Google Scholar] [CrossRef]
- Ngo, H.H.; Khan, M.A.; Guo, W.; Liu, Y.; Zhang, X.; Li, J.; Wang, J. Energy Production in Anaerobic Membrane Bioreactors: Opportunities and Challenges; Elsevier: Amsterdam, The Netherlands, 2020; pp. 309–333. [Google Scholar] [CrossRef]
- Lee, K.-S.; Lin, P.-J.; Fangchiang, K.; Chang, J.-S. Continuous hydrogen production by anaerobic mixed microflora using a hollow-fiber microfiltration membrane bioreactor. Int. J. Hydrogen Energy 2007, 32, 950–957. [Google Scholar] [CrossRef]
- Yoon, S.-H. Membrane Bioreactor Processes; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Navaratna, D.; Shu, L.; Baskaran, K.; Jegatheesan, V. Model development and parameter estimation for a hybrid submerged membrane bioreactor treating Ametryn. Bioresour. Technol. 2012, 113, 191–200. [Google Scholar] [CrossRef]
- Ran, N.; Sharon-Gojman, R.; Larsson, S.; Gillor, O.; Mauter, M.S.; Herzberg, M. Unraveling pH Effects on Ultrafiltration Membrane Fouling by Extracellular Polymeric Substances: Adsorption and Conformation Analyzed with Localized Surface Plasmon Resonance. Environ. Sci. Technol. 2022, 56, 14763–14773. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, Z.; Tang, S. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Res. 2009, 43, 2504–2512. [Google Scholar] [CrossRef] [PubMed]
- Lew, B.; Tarre, S.; Beliavski, M.; Dosoretz, C.; Green, M. Anaerobic membrane bioreactor (AnMBR) for domestic wastewater treatment. Desalination 2009, 243, 251–257. [Google Scholar] [CrossRef]
- Ozgun, H.; Dereli, R.K.; Ersahin, M.E.; Kinaci, C.; Spanjers, H.; van Lier, J.B. A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Sep. Purif. Technol. 2013, 118, 89–104. [Google Scholar] [CrossRef]
- Nilusha, R.T.; Wang, T.; Wang, H.; Yu, D.; Zhang, J.; Wei, Y. Optimization of in situ backwashing frequency for stable operation of anaerobic ceramic membrane bioreactor. Processes 2020, 8, 545. [Google Scholar] [CrossRef]
- Qiu, C.; Zheng, Y.; Zheng, J.; Liu, Y.; Xie, C.; Sun, L. Mesophilic and Thermophilic Biohydrogen Production from Xylose at Various Initial pH and Substrate Concentrations with Microflora Community Analysis. Energy Fuels 2016, 30, 1113–1123. [Google Scholar] [CrossRef]
- Qin, Y.; Cheng, H.; Li, Y.-Y. Sustainable anaerobic technologies for biogas and biohythane production. In Biomass, Biofuels, Biochemicals: Circular Bioe-Conomy: Technologies for Waste Remediation; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Shen, L.; Bagley, D.M.; Liss, S.N. Effect of organic loading rate on fermentative hydrogen production from continuous stirred tank and membrane bioreactors. Int. J. Hydrogen Energy 2009, 34, 3689–3696. [Google Scholar] [CrossRef]
- Lee, D.-Y.; Li, Y.-Y.; Noike, T. Influence of solids retention time on continuous H2 production using membrane bioreactor. Int. J. Hydrogen Energy 2010, 35, 52–60. [Google Scholar] [CrossRef]
- Noblecourt, A.; Christophe, G.; Larroche, C.; Santa-Catalina, G.; Trably, E.; Fontanille, P. High hydrogen production rate in a submerged membrane anaerobic bioreactor. Int. J. Hydrogen Energy 2017, 42, 24656–24666. [Google Scholar] [CrossRef]
- Lee, D.; Xu, K.; Kobayashi, T.; Li, Y.; Inamori, Y. Effect of organic loading rate on continuous hydrogen production from food waste in submerged anaerobic membrane bioreactor. Int. J. Hydrogen Energy 2014, 39, 16863–16871. [Google Scholar] [CrossRef]
- Oh, S.-E.; Iyer, P.; Bruns, M.A.; Logan, B.E. Biological hydrogen production using a membrane bioreactor. Biotechnol. Bioeng. 2004, 87, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-Y.; Li, Y.-Y.; Noike, T.; Cha, G.-C. Behavior of extracellular polymers and bio-fouling during hydrogen fermentation with a membrane bioreactor. J. Membr. Sci. 2008, 322, 13–18. [Google Scholar] [CrossRef]
- Kim, D.; Lee, D.; Kim, M. Enhanced biohydrogen production from tofu residue by acid/base pretreatment and sewage sludge addition. Int. J. Hydrogen Energy 2011, 36, 13922–13927. [Google Scholar] [CrossRef]
- Venetsaneas, N.; Antonopoulou, G.; Stamatelatou, K.; Kornaros, M.; Lyberatos, G. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour. Technol. 2009, 100, 3713–3717. [Google Scholar] [CrossRef] [PubMed]
- Palomo-Briones, R.; Razo-Flores, E.; Bernet, N.; Trably, E. Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: Novel insights on their control. Appl. Energy 2017, 198, 77–87. [Google Scholar] [CrossRef]
Model | Reactor Type | Biochemical Processes | Membrane Processes | Objective | Source |
---|---|---|---|---|---|
ADM 1 | CSTR | Hydrolysis of carbohydrates, proteins, lipids. Uptake of sugars, amino acids, LCFA, butyrate, propionate, acetate, and hydrogen. Growth and decay of microorganisms | NA | Describe the anaerobic digestion, quantifying the degradation and consumption of macronutrients, monomers, gases, and biomass. | [15] |
First order dynamic model | Not specific | Degradation of VS | NA | To be an easy tool to predict biogas generation. | [26] |
Modified Gompertz model | Batch biogas reactor | Production of biogas | NA | Describe biogas generation from a non-linear regression obtained from empirical observations. | [27] |
Artificial Neural Networks | Not specific | Not specific | Not specific | Predict the behavior of systems based on collected empiric data from them. | [26,28] |
Membrane cake fouling model due to EPS | SAnMBR | Substrate degradation. Growth and decay of microorganism. Production of EPS. | Membrane fouling. Transmembrane pressure. | Elucidate the membrane fouling due to EPS in SAnMBR and its impact in membrane durability. | [21,25] |
SRT (6 d) | No of SRTs Since Start of Operation | Min. Average Frequency | Max. Average Frequency | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
Case | (0–6) d | (6–12) d | (12–18) d | (18–24) d | (24–30) d | Min | Min |
1 | 160 | 301 | 301 | 301 | 301 | 54 | 29 |
2 | 153 | 301 | 301 | 301 | 301 | 56 | 29 |
3 | 16 | 85 | 128 | 150 | 150 | 540 | 58 |
4 | 107 | 224 | 300 | 300 | 300 | 81 | 29 |
5 | 113 | 242 | 300 | 300 | 300 | 76 | 29 |
6 | 134 | 292 | 301 | 301 | 301 | 64 | 29 |
7 | 137 | 300 | 300 | 300 | 300 | 63 | 29 |
8 | 125 | 271 | 301 | 301 | 301 | 69 | 29 |
9 | 128 | 281 | 300 | 300 | 300 | 68 | 29 |
Reactor Configuration | Substrate | Inlet COD (gCOD/L) | OLR (kg/m3-d) | HRT (h) | SRT (d) | TMP (kPa) | Productivity (L H2/L-d) | Reference |
---|---|---|---|---|---|---|---|---|
External loop | Glucose | 10 | 68.0–92.7 | 3.3–5 | 2 | 14 | 9.2 | [45] |
External loop | 3 Hexoses | 20 | 120.0–480.0 | 1–4 | Unknown | Unknown | 66 | [31] |
Submerged | Glucose | 10 | 26.7 | 9 | 450 | 70 | 2.5 | [46] |
Submerged | Glucose | 10 | 40.0 | 8 | 1 | Unkwown | 4.5 | [41] |
Submerged | Glucose | 17 | 37.5–44.3 | 9 | 2–90 | Unknown | 5.8 | [42] |
Submerged | Food waste | 52.7 | 100.2 | 14 | 5.37 | Unknown | 10.7 | [44] |
Submerged * | Case 1 (protein rich) | 10 | 21.7 | 12 | 6 | 21–23 | 6.1 | This study |
Case 2 (sugar rich) | 3.8 | |||||||
Case 3 (fat rich) | 0.7 | |||||||
Case 4 | 5.9 | |||||||
Case 5 | 6.2 | |||||||
Case 6 | 5.8 | |||||||
Case 7 | 6.2 | |||||||
Case 8 | 5.9 | |||||||
Case 9 | 6.2 | |||||||
CSTR ** | Tofu processing waste | 6.3 | 18.9 | 8 | - | - | 8.17 | [47] |
CSTR ** | Cheese whey | 60.5 | 242.0 | 6 | - | - | 2.9 | [48] |
CSTR ** | Lactose | 20 | 80.0 | 6 | - | - | 2.0 | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vera, G.; Feijoo, F.A.; Prieto, A.L. A Mechanistic Model for Hydrogen Production in an AnMBR Treating High Strength Wastewater. Membranes 2023, 13, 852. https://doi.org/10.3390/membranes13110852
Vera G, Feijoo FA, Prieto AL. A Mechanistic Model for Hydrogen Production in an AnMBR Treating High Strength Wastewater. Membranes. 2023; 13(11):852. https://doi.org/10.3390/membranes13110852
Chicago/Turabian StyleVera, Gino, Felipe A. Feijoo, and Ana L. Prieto. 2023. "A Mechanistic Model for Hydrogen Production in an AnMBR Treating High Strength Wastewater" Membranes 13, no. 11: 852. https://doi.org/10.3390/membranes13110852
APA StyleVera, G., Feijoo, F. A., & Prieto, A. L. (2023). A Mechanistic Model for Hydrogen Production in an AnMBR Treating High Strength Wastewater. Membranes, 13(11), 852. https://doi.org/10.3390/membranes13110852