Electrokinetic Properties of Mesoporous Vitreous Membranes Doped by Silver-Silver Halides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Silver-Containing Vitreous Membranes
2.3. Characterization
3. Results and Discussion
3.1. Chemical Composition and Structural Parameters
3.2. Electrokinetic Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, X.; Ge, L.; Han, C.; Li, Y.; Zhao, Z.; Xin, Y.; Fang, S.; Wu, L.; Qiu, P. A facile way to synthesize Ag@AgBr cubic cages with efficient visible-light-induced photocatalytic activity. Appl. Catal. B Environ. 2015, 163, 564–572. [Google Scholar] [CrossRef]
- Wang, P.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Wei, J.; Whangbo, M.H. Ag@AgCl: A Highly Efficient and Stable Photocatalyst Active under Visible Light. Angew. Chem. Int. Ed. 2008, 47, 7931–7933. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Ge, L.; Chen, C.; Li, Y.; Zhao, Z.; Xiao, X.; Lib, Z.; Zhang, J. Site-selected synthesis of novel Ag@AgCl nanoframes with efficient visiblelight induced photocatalytic activity. J. Mater. Chem. A 2014, 2, 12594–12600. [Google Scholar] [CrossRef]
- Zhu, J.; Li, C.; Teng, F.; Tian, B.; Zhang, J. Recyclable Ag@AgBr-gelatin film with superior visible-light photocatalytic activity for organic degradation. Res. Chem. Intermed. 2015, 41, 9715–9730. [Google Scholar] [CrossRef]
- Sanni, S.O.; Viljoen, E.L.; Ofomaja, A.E. Accelerated Electron Transport and Improved Photocatalytic Activity of Ag/AgBr Under Visible Light Irradiation Based on Conductive Carbon Derived Biomass. Catal. Lett. 2019, 149, 3027–3040. [Google Scholar] [CrossRef]
- Wu, C. Facile room temperature synthesis of Ag@AgBr core–shell microspheres with high visible-light-driven photocatalytic performance. J. Mater. Res. 2015, 30, 677–685. [Google Scholar] [CrossRef]
- Li, Q.; Chang, S.; Wu, D.; Bao, S.; Zeng, C.; Nasir, M.; Tian, B.; Zhang, J. Synthesis of cubic Ag@AgCl and Ag@AgBr plasmonic photocatalysts and comparison of their photocatalytic activity for degradation of methyl orange and 2,4-dichlorophenol. Res. Chem. Intermed. 2018, 44, 4651–4661. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, L.; Fugetsu, B. Morphology-controlled synthesis of sunlight-driven plasmonic photocatalysts Ag@AgX (X = Cl, Br) with graphene oxide template. J. Mater. Chem. A 2013, 1, 12536–12544. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.-Q.; Lin, K.-S.; Yu, Y. Novel Ag@AgCl@AgBr Heterostructured Nanotubes as High-Performance Visible-Light Photocatalysts for Decomposition of Dyes. Catal. Today 2018, 314, 10–19. [Google Scholar] [CrossRef]
- Udomkun, P.; Boonupara, T.; Smith, S.M.; Kajitvichyanukul, P. Green Ag/AgCl as an Effective Plasmonic Photocatalyst for Degradation and Mineralization of Methylthioninium. Chloride. Separations 2022, 9, 191. [Google Scholar] [CrossRef]
- Jin, C.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Zhengc, Y.; Kwok Yeung, K.W.; Chu, P.K.; Wu, S. Ag/AgBr loaded Mesoporous Silica for Rapid Sterilization and Promotion of Wound Healing. Biomater. Sci. 2018, 6, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- Trinh, N.D.; Nguyen, T.T.B.; Nguyen, T.H. Preparation and characterization of silver chloride nanoparticles as an antibacterial agent. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 045011. [Google Scholar] [CrossRef]
- Hassan, K.T.; Ibraheem, I.J.; Hassan, O.M.; Obaid, A.S.; Ali, H.H.; Thaer, A.S.; Kadhim, M.S. Facile green synthesis of Ag/AgCl nanoparticles derived from Chara algae extract and evaluating their antibacterial activity and synergistic effect with antibiotics. J. Environ. Chem. Eng. 2021, 9, 105359. [Google Scholar] [CrossRef]
- Yao, X.; Liu, X. One-pot synthesis of Ag/AgCl@SiO2core–shell plasmonicphotocatalyst in natural geothermal water for efficient photocatalysis under visible light. J. Mol. Catal. A Chem. 2014, 393, 30–38. [Google Scholar] [CrossRef]
- Chen, F.; Liang, W.; Qin, X.; Jiang, L.; Zhang, Y.; Fang, S.; Luo, D. Ag@AgCl Photocatalyst Loaded on the 3D Graphene/PANI Hydrogel for the Enhanced Adsorption-Photocatalytic Degradation and In Situ SERS Monitoring Properties. Chem. Sel. 2021, 6, 4166–4177. [Google Scholar] [CrossRef]
- Liu, L.; Deng, J.; Niu, T.; Zheng, G.; Zhang, P.; Jin, Y.; Jiao, Z.; Sun, X. One-step synthesis of Ag/AgCl/GO composite: A photocatalyst of extraordinary photoactivity and stability. J. Colloid Interface Sci. 2017, 493, 281–287. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, S.; Wang, X.; Sun, C.; Huang, Y.; Liu, C.; Zhao, H. In situ self-assembled synthesis of Ag-AgBr/Al-MCM-41 with excellent activities of adsorption-photocatalysis. Appl. Catal. B Environ. 2017, 209, 329–338. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.; Mooshangaie, S.D. In situ fabrication of n-type Ag/AgBr nanoparticles in MCM-41 with rice husk (RH/MCM-41) composite for the removal of Eriochrome Black-T. Mater. Sci. Eng. B 2019, 240, 16–22. [Google Scholar] [CrossRef]
- Hu, L.; Yuan, H.; Zou, L.; Chen, F.; Hu, X. Adsorption and visible-light driven photocatalytic degradation of Rhodamine B in aqueous solutions by Ag@AgBr/SBA-15. Appl. Surf. Sci. 2015, 335, 706–715. [Google Scholar] [CrossRef]
- Zienkiewicz-Strzałka, M.; Pikus, S. Synthesis of photoactive AgCl/SBA-15 by conversion of silver nanoparticles into stable AgCl nanoparticles. Appl. Surf. Sci. 2013, 265, 904–911. [Google Scholar] [CrossRef]
- Pham, X.N.; Nguyen, M.B.; Ngo, H.S.; Doan, H.V. Highly efficient photocatalytic oxidative desulfurization of dibenzothiophene with sunlight irradiation using green catalyst of Ag@AgBr/Al-SBA-15 derived from natural halloysite. J. Ind. Eng. Chem. 2020, 90, 358–370. [Google Scholar] [CrossRef]
- Naik, B.; Vilas Desai, V.; Kowshik, M.; Prasad, V.S.; Fernando, G.F.; Ghosh, N.N. Synthesis of Ag/AgCl–mesoporous silica nanocomposites using a simple aqueous solution-based chemical method and a study of their antibacterial activity on E. Coli. Particuology 2011, 9, 243–247. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, L.; Qu, K.; Qin, L.; Zhuang, L.; Yang, H.; Xu, Z. Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light. Front. Chem. Sci. Eng. 2021, 15, 892–901. [Google Scholar] [CrossRef]
- Ji, S.T.; Wang, Q.Q.; Zhou, J.; Xu, G.; Shi, W.-Y. Synthesis of a Ag/AgCl/PLA membrane under electron beam irradiation for the photocatalytic degradation of methylene blue and chloramphenicol. Nucl. Sci. Tech. 2020, 31, 22. [Google Scholar] [CrossRef]
- Tang, C.; Bai, H.; Liu, L.; Zan, X.; Gao, P.; Sun, D.D.; Yan, W. A Green Approach Assembled Multifunctional Ag/AgBr/TNF Membrane For Clean Water Production and Disinfection of Bacteria Through Utilizing Visible Light. Appl. Catal. B Environ. 2016, 196, 57–67. [Google Scholar] [CrossRef]
- Zhang, H.; Tsuchiya, T.; Liang, C.; Terabe, K. Size-Controlled AgI/Ag Heteronanowires in Highly Ordered Alumina Membranes: Superionic Phase Stabilization and Conductivity. Nano Lett. 2015, 15, 5161–5167. [Google Scholar] [CrossRef]
- Antropova, T. Morphology of the Porous Glasses. Colloid-Chemical Aspect. Opt. Appl. 2008, 38, 5–16. [Google Scholar]
- Ermakova, L.E.; Volkova, A.V.; Antropova, T.V.; Murtuzalieva, F.G. ColloidoChemical Characteristics of Porous Glasses with Different Compositions in KNO3 Solutions. 1. Structural and Electrokinetic Characteristics of Membranes. Colloid J. 2014, 76, 546–552. [Google Scholar] [CrossRef]
- Ermakova, L.E.; Antropova, T.V.; Volkova, A.V.; Kuznetsova, A.S.; Grinkevich, E.A.; Anfimova, I.N. Structural Parameters of Membranes from Porous Glass in Aqueous Solutions of Electrolytes, Containing Singly-Charged (Na+, K+) and Triple-Charged (Fe3+) Cations. Glass Phys. Chem. 2018, 44, 269–278. [Google Scholar] [CrossRef]
- Ermakova, L.E.; Kuznetsova, A.S.; Antropova, T.V.; Volkova, A.V. Structural and Electrokinetic Characteristics of High-Silica Porous Glasses in Nickel Chloride Solutions. Colloid J. 2021, 83, 418–427. [Google Scholar] [CrossRef]
- Girsova, M.A.; Drozdova, I.A.; Antropova, T.V. Structure and Optical Properties of Photochromic Quartz-Like Glass Doped with Silver Halides. Glass Phys. Chem. 2014, 40, 162–166. [Google Scholar] [CrossRef]
- Girsova, M.A.; Golovina, G.F.; Kurilenko, L.N.; Anfimova, I.N. Influence of the Heat Treatment Conditions on the Elemental Composition and Spectral Properties of Composite Materials Based on Silicate Porous Glass Doped by AgI and Er. Glass Phys. Chem. 2020, 46, 541–548. [Google Scholar] [CrossRef]
- Girsova, M.A.; Golovina, G.F.; Kurilenko, L.N.; Anfimova, I.N. Infrared Spectroscopy Study of Composite Materials Based on Nanoporous High-Silica Glasses Activated with Silver and Lanthanum Ions. Glass Phys. Chem. 2021, 47, 36–40. [Google Scholar] [CrossRef]
- Ermakova, L.E.; Kuznetsova, A.S.; Girsova, M.A.; Kurilenko, L.N.; Antropova, T.V. Electrokinetic Properties of Vitreous Mesoporous Membranes Doped with Silver Iodide. Glass Phys. Chem. 2022, 48, 248–265. [Google Scholar] [CrossRef]
- Zhdanov, S.P. Porous glasses and their structure. Wiss. Z. Friedrich-Schiller-Univ. Jena Naturwiss. Reihe 1987, 36, 817–830. [Google Scholar]
- Antropova, T.; Girsova, M.; Anfimova, I.; Drozdova, I.; Polyakova, I.; Vedishcheva, N. Structure and spectral properties of the photochromic quartz-like glasses activated by silver halides. J. Non-Cryst. Solids 2014, 401, 139–141. [Google Scholar] [CrossRef]
- Kreisberg, V.A.; Rakcheev, V.P.; Antropova, T.V. The Relationship between Micro- and Mesoporous Substructures upon Removal of Colloidal Silica from Porous Glasses Subjected to Alkaline Treatment. Colloid J. 2014, 76, 161–169. [Google Scholar] [CrossRef]
- Kuznetsova, A.S.; Ermakov, L.E.; Anfimova, I.; Antropova, T.V. Electrokinetic Characteristics of Bismuth-Containing Materials Based on Porous Glasses. Glass Phys. Chem. 2020, 46, 290–297. [Google Scholar] [CrossRef]
- Girsova, M.A.; Golovina, G.F.; Kurilenko, L.N.; Anfimova, I.N. Spectral-Luminescent Properties of Nanocomposite Materials Based on Porous Silicate Glasses Doped by Silver and Copper Bromides. Glass Phys. Chem. 2020, 46, 531–540. [Google Scholar] [CrossRef]
- Kreisberg, V.A.; Antropova, T.V. Changing the relation between micro- and mesoporosity in porous glasses: The effect of different factors. Microporous Mesoporous Mater. 2014, 190, 128–138. [Google Scholar] [CrossRef]
- Girsova, M.A.; Kurilenko, L.N.; Anfimova, I.N. Luminescent Properties of Composite Materials Based on Nanoporous Silicate Glass Activated by Tb3+ Ions and AgBr. Glass Phys. Chem. 2021, 47, 62–65. [Google Scholar] [CrossRef]
- Ermakova, L.E.; Kuznetsova, A.S.; Volkova, A.V.; Antropova, T.V. Structural and electrosurface properties of iron-containing nanoporousglasses in KNO3 solutions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 576, 91–102. [Google Scholar] [CrossRef]
- Levine, S.; Marriott, J.R.; Neale, G.; Epstein, N. Theory of electrokinetic flow in fine cylindrical capillaries under high zeta–potentials. J. Colloid Interface Sci. 1975, 52, 136–149. [Google Scholar] [CrossRef]
- Mathpal, M.C.; Kumar, P.; Kumar, S.; Tripathi, A.K.; Singh, M.K.; Prakash, J.; Agarwal, A. Opacity and plasmonic properties of Ag embedded glass based metamaterials. RSC Adv. 2015, 5, 12555–12562. [Google Scholar] [CrossRef]
- Nehal, M.E.F.; Bouzidi, A.; Nakrela, A.; Miloua, R.; Medles, M.; Desfeux, R.; Blach, J.-F.; Simon, P.; Huve, M. Synthesis and characterization of antireflective Ag@AgCl nanocomposite thin films. Optik 2020, 224, 165568. [Google Scholar] [CrossRef]
- Thomas, S.; Nair, S.K.; Jamal, E.M.A.; Al-Harthi, S.H.; Varma, M.R.; Anantharaman, M.R. Size-dependent surface plasmon resonance in silver silica nanocomposites. Nanotechnology 2008, 19, 075710. [Google Scholar] [CrossRef]
- Drozdova, I.A.; Antropova, T.V.; Tolkachev, M.D. Application of Electron Microscopy Methods to the Study of Porous and Quartz-like Glasses. Opt. Appl. 2005, 35, 709–715. [Google Scholar]
- Antropova, T.V.; Roskova, G.P.; Bakhanov, V.A. Effect of the Temperature of Acid Leaching on the Strata Formation in Microporous Glass Plates. Glass Phys. Chem. 1995, 21, 206–213. [Google Scholar]
- Vasilevskaya, T.N.; Antropova, T.V. Small_Angle X_Ray Scattering Study of the Structure of Glassy Nanoporous Matrices. Phys. Solid State 2009, 51, 2537–2545. [Google Scholar] [CrossRef]
- Kuznetsova, A.S.; Ermakova, L.E.; Anfimova, I.N.; Antropova, T.V. Effect of Heat Treatment of Microporous Glass on Its Structural and Electrosurface Characteristics. Glass Phys. Chem. 2022, 48, 180–186. [Google Scholar] [CrossRef]
Spectrum | Element, at % | ||
---|---|---|---|
K | Br | Ag | |
2 | 0.27 | - | - |
3 | 0.42 | 0.46 | - |
4 | 0.63 | 2.16 | 1.70 |
5 | 1.44 | 1.29 | - |
6 | 0.66 | 1.91 | 1.74 |
7 | - | - | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermakova, L.; Kuznetsova, A.; Girsova, M.; Volkova, A.; Antropova, T. Electrokinetic Properties of Mesoporous Vitreous Membranes Doped by Silver-Silver Halides. Membranes 2023, 13, 126. https://doi.org/10.3390/membranes13020126
Ermakova L, Kuznetsova A, Girsova M, Volkova A, Antropova T. Electrokinetic Properties of Mesoporous Vitreous Membranes Doped by Silver-Silver Halides. Membranes. 2023; 13(2):126. https://doi.org/10.3390/membranes13020126
Chicago/Turabian StyleErmakova, Ludmila, Anastasiia Kuznetsova, Marina Girsova, Anna Volkova, and Tatiana Antropova. 2023. "Electrokinetic Properties of Mesoporous Vitreous Membranes Doped by Silver-Silver Halides" Membranes 13, no. 2: 126. https://doi.org/10.3390/membranes13020126
APA StyleErmakova, L., Kuznetsova, A., Girsova, M., Volkova, A., & Antropova, T. (2023). Electrokinetic Properties of Mesoporous Vitreous Membranes Doped by Silver-Silver Halides. Membranes, 13(2), 126. https://doi.org/10.3390/membranes13020126