Application of Machine Learning to Characterize the Permeate Quality in Pilot-Scale Vacuum-Assisted Air Gap Membrane Distillation Operation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials: Experimental Facility
2.2. Methods
2.2.1. Performance Metrics
2.2.2. Experimental Procedure
2.2.3. Artificial Neural Networks
- The inputs () undergo a multiplication process with the corresponding weights ().
- At the summing junction, the bias is added to the weighted inputs, resulting in:
- The value of a is transformed into a scalar output Y using a function f. This function can adopt different forms, including linear (Purelin) or sigmoidal (Logsig), among other possibilities. The computed outputs of neurons using these functions can be represented as follows:
3. Results and Discussion
3.1. Experimental Results
3.2. Neural Network Model
3.2.1. ANN Model Structure
3.2.2. ANN Model Prediction Performance
3.3. Response Analysis
3.4. Permeate Quality in a Thermally-Optimized V-AGMD Operation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGMD | Air gap membrane distillation |
ANN | Artificial neural network |
AS7 | Multi-envelope MD module with 7.2 m membrane area |
AS24 | Multi-envelope MD module with 24 m membrane area |
AS26 | Multi-envelope MD module with 25.92 m membrane area |
BP | Back propagation |
CAPEX | Capital expenditures [$] |
DCMD | Direct contact membrane distillation |
EC | Electrical conductivity [mS cm] |
FFR | Feed flow rate [L h] |
GOR | Gained output ratio |
HX | Heat exchanger |
MD | Membrane distillation |
MED | Multi-effect distillation |
MLP | Multi-layer feedforward perceptron |
MLR | Membrane leak ratio [%] |
MSF | Multi-stage flash |
OPEX | Operational expenditures [$] |
PFR | Permeate flow rate [L h] |
PGMD | Permeate gap membrane distillation |
PLC | Programmable logic controller |
R | Regression coefficient |
RMSE | Root mean square error |
RO | Reverse osmosis |
sp | Setpoint |
S | Feed salinity [g L] |
SRF | Salt rejection factor [%] |
TCI | Cooling channels inlet temperature [C] |
TEI | Evaporation channels inlet temperature [C] |
VMD | Vacuum membrane distillation |
V-AGMD | Vacuum-assisted air gap membrane distillation |
VMEMD | Vacuum multi-effect membrane distillation |
WHO | World Health Organization |
ZLD | Zero-liquid discharge |
Appendix A
TEI [C] | FFR [L h] | TCI [C] | S [g L] | SRF [%] | MLR [%] |
---|---|---|---|---|---|
60.0 | 1100 | 29.8 | 34.7 | 99.914 | 0.0310 |
70.0 | 400 | 25.1 | 35.0 | 99.699 | 0.0153 |
70.0 | 800 | 19.9 | 35.2 | 99.964 | 0.0210 |
59.7 | 400 | 20.0 | 35.2 | 99.894 | 0.0490 |
60.0 | 1100 | 20.0 | 35.3 | 99.950 | 0.0220 |
70.0 | 750 | 20.0 | 35.3 | 99.796 | 0.0117 |
80.0 | 400 | 25.0 | 35.4 | 99.896 | 0.0750 |
80.1 | 400 | 20.0 | 35.4 | 99.789 | 0.0750 |
79.8 | 800 | 20.0 | 35.5 | 99.979 | 0.0500 |
79.9 | 750 | 25.0 | 35.6 | 99.865 | 0.0900 |
70.0 | 1100 | 25.1 | 35.6 | 99.866 | 0.0680 |
60.0 | 750 | 24.9 | 35.7 | 99.704 | 0.0116 |
80.0 | 1100 | 20.1 | 35.8 | 99.977 | 0.0160 |
69.5 | 400 | 20.0 | 35.8 | 99.788 | 0.0127 |
80.0 | 800 | 25.0 | 35.9 | 99.969 | 0.0210 |
59.3 | 1100 | 25.4 | 36.0 | 99.984 | 0.0600 |
80.0 | 400 | 30.0 | 36.1 | 99.870 | 0.0830 |
70.0 | 750 | 30.0 | 36.1 | 99.758 | 0.0614 |
68.8 | 1100 | 21.3 | 36.1 | 99.986 | 0.0801 |
69.7 | 800 | 25.2 | 36.1 | 99.980 | 0.0118 |
59.3 | 800 | 20.0 | 36.2 | 99.981 | 0.0900 |
60.0 | 800 | 25.0 | 36.2 | 99.899 | 0.0424 |
80.0 | 1100 | 30.0 | 36.2 | 99.932 | 0.0435 |
60.0 | 400 | 25.2 | 36.2 | 99.819 | 0.0731 |
60.0 | 800 | 29.8 | 36.3 | 99.963 | 0.0342 |
69.0 | 1100 | 30.1 | 36.4 | 99.986 | 0.0708 |
79.6 | 1100 | 25.4 | 36.4 | 99.990 | 0.0745 |
79.0 | 800 | 30.0 | 36.4 | 99.979 | 0.0630 |
60.0 | 400 | 30.1 | 36.6 | 99.610 | 0.0726 |
69.0 | 400 | 30.8 | 36.9 | 99.884 | 0.0055 |
80.1 | 400 | 20.1 | 67.9 | 99.851 | 0.0960 |
60.0 | 600 | 19.9 | 68.3 | 99.776 | 0.0890 |
70.0 | 750 | 24.9 | 68.8 | 99.893 | 0.0524 |
70.0 | 600 | 30.0 | 68.8 | 99.867 | 0.0564 |
80.0 | 600 | 25.0 | 69.2 | 99.911 | 0.0575 |
80.0 | 750 | 20.0 | 69.3 | 99.878 | 0.0803 |
59.9 | 400 | 25.0 | 69.6 | 99.776 | 0.0683 |
69.8 | 400 | 20.1 | 69.7 | 99.794 | 0.0996 |
60.0 | 750 | 29.9 | 69.7 | 99.828 | 0.0506 |
59.8 | 1100 | 25.0 | 69.7 | 99.836 | 0.0598 |
79.7 | 400 | 25.1 | 70.3 | 99.809 | 0.0109 |
69.7 | 1100 | 20.4 | 70.4 | 99.919 | 0.0224 |
80.0 | 750 | 30.0 | 70.4 | 99.880 | 0.0195 |
60.0 | 750 | 19.9 | 70.5 | 99.704 | 0.0617 |
69.8 | 1100 | 30.0 | 70.5 | 99.902 | 0.0439 |
59.7 | 800 | 19.8 | 70.6 | 99.950 | 0.0206 |
79.6 | 1100 | 25.0 | 70.6 | 99.930 | 0.0432 |
69.8 | 400 | 30.1 | 70.7 | 99.754 | 0.0912 |
79.5 | 800 | 20.6 | 71.0 | 99.976 | 0.0161 |
79.1 | 400 | 29.9 | 71.2 | 99.899 | 0.0522 |
69.4 | 800 | 25.0 | 71.8 | 99.955 | 0.0223 |
59.9 | 800 | 29.5 | 72.0 | 99.936 | 0.0207 |
79.3 | 800 | 30.3 | 72.7 | 99.938 | 0.0358 |
60.0 | 750 | 19.8 | 104.2 | 99.650 | 0.0116 |
70.0 | 400 | 20.1 | 104.5 | 99.320 | 0.0236 |
70.0 | 750 | 25.0 | 104.6 | 99.552 | 0.0177 |
60.0 | 1100 | 24.9 | 104.9 | 99.649 | 0.0109 |
69.4 | 800 | 25.0 | 105.0 | 99.934 | 0.0271 |
79.9 | 400 | 25.0 | 105.0 | 99.440 | 0.0232 |
60.0 | 400 | 25.0 | 105.3 | 99.074 | 0.1539 |
69.9 | 1100 | 20.4 | 105.4 | 99.805 | 0.0937 |
80.0 | 800 | 20.8 | 105.4 | 99.795 | 0.0511 |
70.0 | 400 | 30.2 | 105.8 | 99.205 | 0.1376 |
60.0 | 800 | 29.9 | 105.8 | 99.910 | 0.0229 |
80.1 | 750 | 30.0 | 105.8 | 99.776 | 0.0110 |
80.2 | 750 | 20.0 | 105.9 | 99.830 | 0.0991 |
69.9 | 1100 | 30.0 | 105.9 | 99.748 | 0.0938 |
60.2 | 800 | 19.4 | 106.1 | 99.945 | 0.0209 |
60.0 | 750 | 30.0 | 106.3 | 99.304 | 0.0140 |
79.7 | 800 | 29.8 | 106.7 | 99.942 | 0.0292 |
80.0 | 1100 | 25.1 | 106.7 | 99.911 | 0.0509 |
70.0 | 600 | 20.2 | 139.5 | 99.023 | 0.0272 |
60.0 | 900 | 30.0 | 139.7 | 98.496 | 0.0201 |
60.0 | 1100 | 24.9 | 139.8 | 98.539 | 0.0311 |
70.0 | 750 | 24.9 | 139.8 | 98.902 | 0.0298 |
69.9 | 1100 | 20.3 | 140.1 | 99.370 | 0.0229 |
80.0 | 400 | 25.0 | 140.2 | 98.031 | 0.0455 |
80.0 | 1100 | 20.4 | 140.2 | 99.568 | 0.0209 |
60.0 | 750 | 30.0 | 140.5 | 96.735 | 0.0339 |
80.0 | 500 | 30.0 | 140.6 | 98.717 | 0.0296 |
80.0 | 750 | 20.0 | 140.6 | 99.236 | 0.0337 |
60.0 | 402 | 20.1 | 140.7 | 96.707 | 0.0363 |
60.0 | 400 | 25.0 | 140.7 | 90.657 | 0.0596 |
80.1 | 1100 | 25.0 | 140.7 | 99.451 | 0.0246 |
70.0 | 400 | 19.9 | 140.7 | 97.045 | 0.0542 |
75.0 | 600 | 20.0 | 140.9 | 99.165 | 0.0300 |
70.0 | 900 | 25.1 | 140.9 | 99.344 | 0.0193 |
70.0 | 400 | 30.0 | 140.9 | 93.901 | 0.1195 |
60.1 | 1100 | 29.8 | 141.0 | 98.663 | 0.0220 |
79.9 | 750 | 30.0 | 141.0 | 98.969 | 0.0340 |
60.0 | 750 | 20.1 | 141.1 | 98.257 | 0.0355 |
70.0 | 1100 | 29.9 | 141.3 | 99.019 | 0.0275 |
70.0 | 600 | 30.0 | 141.6 | 98.602 | 0.0229 |
80.1 | 800 | 30.0 | 142.1 | 99.451 | 0.0189 |
65.0 | 600 | 30.0 | 142.4 | 97.584 | 0.0270 |
65.0 | 800 | 29.9 | 142.5 | 98.574 | 0.0231 |
80.0 | 400 | 25.0 | 173.7 | 98.938 | 0.1521 |
60.0 | 750 | 20.1 | 173.8 | 99.018 | 0.1681 |
69.9 | 1100 | 20.8 | 174.3 | 99.670 | 0.1082 |
70.0 | 750 | 25.0 | 174.3 | 99.414 | 0.1322 |
80.0 | 750 | 20.0 | 174.8 | 99.721 | 0.1122 |
60.0 | 750 | 30.0 | 175.0 | 98.539 | 0.1842 |
60.0 | 1100 | 25.0 | 175.1 | 99.470 | 0.1908 |
70.0 | 400 | 20.0 | 175.5 | 98.585 | 0.1733 |
70.0 | 1100 | 29.9 | 175.8 | 99.661 | 0.1425 |
80.1 | 1100 | 25.1 | 176.7 | 99.808 | 0.1096 |
80.0 | 750 | 30.0 | 176.7 | 99.535 | 0.1215 |
60.0 | 750 | 30.0 | 209.9 | 95.080 | 0.1383 |
60.0 | 1100 | 25.0 | 210.3 | 98.113 | 0.1970 |
70.0 | 400 | 20.0 | 210.3 | 97.298 | 0.1201 |
80.0 | 400 | 25.0 | 210.6 | 97.036 | 0.1881 |
60.0 | 750 | 20.0 | 210.8 | 99.640 | 0.0398 |
70.0 | 1100 | 29.9 | 210.8 | 95.102 | 0.1678 |
80.0 | 750 | 20.0 | 210.8 | 98.360 | 0.1439 |
80.0 | 1100 | 25.3 | 211.1 | 99.385 | 0.1952 |
70.0 | 750 | 19.6 | 211.3 | 99.319 | 0.1394 |
80.0 | 750 | 29.9 | 211.7 | 98.260 | 0.1695 |
70.0 | 750 | 24.9 | 211.8 | 98.333 | 0.1215 |
70.2 | 1100 | 20.9 | 213.3 | 99.450 | 0.1404 |
80.0 | 400 | 20.0 | 234.9 | 99.992 | 0.1065 |
70.0 | 750 | 20.1 | 243.7 | 97.520 | 0.1160 |
60.0 | 750 | 25.0 | 245.1 | 87.449 | 0.0670 |
60.0 | 1100 | 20.4 | 245.2 | 97.248 | 0.1770 |
70.0 | 750 | 30.0 | 245.5 | 94.799 | 0.1329 |
80.0 | 750 | 25.0 | 245.7 | 97.650 | 0.1807 |
69.9 | 1100 | 25.2 | 247.4 | 95.999 | 0.1810 |
References
- Shatat, M.; Worall, M.; Riffat, S. Opportunities for solar water desalination worldwide. Sustain. Cities Soc. 2013, 9, 67–80. [Google Scholar] [CrossRef]
- Jones, E.; Qadir, M.; van Vliet, M.T.; Smakhtin, V.; Kang, S.M. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef]
- Monnot, M.; Nguyên, H.T.K.; Laborie, S.; Cabassud, C. Seawater reverse osmosis desalination plant at community-scale: Role of an innovative pretreatment on process performances and intensification. Chem. Eng. Process. Process Intensif. 2017, 113, 42–55. [Google Scholar] [CrossRef]
- Atab, M.S.; Smallbone, A.; Roskilly, A. An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation. Desalination 2016, 397, 174–184. [Google Scholar] [CrossRef]
- González, D.; Amigo, J.; Suárez, F. Membrane distillation: Perspectives for sustainable and improved desalination. Renew. Sustain. Energy Rev. 2017, 80, 238–259. [Google Scholar] [CrossRef]
- Roberts, D.A.; Johnston, E.L.; Knott, N.A. Impacts of desalination plant discharges on the marine environment: A critical review of published studies. Water Res. 2010, 44, 5117–5128. [Google Scholar] [CrossRef]
- Macedonio, F.; Drioli, E. Zero liquid discharge in desalination. In Sustainable Membrane Technology for Water and Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 2017; pp. 221–241. [Google Scholar]
- Nakoa, K.; Rahaoui, K.; Date, A.; Akbarzadeh, A. Sustainable zero liquid discharge desalination (SZLDD). Sol. Energy 2016, 135, 337–347. [Google Scholar] [CrossRef]
- Tong, T.; Elimelech, M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2016, 50, 6846–6855. [Google Scholar] [CrossRef] [PubMed]
- Drioli, E.; Di Profio, G.; Curcio, E. Progress in membrane crystallization. Curr. Opin. Chem. Eng. 2012, 1, 178–182. [Google Scholar] [CrossRef]
- Quist-Jensen, C.A.; Macedonio, F.; Drioli, E. Integrated membrane desalination systems with membrane crystallization units for resource recovery: A new approach for mining from the sea. Crystals 2016, 6, 36. [Google Scholar] [CrossRef]
- Giwa, A.; Dufour, V.; Al Marzooqi, F.; Al Kaabi, M.; Hasan, S. Brine management methods: Recent innovations and current status. Desalination 2017, 407, 1–23. [Google Scholar] [CrossRef]
- Khayet, M. Membranes and theoretical modeling of membrane distillation: A review. Adv. Colloid Interface Sci. 2011, 164, 56–88. [Google Scholar] [CrossRef] [PubMed]
- Lawson, K.W.; Lloyd, D.R. Membrane distillation. J. Membr. Sci. 1997, 124, 1–25. [Google Scholar] [CrossRef]
- Schwantes, R.; Bauer, L.; Chavan, K.; Dücker, D.; Felsmann, C.; Pfafferott, J. Air gap membrane distillation for hypersaline brine concentration: Operational analysis of a full-scale module–New strategies for wetting mitigation. Desalination 2018, 444, 13–25. [Google Scholar] [CrossRef]
- Abu-Zeid, M.A.E.R.; Zhang, L.; Jin, W.Y.; Feng, T.; Wu, Y.; Chen, H.L.; Hou, L. Improving the performance of the air gap membrane distillation process by using a supplementary vacuum pump. Desalination 2016, 384, 31–42. [Google Scholar] [CrossRef]
- López-Porfiri, P.; Ramos-Paredes, S.; Núñez, P.; Gorgojo, P. Towards the technological maturity of membrane distillation: The MD module performance curve. NPJ Clean Water 2023, 6, 18. [Google Scholar] [CrossRef]
- Drioli, E.; Ali, A.; Macedonio, F. Membrane distillation: Recent developments and perspectives. Desalination 2015, 356, 56–84. [Google Scholar] [CrossRef]
- Eykens, L.; Hitsov, I.; De Sitter, K.; Dotremont, C.; Pinoy, L.; Nopens, I.; Van der Bruggen, B. Influence of membrane thickness and process conditions on direct contact membrane distillation at different salinities. J. Membr. Sci. 2016, 498, 353–364. [Google Scholar] [CrossRef]
- Li, J.; Guan, Y.; Cheng, F.; Liu, Y. Treatment of high salinity brines by direct contact membrane distillation: Effect of membrane characteristics and salinity. Chemosphere 2015, 140, 143–149. [Google Scholar] [CrossRef]
- Xu, J.; Singh, Y.B.; Amy, G.L.; Ghaffour, N. Effect of operating parameters and membrane characteristics on air gap membrane distillation performance for the treatment of highly saline water. J. Membr. Sci. 2016, 512, 73–82. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Hilal, N. Air gap membrane distillation: A detailed study of high saline solution. Desalination 2017, 403, 179–186. [Google Scholar] [CrossRef]
- Safavi, M.; Mohammadi, T. High-salinity water desalination using VMD. Chem. Eng. J. 2009, 149, 191–195. [Google Scholar] [CrossRef]
- Naidu, G.; Jeong, S.; Choi, Y.; Vigneswaran, S. Membrane distillation for wastewater reverse osmosis concentrate treatment with water reuse potential. J. Membr. Sci. 2017, 524, 565–575. [Google Scholar] [CrossRef]
- Naidu, G.; Choi, Y.; Jeong, S.; Hwang, T.M.; Vigneswaran, S. Experiments and modeling of a vacuum membrane distillation for high saline water. J. Ind. Eng. Chem. 2014, 20, 2174–2183. [Google Scholar] [CrossRef]
- Minier-Matar, J.; Hussain, A.; Janson, A.; Benyahia, F.; Adham, S. Field evaluation of membrane distillation technologies for desalination of highly saline brines. Desalination 2014, 351, 101–108. [Google Scholar] [CrossRef]
- Andrés-Mañas, J.; Ruiz-Aguirre, A.; Acién, F.; Zaragoza, G. Assessment of a pilot system for seawater desalination based on vacuum multi-effect membrane distillation with enhanced heat recovery. Desalination 2018, 443, 110–121. [Google Scholar] [CrossRef]
- Winter, D.; Koschikowski, J.; Wieghaus, M. Desalination using membrane distillation: Experimental studies on full scale spiral wound modules. J. Membr. Sci. 2011, 375, 104–112. [Google Scholar] [CrossRef]
- Ruiz-Aguirre, A.; Alarcon-Padilla, D.C.; Zaragoza, G. Productivity analysis of two spiral-wound membrane distillation prototypes coupled with solar energy. Desalin. Water Treat. 2015, 55, 2777–2785. [Google Scholar] [CrossRef]
- Zaragoza, G.; Andrés-Mañas, J.; Ruiz-Aguirre, A. Commercial scale membrane distillation for solar desalination. NPJ Clean Water 2018, 1, 20. [Google Scholar] [CrossRef]
- Ruiz-Aguirre, A.; Andrés-Mañas, J.; Fernández-Sevilla, J.; Zaragoza, G. Experimental characterization and optimization of multi-channel spiral wound air gap membrane distillation modules for seawater desalination. Sep. Purif. Technol. 2018, 205, 212–222. [Google Scholar] [CrossRef]
- Andrés-Mañas, J.; Ruiz-Aguirre, A.; Acién, F.; Zaragoza, G. Performance increase of membrane distillation pilot scale modules operating in vacuum-enhanced air-gap configuration. Desalination 2020, 475, 114202. [Google Scholar] [CrossRef]
- Ruiz-Aguirre, A.; Andrés-Mañas, J.A.; Zaragoza, G. Evaluation of permeate quality in pilot scale membrane distillation systems. Membranes 2019, 9, 69. [Google Scholar] [CrossRef]
- Andrés-Mañas, J.; Requena, I.; Zaragoza, G. Characterization of the use of vacuum enhancement in commercial pilot-scale air gap membrane distillation modules with different designs. Desalination 2022, 528, 115490. [Google Scholar] [CrossRef]
- Jawad, J.; Hawari, A.H.; Zaidi, S.J. Artificial neural network modeling of wastewater treatment and desalination using membrane processes: A review. Chem. Eng. J. 2021, 419, 129540. [Google Scholar] [CrossRef]
- Niu, C.; Li, X.; Dai, R.; Wang, Z. Artificial intelligence-incorporated membrane fouling prediction for membrane-based processes in the past 20 years: A critical review. Water Res. 2022, 216, 118299. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.D.; Ruiz-Aguirre, A.; Roca, L.; Zaragoza, G.; Berenguel, M. Prediction models to analyse the performance of a commercial-scale membrane distillation unit for desalting brines from RO plants. Desalination 2018, 445, 15–28. [Google Scholar] [CrossRef]
- Mittal, S.; Gupta, A.; Srivastava, S.; Jain, M. Artificial Neural Network based modeling of the vacuum membrane distillation process: Effects of operating parameters on membrane fouling. Chem. Eng. Process. Process Intensif. 2021, 164, 108403. [Google Scholar] [CrossRef]
- Abuwatfa, W.H.; AlSawaftah, N.; Darwish, N.; Pitt, W.G.; Husseini, G.A. A Review on Membrane Fouling Prediction Using Artificial Neural Networks (ANNs). Membranes 2023, 13, 685. [Google Scholar] [CrossRef]
- Andrés-Mañas, J.; Requena, I.; Zaragoza, G. Membrane distillation of high salinity feeds: Steady-state modelling and optimization of a pilot-scale module in vacuum-assisted air gap operation. Desalination 2023, 553, 116449. [Google Scholar] [CrossRef]
- Bindels, M.; Carvalho, J.; Gonzalez, C.B.; Brand, N.; Nelemans, B. Techno-economic assessment of seawater reverse osmosis (SWRO) brine treatment with air gap membrane distillation (AGMD). Desalination 2020, 489, 114532. [Google Scholar] [CrossRef]
- Duong, H.C.; Cooper, P.; Nelemans, B.; Cath, T.Y.; Nghiem, L.D. Evaluating energy consumption of air gap membrane distillation for seawater desalination at pilot scale level. Sep. Purif. Technol. 2016, 166, 55–62. [Google Scholar] [CrossRef]
- Duong, H.C.; Tran, L.T.T.; Truong, H.T.; Nelemans, B. Seawater membrane distillation desalination for potable water provision on remote islands- A case study in Vietnam. Case Stud. Chem. Environ. Eng. 2021, 4, 100110. [Google Scholar] [CrossRef]
- Koschikowski, J.; Wieghaus, M.; Rommel, M.; Ortin, V.S.; Suarez, B.P.; Rodríguez, J.R.B. Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas. Desalination 2009, 248, 125–131. [Google Scholar] [CrossRef]
- Demuth, H.B.; Beale, M.H.; De Jess, O.; Hagan, M.T. Neural Network Design; PWS Publishing Co.: Worcester, UK, 2014. [Google Scholar]
- Khayet, M.; Cojocaru, C.; Essalhi, M. Artificial neural network modeling and response surface methodology of desalination by reverse osmosis. J. Membr. Sci. 2011, 368, 202–214. [Google Scholar] [CrossRef]
- Khayet, M.; Cojocaru, C. Artificial neural network modeling and optimization of desalination by air gap membrane distillation. Sep. Purif. Technol. 2012, 86, 171–182. [Google Scholar] [CrossRef]
- Beale, M.H.; Hagan, M.T.; Demuth, H.B. Neural Network Toolbox: User’s Guide, version 10.0; The MathWorks Inc.: Natick, MA, USA, 2017. [Google Scholar]
- Swaminathan, J.; Lienhard V, J.H. Design and operation of membrane distillation with feed recirculation for high recovery brine concentration. Desalination 2018, 445, 51–62. [Google Scholar] [CrossRef]
- Peñate, B.; García-Rodríguez, L. Current trends and future prospects in the design of seawater reverse osmosis desalination technology. Desalination 2012, 284, 1–8. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; WHO Press: Geneva, Switzerland, 2011; p. 223. [Google Scholar]
Feature | Value |
---|---|
Membrane area [m] | 25.92 |
Number of evaporation channels | 12 |
Number of cooling channels | 12 |
Channel length [m] | 2.7 |
Mean pore diameter [µm] | 0.32 |
Channel height [cm] | 40 |
Channel width [mm] | 2 |
Channel spacers porosity [%] | 86.5 |
Air gap width [mm] | 0.7–0.8 |
Air gap spacers porosity [%] | 92.9 |
Membrane material | Low-density PE |
Spacers material | PP |
Condensation sheets thickness [m] | 80 |
Condensation sheets material | PET + Al |
TEI [C] | FFR [L h] | TCI [C] | S [g L] |
---|---|---|---|
60 | 400 | 20 | 35.1 |
65 | 500 | 25 | 70.1 |
70 | 600 | 30 | 105.2 |
75 | 750 | 140.3 | |
80 | 800 | 175.3 | |
900 | 210.4 | ||
1100 | 245.5 |
Weights and Biases of the ANN Model | |
---|---|
Input weight matrix | W = |
Input bias vector | b = |
Hidden weight matrix | W = |
Hidden bias vector | b = |
Output weight matrix | W = |
Output bias vector | b = |
S [g L] | Optimal FFR [L h] | S [g L] | Actual SRF [%] | Actual MLR [%] |
---|---|---|---|---|
35.1 | 400 | 0.27 | 99.2403 | 0.0502 |
70.1 | 400 | 0.76 | 98.9212 | 0.0679 |
105.2 | 421 | 1.90 | 98.1915 | 0.1035 |
140.3 | 639 | 2.98 | 97.8741 | 0.1252 |
175.3 | 840 | 4.65 | 97.3455 | 0.1531 |
210.4 | 1030 | 6.28 | 97.0145 | 0.1691 |
245.5 | 1100 | 7.62 | 96.8964 | 0.1768 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Requena, I.; Andrés-Mañas, J.A.; Gil, J.D.; Zaragoza, G. Application of Machine Learning to Characterize the Permeate Quality in Pilot-Scale Vacuum-Assisted Air Gap Membrane Distillation Operation. Membranes 2023, 13, 857. https://doi.org/10.3390/membranes13110857
Requena I, Andrés-Mañas JA, Gil JD, Zaragoza G. Application of Machine Learning to Characterize the Permeate Quality in Pilot-Scale Vacuum-Assisted Air Gap Membrane Distillation Operation. Membranes. 2023; 13(11):857. https://doi.org/10.3390/membranes13110857
Chicago/Turabian StyleRequena, Isabel, Juan Antonio Andrés-Mañas, Juan Diego Gil, and Guillermo Zaragoza. 2023. "Application of Machine Learning to Characterize the Permeate Quality in Pilot-Scale Vacuum-Assisted Air Gap Membrane Distillation Operation" Membranes 13, no. 11: 857. https://doi.org/10.3390/membranes13110857
APA StyleRequena, I., Andrés-Mañas, J. A., Gil, J. D., & Zaragoza, G. (2023). Application of Machine Learning to Characterize the Permeate Quality in Pilot-Scale Vacuum-Assisted Air Gap Membrane Distillation Operation. Membranes, 13(11), 857. https://doi.org/10.3390/membranes13110857