Recent Development in Novel Lithium-Sulfur Nanofiber Separators: A Review of the Latest Fabrication and Performance Optimizations
Abstract
:1. Introduction
2. Lithium Polysulfide Shuttle Effect
3. The Electrospinning Technique
4. Novel Nanofiber Separators
4.1. Polymer-Based Nanofibers
4.2. Carbon-Based Nanofibers
Nanofiber Material | Initial Capacity (mAh g−1) | Current Density (C) | # of Cycles | Capacity Decay (% per Cycle) | Highlights | Ref. |
---|---|---|---|---|---|---|
APAN/PEI | 728 | 2 | 500 | 0.14 | The ammino groups in APAN and PEI formed a thick SEI layer that regulated Li dendrite deposition | [41] |
PAN/TPT | 960 | 0.1 | 300 | 0.07 | Cross-linking improved the tensile strength and Young’s modulus of the NF separator | [55] |
F-PI | 754 | 1 | 500 | 0.01 | –CF3 groups endow excellent flame resistance | [56] |
PA/PVA/PI | 1380 | 0.2 | 500 | 0.1 | Highly negatively charged PA/PVA improves LiPS rejection via Coulombic repulsion | [57] |
PPTA | 807 | 1 | 1000 | 0.02 | Janus-type structure enabled high ionic conductivity with excellent LiPS rejection | [58] |
PVA/PAA-Li | 487 | 1 | 400 | 0.13 | High polarity of PVA and PAA greatly improved electrolyte uptake | [67] |
PMIA | 1093 | 0.2 | 350 | 0.16 | Improved thermal, mechanical stability than PP because of natural aramid properties | [73] |
F-PMIA/EDOT | 852 | 0.5 | 200 | 0.12 | EDOT co-polymer increased polarity and LiPS adsorption | [78] |
BC | 1250 | 0.25 | 100 | 0.21 | Oxidation of BC yielded abundant polar groups that reduced Li dendrite formation | [85] |
PVDF-PMMA | 950 | 0.2 | 200 | 0.08 | The polar ester groups in PMMA enabled better LiPS rejection via chemisorption | [89] |
CNF/PAN | 1278 | 0.2 | 200 | 0.31 | CNFs with CeO2 modifiers become thinner but retain high porosity for excellent electrolyte retention | [45] |
CNF/PAN | 923 | 0.5 | 300 | 0.22 | Conductive CNFs improved rate capability and slightly restricted the shuttle effect | [108] |
Co-CNF/PHB | 950 | 0.5 | 150 | 0.27 | Although there is rapid decay initially, the capacity plateaus after 20 cycles to 580 mAh g−1 and only decreases to 567 mAh g−1 after 130 more cycles. | [109] |
CNF/PI | 955 | 1 * | 200 | 0.07 | CNFs trap LiPS and provide fast electron transport for fast redox kinetics | [110] |
5. Composite Nanofiber Separators
5.1. Carbon Composites
5.2. Transition Metal Oxide Composites
5.3. Metal-Organic Framework Composites
5.4. Alternative Composites
Polymer Material | Modifier | Initial Capacity (mAh g−1) | Current Density (C) | # of Cycles | Capacity Decay (% per Cycle) | Highlights | Ref. |
---|---|---|---|---|---|---|---|
PAN/PVDF-HFP | CB/VOOH | 811 | 2 | 500 | 0.16 | Cross-linking even with carbon embedded in the NFs yielded more mechanically robust and thermally stable NFs | [52] |
PVDF | rGO | 1322 | 0.2 | 200 | 0.26 | rGO improved rate capability by decreasing charge transfer resistance and improving redox kinetics | [88] |
PAN | GO | 987 | 0.2 | 100 | 0.4 | GO provided electrostatic repulsion against anionic polysulfides | [116] |
CNF/PAN | CeO2 | 1001 | 0.5 | 300 | 0.04 | CeO2 acted as an electrocatalyst that improved LiPS reduction from long to short chains | [45] |
PAN | Al2O3 | 947 | 0.2* | 100 | 0.68 | Metal sites on Al2O3 improved NF affinity for electrolyte | [53] |
ANF | Fe2O3 | 1080 | 1 | 1000 | 0.24 | Fe2O3 increased NF affinity for LiPS adsorption | [58] |
PAN | CTP & LLZTO | 1288 | 0.5 | 500 | 0.06 | LLZTO provided conductive pathways for fast and uniform Li ion diffusion and deposition | [126] |
PMIA/PVDF-HFP | ZIF-8 | 1156 | 0.2 | 300 | 0.09 | ZIF-8 promoted the uniform nucleation and deposition of Li via uniform pore structures | [21] |
PMIA | ZIF-L(Co) | 1391 | 0.2 | 350 | 0.03 | MOF modification improved tensile and puncture strength P | [73] |
PAN | ZIF-67 & rGO | 485 | 5 | 600 | 0.03 | ZIF-67 possessed multiple binding sites for excellent LiPS adsorption | [117] |
PVA/PAA | ZIF-8 | 1125 | 0.1 | 300 | 0.05 | The ZIF-8 improved rate capability due to improved redox kinetics with ZIF-8 metal centers | [131] |
PVDF | ZIF-8 & TBAC | 1324 | 2 | 700 | 0.05 | ZIF-8 interfered with PVDF crystallinity, resulting in a more amorphous structure that decreased interface impedance with the anode | [132] |
PMIA | HKUST-1 | 1272 | 0.5 | 500 | 0.08 | The slightly higher conductivity of Cu than Co likely the rate capability of HKUST-1 over ZIF-67 | [133] |
PMIA | OAPS | 851 | 0.5 | 800 | 0.06 | OAPS improved LiPS rejection via Coulombic repulsion | [79] |
PMIA | starch | 1118 | 0.5 | 500 | 0.90 | Polar groups on the starch improved electrolyte affinity | [80] |
BC | SiO2 | 1250 | 0.25 | 100 | 0.17 | SiO2 adsorption of LiPS improved cycle stability | [85] |
PVDF/PMMA | VN & BN | 1077 | 0.2 | 200 | 0.1 | Thermally conductive BN distributed heat uniformly for fast dissipation and higher thermal stability | [89] |
PVP CNF | gelatin | 890 | 0.5 * | 300 | 0.12 | Gelatin coating endowed CNFs with polar groups with affinity for LiPS | [90] |
CNF/ PAN | SiO2 & TiO2 | 996 | 1 | 1000 | 0.06 | SiO2 on the Li anode side contributed to LiPS adsorption for restricted shuttling | [108] |
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fotouhi, A.; Auger, D.J.; Propp, K.; Longo, S.; Wild, M. A Review on Electric Vehicle Battery Modelling: From Lithium-Ion toward Lithium–Sulphur. Renew. Sustain. Energy Rev. 2016, 56, 1008–1021. [Google Scholar] [CrossRef]
- Khalid, M.; Ahmad, F.; Panigrahi, B.K.; Al-Fagih, L. A Comprehensive Review on Advanced Charging Topologies and Methodologies for Electric Vehicle Battery. J. Energy Storage 2022, 53, 105084. [Google Scholar] [CrossRef]
- Callebaut, G.; Leenders, G.; Van Mulders, J.; Ottoy, G.; De Strycker, L.; Van der Perre, L. The Art of Designing Remote IoT Devices—Technologies and Strategies for a Long Battery Life. Sensors 2021, 21, 913. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, H.A.; Pecht, M.G. Circular Economy of Li Batteries: Technologies and Trends. J. Energy Storage 2021, 40, 102690. [Google Scholar] [CrossRef]
- Kim, A.; Dash, J.K.; Kumar, P.; Patel, R. Carbon-Based Quantum Dots for Photovoltaic Devices: A Review. ACS Appl. Electron. Mater. 2021, 4, 27–58. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Haque, M.M. Environmental Impact of Renewable Energy Source Based Electrical Power Plants: Solar, Wind, Hydroelectric, Biomass, Geothermal, Tidal, Ocean, and Osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Kim, A.; Kumar, P.; Annamalai, P.K.; Patel, R. Recent Advances in the Nanomaterials, Design, Fabrication Approaches of Thermoelectric Nanogenerators for Various Applications. Adv. Mater. Interfaces 2022, 9, 220165. [Google Scholar] [CrossRef]
- Kim, A.; Simson, A. Rapid Optimization of 3D Printed Sediment Microbial Fuel Cells. Int. J. Energy Environ. Eng. 2022. [Google Scholar] [CrossRef]
- Kim, A.; Kalita, G.; Kim, J.H.; Patel, R. Recent Development in Vanadium Pentoxide and Carbon Hybrid Active Materials for Energy Storage Devices. Nanomaterials 2021, 11, 3213. [Google Scholar] [CrossRef]
- Deng, T.; Ji, X.; Zou, L.; Chiekezi, O.; Cao, L.; Fan, X.; Adebisi, T.R.; Chang, H.J.; Wang, H.; Li, B.; et al. Interfacial-Engineering-Enabled Practical Low-Temperature Sodium Metal Battery. Nat. Nanotechnol. 2021, 17, 269–277. [Google Scholar] [CrossRef]
- Minnmann, P.; Strauss, F.; Bielefeld, A.; Ruess, R.; Adelhelm, P.; Burkhardt, S.; Dreyer, S.L.; Trevisanello, E.; Ehrenberg, H.; Brezesinski, T.; et al. Designing Cathodes and Cathode Active Materials for Solid-State Batteries. Adv. Energy Mater. 2022, 12, 2201425. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Luu, V.T.; Lim, S.N.; Lee, Y.W.; Cho, Y.; Jun, Y.S.; Seo, M.H.; Ahn, W. Metal-Organic Frameworks Reinforce the Carbon Nanotube Sponge-Derived Robust Three-Dimensional Sulfur Host for Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2021, 13, 28036–28048. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Guan, Y.; Luo, Y.; Zhang, C.; Xia, Y.; Wei, S.; Zhao, M.; Lin, Q.; Li, H.; Zheng, S.; et al. Guanine-Assisted N-Doped Ordered Mesoporous Carbons as Efficient Capacity Decaying Suppression Materials for Lithium–Sulfur Batteries. J. Mater. Sci. Technol. 2022, 101, 155–164. [Google Scholar] [CrossRef]
- Li, Q.; Ma, Z.; Zhao, J.; Shen, K.; Shi, T.; Xie, Y.; Fan, Y.; Qin, X.; Shao, G. A Flexible Self-Supporting Ultralong MnO2 Nanowires-Expanded Graphite Nanosheets Current Collector with Enhanced Catalytic Reaction Kinetics for High-Loading Lithium-Sulfur Batteries. J. Power Sources 2022, 521, 230929. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, J.H.; Kim, M.J.; Dash, J.K.; Lee, C.H.; Joshi, R.; Lee, S.; Hone, J.; Soon, A.; Lee, G.H. Direct Observation of Grain Boundaries in Chemical Vapor Deposited Graphene. Carbon N. Y. 2017, 115, 147–153. [Google Scholar] [CrossRef]
- Kim, A.; Varga, I.; Adhikari, A.; Patel, R. Recent Advances in Layered Double Hydroxide-Based Electrochemical and Optical Sensors. Nanomaterials 2021, 11, 2809. [Google Scholar] [CrossRef]
- Yi, R.; Zhao, Y.; Liu, C.; Sun, Y.; Zhao, C.; Li, Y.; Yang, L.; Zhao, C. A Ti3C2Tx-Based Composite as Separator Coating for Stable Li-S Batteries. Nanomaterials 2022, 12, 3770. [Google Scholar] [CrossRef]
- Gao, X.; Sheng, L.; Xie, X.; Yang, L.; Bai, Y.; Dong, H.; Liu, G.; Wang, T.; Huang, X.; He, J. Morphology Optimizing of Polyvinylidene Fluoride (PVDF) Nanofiber Separator for Safe Lithium-Ion Battery. J. Appl. Polym. Sci. 2022, 139, 52154. [Google Scholar] [CrossRef]
- Deng, J.; Cao, D.; Yang, X.; Zhang, G. Cross-Linked Cellulose/Carboxylated Polyimide Nanofiber Separator for Lithium-Ion Battery Application. Chem. Eng. J. 2022, 433, 133934. [Google Scholar] [CrossRef]
- Parekh, M.H.; Lutkenhaus, J.; Oka, S.; Pol, V.G. Critical-Point-Dried, Porous, and Safer Aramid Nanofiber Separator for High-Performance Durable Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2022, 14, 29176–29187. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Zhu, L.; Chen, X.; Yi, G.; Ma, Q.; Sun, S.; Wang, N.; Cui, X.; Chai, Q.; et al. In Situ Grown MOFs and PVDF-HFP Co-Modified Aramid Gel Nanofiber Separator for High-Safety Lithium–Sulfur Batteries. J. Mater. Chem. A 2022, 10, 14098–14110. [Google Scholar] [CrossRef]
- Wang, X.; Meng, L.; Liu, X.; Yan, Z.; Liu, W.; Deng, N.; Wei, L.; Cheng, B.; Kang, W. Cobalt-Doping of Molybdenum Phosphide Nanofibers for Trapping-Diffusion-Conversion of Lithium Polysulfides towards High-Rate and Long-Life Lithium-Sulfur Batteries. J. Colloid Interface Sci. 2022, 628, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Tian, X.; Song, Y.; Wu, S.; Wu, J.; Liu, Z. Oxygen-Doped Carbon Nanofiber Nonwovens as an Effective Interlayer towards Accelerating Electrochemical Kinetics for Lithium-Sulfur Battery. Appl. Surf. Sci. 2023, 611, 155690. [Google Scholar] [CrossRef]
- Peng, J.; Zhu, J.; Wang, Y.; Xu, M.; Jiang, J. Thermotolerant and Li2Sn-Trapped/Converted Separators Enabled by NiFe2O4 Quantum Dots/g-C3N4 Nanofiber Interlayers: Toward More Practical Li-S Batteries. Mater. Chem. Front. 2022, 6, 2034–2041. [Google Scholar] [CrossRef]
- Liu, M.; Deng, N.; Ju, J.; Fan, L.; Wang, L.; Li, Z.; Zhao, H.; Yang, G.; Kang, W.; Yan, J.; et al. A Review: Electrospun Nanofiber Materials for Lithium-Sulfur Batteries. Adv. Funct. Mater. 2019, 29, 1905467. [Google Scholar] [CrossRef]
- Tong, Z.; Huang, L.; Lei, W.; Zhang, H.; Zhang, S. Carbon-Containing Electrospun Nanofibers for Lithium–Sulfur Battery: Current Status and Future Directions. J. Energy Chem. 2021, 54, 254–273. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Silva, S.R.P.; Ding, B.; Zhang, P.; Shao, G. Lithium–Sulfur Batteries Meet Electrospinning: Recent Advances and the Key Parameters for High Gravimetric and Volume Energy Density. Adv. Sci. 2022, 9, 2103879. [Google Scholar] [CrossRef]
- Wild, M.; O’Neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescu, M.; Offer, G.J. Lithium Sulfur Batteries, a Mechanistic Review. Energy Environ. Sci. 2015, 8, 3477–3494. [Google Scholar] [CrossRef]
- Zhao, E.; Nie, K.; Yu, X.; Hu, Y.S.; Wang, F.; Xiao, J.; Li, H.; Huang, X. Advanced Characterization Techniques in Promoting Mechanism Understanding for Lithium–Sulfur Batteries. Adv. Funct. Mater. 2018, 28, 1707543. [Google Scholar] [CrossRef]
- Yin, Y.X.; Xin, S.; Guo, Y.G.; Wan, L.J. Lithium–Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angew. Chemie Int. Ed. 2013, 52, 13186–13200. [Google Scholar] [CrossRef]
- Liang, X.; Wang, L.; Wu, X.; Feng, X.; Wu, Q.; Sun, Y.; Xiang, H.; Wang, J. Solid-State Electrolytes for Solid-State Lithium-Sulfur Batteries: Comparisons, Advances and Prospects. J. Energy Chem. 2022, 73, 370–386. [Google Scholar] [CrossRef]
- Gu, J.; Zhong, H.; Chen, Z.; Shi, J.; Gong, Z.; Yang, Y. Advances in Sulfide-Based All-Solid-State Lithium-Sulfur Battery: Materials, Composite Electrodes and Electrochemo-Mechanical Effects. Chem. Eng. J. 2023, 454, 139923. [Google Scholar] [CrossRef]
- Zhu, Q.; Ye, C.; Mao, D. Solid-State Electrolytes for Lithium–Sulfur Batteries: Challenges, Progress, and Strategies. Nanomaterials 2022, 12, 3612. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A Fascinating Fiber Fabrication Technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Q.; Tan, Z. A Review of Electrospun Nanofiber-Based Separators for Rechargeable Lithium-Ion Batteries. J. Power Sources 2019, 443, 227262. [Google Scholar] [CrossRef]
- Teo, W.E.; Ramakrishna, S. A Review on Electrospinning Design and Nanofibre Assemblies. Nanotechnology 2006, 17, R89–R106. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A Review on Electrospinning for Membrane Fabrication: Challenges and Applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Qian, Q.; Huang, H.; Chen, Y.; Wang, Z.; Chen, Q.; Yang, J.; Li, J.; Mai, Y.W. Electrospinning-Based Strategies for Battery Materials. Adv. Energy Mater. 2021, 11, 2000845. [Google Scholar] [CrossRef]
- Song, J.; Kim, M.; Lee, H. Recent Advances on Nanofiber Fabrications: Unconventional State-of-the-Art Spinning Techniques. Polymers 2020, 12, 1386. [Google Scholar] [CrossRef]
- Nayak, R.; Padhye, R.; Kyratzis, I.L.; Truong, Y.B.; Arnold, L. Recent Advances in Nanofibre Fabrication Techniques. Text. Res. J. 2012, 82, 129–147. [Google Scholar] [CrossRef]
- Hu, M.; Ma, Q.; Yuan, Y.; Pan, Y.; Chen, M.; Zhang, Y.; Long, D. Grafting Polyethyleneimine on Electrospun Nanofiber Separator to Stabilize Lithium Metal Anode for Lithium Sulfur Batteries. Chem. Eng. J. 2020, 388, 124258. [Google Scholar] [CrossRef]
- Jia, S.; Huang, K.; Long, J.; Yang, S.; Liang, Y.; Yang, N.; Xiao, J. Electron Beam Irradiation Modified Electrospun Polyvinylidene Fluoride/Polyacrylonitrile Fibrous Separators for Safe Lithium-Ion Batteries. J. Appl. Polym. Sci. 2021, 138, 50359. [Google Scholar] [CrossRef]
- Yang, N.; Liang, Y.; Jia, S. Enhanced Thermal Stability and Electrochemical Performance of Polyacrylonitrile/Cellulose Acetate-Electrospun Fiber Membrane by Boehmite Nanoparticles: Application to High-Performance Lithium-Ion Batteries. Macromol. Mater. Eng. 2021, 306, 2100300. [Google Scholar] [CrossRef]
- Liu, C.; Hu, J.; Zhu, Y.; Yang, Y.; Li, Y.; Wu, Q.-H. Quasi-Solid-State Polymer Electrolyte Based on Electrospun Polyacrylonitrile/Polysilsesquioxane Composite Nanofiber Membrane for High-Performance Lithium Batteries. Materials 2022, 15, 7527. [Google Scholar] [CrossRef]
- Zhang, J.; Rao, Q.; Jin, B.; Lu, J.; He, Q.; Hou, Y.; Li, Z.; Zhan, X.; Chen, F.; Zhang, Q. Cerium Oxide Embedded Bilayer Separator Enabling Fast Polysulfide Conversion for High-Performance Lithium-Sulfur Batteries. Chem. Eng. J. 2020, 388, 124120. [Google Scholar] [CrossRef]
- Kiai, M.S.; Eroglu, O.; Kizil, H. Electrospun Nanofiber Polyacrylonitrile Coated Separators to Suppress the Shuttle Effect for Long-Life Lithium–Sulfur Battery. J. Appl. Polym. Sci. 2020, 137, 48606. [Google Scholar] [CrossRef]
- Arifeen, W.U.; Choi, J.; Yoo, K.; Shim, J.; Ko, T.J. A Nano-Silica/Polyacrylonitrile/Polyimide Composite Separator for Advanced Fast Charging Lithium-Ion Batteries. Chem. Eng. J. 2021, 417, 128075. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Liang, J.; Zhang, Z.; Chen, W. A Novel Electrospinning Polyacrylonitrile Separator with Dip-Coating of Zeolite and Phenoxy Resin for Li-Ion Batteries. Membranes 2021, 11, 267. [Google Scholar] [CrossRef]
- Lee, J.H.; Nathan, M.G.T.; Kim, H.W.; Lee, S.M.; Kim, H.I.; Kim, J.H.; Seo, I.; Kim, J.K. A High-Stable Polyacrylonitrile/Ceramic Composite Membranes for High-Voltage Lithium-Ion Batteries. Mater. Chem. Phys. 2022, 291, 126516. [Google Scholar] [CrossRef]
- Kang, S.H.; Jang, J.K.; Jeong, H.Y.; So, S.; Hong, S.K.; Hong, Y.T.; Yoon, S.J.; Yu, D.M. Polyacrylonitrile/Phosphazene Composite-Based Heat-Resistant and Flame-Retardant Separators for Safe Lithium-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 2452–2461. [Google Scholar] [CrossRef]
- Kang, S.H.; Jeong, H.Y.; Kim, T.H.; Lee, J.Y.; Hong, S.K.; Hong, Y.T.; Choi, J.; So, S.; Yoon, S.J.; Yu, D.M. Aluminum Diethylphosphinate-Incorporated Flame-Retardant Polyacrylonitrile Separators for Safety of Lithium-Ion Batteries. Polymers 2022, 14, 1649. [Google Scholar] [CrossRef] [PubMed]
- Leng, X.; Xiao, W.; Yang, M.; Zeng, J.; Li, C.; Chen, J.; Arifeen, W.U.; Yoo, K.; Shim, J.; Ko, T.J. Boosting the Cycle Stability and Safety of Lithium-Sulfur Batteries via a Bilayer, Heat-Treated Electrospun Separator. Electrochim. Acta 2023, 437, 141506. [Google Scholar] [CrossRef]
- Guo, P.; Jiang, P.; Chen, W.; Qian, G.; He, D.; Lu, X. Bifunctional Al2O3/Polyacrylonitrile Membrane to Suppress the Growth of Lithium Dendrites and Shuttling of Polysulfides in Lithium-Sulfur Batteries. Electrochim. Acta 2022, 428, 140955. [Google Scholar] [CrossRef]
- Zhu, X.; Ouyang, Y.; Chen, J.; Zhu, X.; Luo, X.; Lai, F.; Zhang, H.; Miao, Y.E.; Liu, T. In Situ Extracted Poly(Acrylic Acid) Contributing to Electrospun Nanofiber Separators with Precisely Tuned Pore Structures for Ultra-Stable Lithium-Sulfur Batteries. J. Mater. Chem. A 2019, 7, 3253–3263. [Google Scholar] [CrossRef]
- Hu, Y.; Ren, Y.; Shi, R.; Yu, J.; Sun, Z.; Guo, S.; Guo, J.; Yan, F. Robust and High-Temperature-Resistant Nanofiber Membrane Separators for Li-Metal, Li-Sulfur, and Aqueous Li-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 16289–16299. [Google Scholar] [CrossRef]
- Luo, X.; Lu, X.; Chen, X.; Chen, Y.; Song, C.; Yu, C.; Wang, N.; Su, D.; Wang, C.; Gao, X.; et al. A Robust Flame Retardant Fluorinated Polyimide Nanofiber Separator for High-Temperature Lithium-Sulfur Batteries. J. Mater. Chem. A 2020, 8, 14788–14798. [Google Scholar] [CrossRef]
- Luo, X.; Lu, X.; Chen, Y.; Chen, X.; Guo, H.; Song, C.; Wang, N.; Su, D.; Wang, G.; Cui, L.; et al. A Multifunctional Polyimide Nanofiber Separator with a Self-Closing Polyamide-Polyvinyl Alcohol Top Layer with a Turing Structure for High-Performance Lithium-Sulfur Batteries. Mater. Adv. 2020, 1, 3449–3459. [Google Scholar] [CrossRef]
- Pei, H.; Yang, C.; Wu, Q.; Zhou, X.; Xie, X.; Hwang, B.; Ye, Y. Ion-Selective Aramid Nanofiber-Based Janus Separators Fabricated by a Dry-Wet Phase Inversion Approach for Lithium-Sulfur Batteries. J. Mater. Chem. A 2022, 10, 5317–5327. [Google Scholar] [CrossRef]
- Li, J.; Dai, L.; Wang, Z.; Wang, H.; Xie, L.; Chen, J.; Yan, C.; Yuan, H.; Wang, H.; Chen, C. Cellulose Nanofiber Separator for Suppressing Shuttle Effect and Li Dendrite Formation in Lithium-Sulfur Batteries. J. Energy Chem. 2022, 67, 736–744. [Google Scholar] [CrossRef]
- Jiang, K.; Gao, S.; Wang, R.; Jiang, M.; Han, J.; Gu, T.; Liu, M.; Cheng, S.; Wang, K. Lithium Sulfonate/Carboxylate-Anchored Polyvinyl Alcohol Separators for Lithium Sulfur Batteries. ACS Appl. Mater. Interfaces 2018, 10, 18310–18315. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Xu, Z.; Wang, X.; Wang, P.X. Polymer Hydrogel Electrolytes for Flexible and Multifunctional Zinc-Ion Batteries and Capacitors. Energy Environ. Mater. 2022, e12464. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Li, F.; Mao, H.; Liu, W.; Ruan, D.; Jia, X.; Yang, Y.; Yu, X. Reduced Porous Carbon/N-Doped Graphene Nanocomposites for Accelerated Conversion and Effective Immobilization of Lithium Polysulfides in Lithium-Sulfur Batteries. Electrochim. Acta 2021, 397, 139268. [Google Scholar] [CrossRef]
- Wang, S.; Yan, Y.; Xiong, D.; Li, G.; Wang, Y.; Chen, F.; Chen, S.; Tian, B.; Shi, Y. Towards Dendrite-Free Potassium-Metal Batteries: Rational Design of a Multifunctional 3D Polyvinyl Alcohol-Borax Layer. Angew. Chem. Int. Ed. 2021, 60, 25122–25127. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, V.; Torris, A.; Kurian, M.; Mathew, M.M.; Ghosh, M.; Khairnar, A.B.; Badiger, M.V.; Kurungot, S. A Sulfonated Polyvinyl Alcohol Ionomer Membrane Favoring Smooth Electrodeposition of Zinc for Aqueous Rechargeable Zinc Metal Batteries. Sustain. Energy Fuels 2021, 5, 5557–5564. [Google Scholar] [CrossRef]
- Khodaverdi, F.; Vaziri, A.; Javanbakht, M.; Jahanfar, M. Improvement of PAN Separator Properties Using PVA/Malonic Acid by Electrospinning in Lithium Ion-Batteries. J. Appl. Polym. Sci. 2021, 138, 50088. [Google Scholar] [CrossRef]
- Xia, Y.; Li, X.; Zhuang, J.; Yuan, Y.; Wang, W. Cellulose Microspheres Enhanced Polyvinyl Alcohol Separator for High-Performance Lithium-Ion Batteries. Carbohydr. Polym. 2023, 300, 120231. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, J.; Zhu, X.; Chen, K.; Ouyang, Y.; Wu, Y.; Miao, Y.E.; Liu, T. A Dual-Functional Poly(Vinyl Alcohol)/Poly(Lithium Acrylate) Composite Nanofiber Separator for Ionic Shielding of Polysulfides Enables High-Rate and Ultra-Stable Li-S Batteries. Nano Res. 2021, 14, 1541–1550. [Google Scholar] [CrossRef]
- Wang, M.; Wang, C.; Fan, Z.; Wu, G.; Liu, L.; Huang, Y. Aramid Nanofiber-Based Porous Membrane for Suppressing Dendrite Growth of Metal-Ion Batteries with Enhanced Electrochemistry Performance. Chem. Eng. J. 2021, 426, 131924. [Google Scholar] [CrossRef]
- Yang, B.; Wang, L.; Zhang, M.; Li, W.; Zhou, Q.; Zhong, L. Advanced Separators Based on Aramid Nanofiber (ANF) Membranes for Lithium-Ion Batteries: A Review of Recent Progress. J. Mater. Chem. A 2021, 9, 12923–12946. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, J.; Xu, J.; Yin, X.; Wu, J.; Chen, S.; Zhu, Z.; Wang, L.; Wang, H. Aramid Nanofibers/Polyphenylene Sulfide Nonwoven Composite Separator Fabricated through a Facile Papermaking Method for Lithium Ion Battery. J. Memb. Sci. 2019, 588, 117169. [Google Scholar] [CrossRef]
- Tang, W.; Liu, Q.; Luo, N.; Chen, F.; Fu, Q. High Safety and Electrochemical Performance Electrospun Para-Aramid Nanofiber Composite Separator for Lithium-Ion Battery. Compos. Sci. Technol. 2022, 225, 109479. [Google Scholar] [CrossRef]
- Liu, X.; Qin, M.; Sun, W.; Zhang, D.; Jian, B.; Sun, Z.; Wang, S.; Li, X. Study on Cellulose Nanofibers/Aramid Fibers Lithium-Ion Battery Separators by the Heterogeneous Preparation Method. Int. J. Biol. Macromol. 2022, 225, 1476–1486. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.; Zhu, L.; Chen, X.; Ma, Q.; Wang, L.; Wang, X.; Yan, W. A High-Safety and Multifunctional MOFs Modified Aramid Nanofiber Separator for Lithium-Sulfur Batteries. Chem. Eng. J. 2021, 411, 128540. [Google Scholar] [CrossRef]
- Hou, J.; Park, I.K.; Cha, W.J.; Lee, C.H. A Gel Polymer Electrolyte Reinforced Membrane for Lithium-Ion Batteries via the Simultaneous-Irradiation of the Electron Beam. Membranes 2021, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Hao, S.; Liu, Q.; Zeng, T. Polyacrylonitrile Gel Polymer Electrolyte as Separator in Boosting Li-Ion Storage Performance of GeSe2. Ceram. Int. 2021, 47, 27916–27924. [Google Scholar] [CrossRef]
- Zhu, M.; Wu, J.; Wang, Y.; Song, M.; Long, L.; Siyal, S.H.; Yang, X.; Sui, G. Recent Advances in Gel Polymer Electrolyte for High-Performance Lithium Batteries. J. Energy Chem. 2019, 37, 126–142. [Google Scholar] [CrossRef]
- Zhang, S.S.; Tran, D.T. How a Gel Polymer Electrolyte Affects Performance of Lithium/Sulfur Batteries. Electrochim. Acta 2013, 114, 296–302. [Google Scholar] [CrossRef]
- Xiang, H.; Liu, X.; Deng, N.; Cheng, B.; Kang, W. A Novel EDOT/F Co-Doped PMIA Nanofiber Membrane as Separator for High-Performance Lithium-Sulfur Battery. Chem. Asian J. 2022, 17, e202200669. [Google Scholar] [CrossRef]
- Zhao, H.; Deng, N.; Kang, W.; Wang, G.; Hao, Y.; Zhang, Y.; Cheng, B. The Significant Effect of Octa(Aminophenyl)Silsesquioxane on the Electrospun Ion-Selective and Ultra-Strong Poly-m-Phenyleneisophthalamide Separator for Enhanced Electrochemical Performance of Lithium-Sulfur Battery. Chem. Eng. J. 2020, 381, 122715. [Google Scholar] [CrossRef]
- Yang, Q.; Yan, C.; Wang, X.; Xiang, H.; Chen, J.; Wang, G.; Wei, L.; Cheng, B.; Deng, N.; Zhao, Y.; et al. Functional Gel Poly-m-Phenyleneisophthalamide Nanofiber Separator Modified by Starch to Suppress Lithium Polysulfides and Facilitate Transportation of Lithium Ions for High-Performance Lithium-Sulfur Battery. J. Electrochem. Soc. 2021, 168, 070505. [Google Scholar] [CrossRef]
- Deng, N.; Liu, Y.; Li, Q.; Yan, J.; Zhang, L.; Wang, L.; Zhang, Y.; Cheng, B.; Lei, W.; Kang, W. Functional Double-Layer Membrane as Separator for Lithium-Sulfur Battery with Strong Catalytic Conversion and Excellent Polysulfide-Blocking. Chem. Eng. J. 2020, 382, 122918. [Google Scholar] [CrossRef]
- Deng, N.; Wang, Y.; Yan, J.; Ju, J.; Li, Z.; Fan, L.; Zhao, H.; Kang, W.; Cheng, B. A F-Doped Tree-like Nanofiber Structural Poly-m-Phenyleneisophthalamide Separator for High-Performance Lithium-Sulfur Batteries. J. Power Sources 2017, 362, 243–249. [Google Scholar] [CrossRef]
- Zhao, H.; Kang, W.; Deng, N.; Liu, M.; Cheng, B. A Fresh Hierarchical-Structure Gel Poly-m-Phenyleneisophthalamide Nanofiber Separator Assisted by Electronegative Nanoclay-Filler towards High-Performance and Advanced-Safety Lithium-Ion Battery. Chem. Eng. J. 2020, 384, 123312. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, Z.; Xiang, Y.; Liu, D.; Xie, Z.; Qu, D.; Sun, M.; Tang, H.; Li, J. Cellulose-Based Material in Lithium-Sulfur Batteries: A Review. Carbohydr. Polym. 2021, 255, 117469. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, S.; Fan, Z.; Li, S.; Newman, N. Oxidized Bacterial Cellulose Functionalized with SiO2 Nanoparticles as a Separator for Lithium-Metal and Lithium–Sulfur Batteries. Cellulose 2022, 30, 481–493. [Google Scholar] [CrossRef]
- He, Z.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaün, F. Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement. Polymers 2021, 13, 174. [Google Scholar] [CrossRef]
- Aghayari, S. PVDF Composite Nanofibers Applications. Heliyon 2022, 8, e11620. [Google Scholar] [CrossRef]
- Zhu, P.; Zhu, J.; Zang, J.; Chen, C.; Lu, Y.; Jiang, M.; Yan, C.; Dirican, M.; Kalai Selvan, R.; Zhang, X. A Novel Bi-Functional Double-Layer RGO-PVDF/PVDF Composite Nanofiber Membrane Separator with Enhanced Thermal Stability and Effective Polysulfide Inhibition for High-Performance Lithium-Sulfur Batteries. J. Mater. Chem. A 2017, 5, 15096–15104. [Google Scholar] [CrossRef]
- Shi, J.; Yao, Y.; Xue, L.; Li, K.; Ning, J.; Jiang, F.; Huang, F. Application of Magnetron Sputtering to Deposit a Multicomponent Separator with Polysulfide Chemisorption and Electrode Stabilization for High-Performance Lithium-sulfur Batteries. Surf. Coatings Technol. 2021, 405, 126580. [Google Scholar] [CrossRef]
- Chen, M.; Chen, Z.; Fu, X.; Zhong, W.H. A Janus Protein-Based Nanofabric for Trapping Polysulfides and Stabilizing Lithium Metal in Lithium-Sulfur Batteries. J. Mater. Chem. A 2020, 8, 7377–7389. [Google Scholar] [CrossRef]
- Saroha, R.; Heo, J.; Liu, Y.; Angulakshmi, N.; Lee, Y.; Cho, K.K.; Ahn, H.J.; Ahn, J.H. V2O3-Decorated Carbon Nanofibers as a Robust Interlayer for Long-Lived, High-Performance, Room-Temperature Sodium–Sulfur Batteries. Chem. Eng. J. 2022, 431, 134205. [Google Scholar] [CrossRef]
- Hiremath, N.; Bhat, G. High-Performance Carbon Nanofibers and Nanotubes; Woodhead Publishing: Cambridge, UK, 2017; ISBN 9780081005514. [Google Scholar]
- Deng, T.; Sun, W.; Mao, Y.; Huang, J.; He, L.; Dou, X.; Bai, Y.; Wang, Z.; Sun, K. Mo2C-Embedded Carbon Nanofibers as the Interlayer in High-Performance Lithium-Sulfur Batteries. ChemElectroChem 2022, 9, 6–11. [Google Scholar] [CrossRef]
- Kim, H.B.; Ngo, D.T.; Verma, R.; Singhbabu, Y.N.; Kim, D.-y.; Le, H.T.T.; Mali, S.S.; Hong, C.K.; Park, C.J. Vanadium Nitride and Carbon Nanofiber Composite Membrane as an Interlayer for Extended Life Cycle Lithium-Sulphur Batteries. Ceram. Int. 2021, 47, 21476–21489. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, G.; Bi, D.; Tan, T.; Lai, Q.; Liang, Y. Nitrogen-Doped Multi-Channel Carbon Nanofibers Incorporated with Nickel Nanoparticles as a Multifunctional Modification Layer of the Separator for Ultra Stable Li-S Batteries. New J. Chem. 2021, 45, 9472–9477. [Google Scholar] [CrossRef]
- Wei, L.; Deng, N.; Ju, J.; Zhao, H.; Wang, G.; Xiang, H.; Kang, W.; Cheng, B. ZnF2 Doped Porous Carbon Nanofibers as Separator Coating for Stable Lithium-Metal Batteries. Chem. Eng. J. 2021, 424, 130346. [Google Scholar] [CrossRef]
- Zhu, H.; Sha, M.; Zhao, H.; Nie, Y.; Sun, X.; Lei, Y. Highly-Rough Surface Carbon Nanofibers Film as an Effective Interlayer for Lithium-Sulfur Batteries. J. Semicond. 2020, 41, 092701. [Google Scholar] [CrossRef]
- Lin, J.X.; Qu, X.M.; Wu, X.H.; Peng, J.; Zhou, S.Y.; Li, J.T.; Zhou, Y.; Mo, Y.X.; Ding, M.J.; Huang, L.; et al. NiCo2O4/CNF Separator Modifiers for Trapping and Catalyzing Polysulfides for High-Performance Lithium-Sulfur Batteries with High Sulfur Loadings and Lean Electrolytes. ACS Sustain. Chem. Eng. 2021, 9, 1804–1813. [Google Scholar] [CrossRef]
- Wu, S.; Nie, X.; Wang, Z.; Yu, Z.; Huang, F. Magnetron Sputtering Engineering of Typha-like Carbon Nanofiber Interlayer Integrating Brush Filter and Chemical Adsorption for Li–S Batteries. Carbon N. Y. 2023, 201, 285–294. [Google Scholar] [CrossRef]
- Baik, S.; Park, J.H.; Lee, J.W. One-Pot Conversion of Carbon Dioxide to CNT-Grafted Graphene Bifunctional for Sulfur Cathode and Thin Interlayer of Li–S Battery. Electrochim. Acta 2020, 330, 135264. [Google Scholar] [CrossRef]
- Barrejón, M.; Prato, M. Carbon Nanotube Membranes in Water Treatment Applications. Adv. Mater. Interfaces 2022, 9, 2101260. [Google Scholar] [CrossRef]
- Ngo, Q.; Yamada, T.; Suzuki, M.; Ominami, Y.; Cassell, A.M.; Li, J.; Meyyappan, M.; Yang, C.Y. Structural and Electrical Characterization of Carbon Nanofibers for Interconnect via Applications. IEEE Trans. Nanotechnol. 2007, 6, 688–695. [Google Scholar] [CrossRef]
- Wang, L.; Zhen, M.; Hu, Z. Status and Prospects of Electrocatalysts for Lithium-Sulfur Battery under Lean Electrolyte and High Sulfur Loading Conditions. Chem. Eng. J. 2023, 452, 139344. [Google Scholar] [CrossRef]
- Gao, Z.; Xue, Z.; Miao, Y.; Chen, B.; Xu, J.; Shi, H.; Tang, T.; Zhao, X. TiO2@Porous Carbon Nanotubes Modified Separator as Polysulfide Barrier for Lithium-Sulfur Batteries. J. Alloys Compd. 2022, 906, 164249. [Google Scholar] [CrossRef]
- Fang, R.; Chen, K.; Yin, L.; Sun, Z.; Li, F.; Cheng, H.M. The Regulating Role of Carbon Nanotubes and Graphene in Lithium-Ion and Lithium–Sulfur Batteries. Adv. Mater. 2019, 31, 1800863. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Chi, Y.; Hu, Q.; Tang, H.; Jiang, X.; Zhang, L.; Zhang, S.; Pang, H.; Xu, Q. Carbon Nanotube-Based Materials for Lithium–Sulfur Batteries. J. Mater. Chem. A 2019, 7, 17204–17241. [Google Scholar] [CrossRef]
- Wei, H.; Liu, Y.; Zhai, X.; Wang, F.; Ren, X.; Tao, F.; Li, T.; Wang, G.; Ren, F. Application of Carbon Nanotube-Based Materials as Interlayers in High-Performance Lithium-Sulfur Batteries: A Review. Front. Energy Res. 2020, 8, 221. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, X.Q.; Yuan, W.; Huang, H.L.; Wu, Y.P.; Wan, Z.P.; Lu, L.S.; Tang, Y. Fabrication of Electrospun Bilayer Separators for Lithium-Sulfur Batteries: A Surface and Structure Dual Modification Strategy. Sci. China Technol. Sci. 2022, 65, 3029–3038. [Google Scholar] [CrossRef]
- Liang, X.; Wang, L.; Wang, Y.; Liu, Y.; Sun, Y.; Xiang, H. Constructing Multi-Functional Composite Separator of PVDF-HFP/h-BN Supported Co-CNF Membrane for Lithium-Sulfur Batteries. Sustain. Energy Fuels 2022, 6, 440–448. [Google Scholar] [CrossRef]
- Kong, L.; Fu, X.; Fan, X.; Wang, Y.; Qi, S.; Wu, D.; Tian, G.; Zhong, W.H. A Janus Nanofiber-Based Separator for Trapping Polysulfides and Facilitating Ion-Transport in Lithium-Sulfur Batteries. Nanoscale 2019, 11, 18090–18098. [Google Scholar] [CrossRef]
- Chu, R.X.; Lin, J.; Wu, C.Q.; Zheng, J.; Chen, Y.L.; Zhang, J.; Han, R.H.; Zhang, Y.; Guo, H. Reduced Graphene Oxide Coated Porous Carbon-Sulfur Nanofiber as a Flexible Paper Electrode for Lithium-Sulfur Batteries. Nanoscale 2017, 9, 9129–9138. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, H.; Zhai, X.; Wang, F.; Ren, X.; Xiong, Y.; Akiyoshi, O.; Pan, K.; Ren, F.; Wei, S. Graphene-Based Interlayer for High-Performance Lithium–Sulfur Batteries: A Review. Mater. Des. 2021, 211, 110171. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, H.; Li, X.; Chu, Z.; Zheng, W.; Dai, Y.; Jiang, X.; Wu, X.; He, G. Defective Graphene Coating-Induced Exposed Interfaces on CoS Nanosheets for High Redox Electrocatalysis in Lithium-Sulfur Batteries. Energy Storage Mater. 2021, 40, 358–367. [Google Scholar] [CrossRef]
- Kamisan, A.S.I.; Tunku Kudin, T.I.; Kamisan, A.S.I.; Che Omar, A.F.; Mohamad Taib, M.F.; Hassan, O.H.; Ali, A.M.M.; Yahya, M.Z.A. Recent Advances on Graphene-Based Materials as Cathode Materials in Lithium-Sulfur Batteries. Int. J. Hydrogen Energy 2022, 47, 8630–8657. [Google Scholar] [CrossRef]
- Yao, S.; He, Y.; Wang, Y.; Bi, M.; Liang, Y.; Majeed, A.; Yang, Z.; Shen, X. Porous N-Doped Carbon Nanofibers Assembled with Nickel Ferrite Nanoparticles as Efficient Chemical Anchors and Polysulfide Conversion Catalyst for Lithium-Sulfur Batteries. J. Colloid Interface Sci. 2021, 601, 209–219. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, C.; Lu, Y.; Zang, J.; Jiang, M.; Kim, D.; Zhang, X. Highly Porous Polyacrylonitrile/Graphene Oxide Membrane Separator Exhibiting Excellent Anti-Self-Discharge Feature for High-Performance Lithium-Sulfur Batteries. Carbon N. Y. 2016, 101, 272–280. [Google Scholar] [CrossRef]
- Zhou, C.; He, Q.; Li, Z.; Meng, J.; Hong, X.; Li, Y.; Zhao, Y.; Xu, X.; Mai, L. A Robust Electrospun Separator Modified with in Situ Grown Metal-Organic Frameworks for Lithium-Sulfur Batteries. Chem. Eng. J. 2020, 395, 124979. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.; Tang, W.; Zhan, L.; Zhao, S.; Kang, Q.; Wang, Y.; Yang, S. Efficient Polysulfide Barrier of a Graphene Aerogel-Carbon Nanofibers-Ni Network for High-Energy-Density Lithium-Sulfur Batteries with Ultrahigh Sulfur Content. J. Mater. Chem. A 2018, 6, 20926–20938. [Google Scholar] [CrossRef]
- Raulo, A.; Singh, S.; Gupta, A.; Srivastava, R.; Nandan, B. Metal Oxide Heterostructure Decorated Carbon Nanofiber as a Novel Redox Catalyst for High Performance Lithium-Sulfur Batteries. Appl. Surf. Sci. 2021, 569, 151054. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, X.; Xu, C.; Zhao, S.; Zhang, S.; Li, G. CoMoO4 Nanorods Coated Separator for High-Performance Lithium Sulfur Batteries. Mater. Chem. Phys. 2023, 295, 127182. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, R.; Gao, H.; Liu, Y.; Kang, J.; Wang, X.; Liu, X.; Cheng, B.; Deng, N.; Kang, W. Effective Adsorption and Acceleration Redox Conversion towards Lithium Polysulfide by Nanorod-like Sb-Doped SnO2 Nanofibers for High-Performance Lithium-Sulfur Battery. J. Alloys Compd. 2022, 922, 166234. [Google Scholar] [CrossRef]
- Mallick, P.; Rath, C.; Dash, J.K.; Biswal, R.; Agarwal, D.C.; Behera, D.; Avasthi, D.K.; Kanjilal, D.; Satyam, P.V.; Mishra, N.C. Observation of Grain Growth in Swift Heavy Ion Irradiated NiO Thin Films. Indian J. Phys. 2010, 84, 1399–1404. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, G.; Ji, H.; Chen, D.; Xia, D.; Gao, K.; Xu, J.; Mao, B.; Yi, S.; Zhang, L.; et al. 2D/1D V2O5 Nanoplates Anchored Carbon Nanofibers as E Ffi Cient Separator Interlayer for Highly Stable Lithium—Sulfur Battery. Nanomaterials 2020, 10, 705. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, B.; Guo, P.; Shang, X.; Lv, M.; Liu, D.; He, D. Enhanced Electrochemical Kinetics in Lithium-Sulfur Batteries by Using Carbon Nanofibers/Manganese Dioxide Composite as a Bifunctional Coating on Sulfur Cathode. Electrochim. Acta 2018, 269, 180–187. [Google Scholar] [CrossRef]
- Yao, S.; Tang, H.; Liu, M.; Chen, L.; Jing, M.; Shen, X.; Li, T.; Tan, J. TiO2 Nanoparticles Incorporation in Carbon Nanofiber as a Multi-Functional Interlayer toward Ultralong Cycle-Life Lithium-Sulfur Batteries. J. Alloys Compd. 2019, 788, 639–648. [Google Scholar] [CrossRef]
- Wu, S.; Yao, Y.; Nie, X.; Yu, Z.; Yu, Y.; Huang, F. Interfacial Engineering of Binder-Free Janus Separator with Ultra-Thin Multifunctional Layer for Simultaneous Enhancement of Both Metallic Li Anode and Sulfur Cathode. Small 2022, 18, 2202651. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xiao, Y.; Chen, C.; Yang, J.; Gao, C.; Chen, Y.; Wu, J.; Shen, Y.; Zhang, W.; Li, S.; et al. Conductive MOF-Modified Separator for Mitigating the Shuttle Effect of Lithium-Sulfur Battery through a Filtration Method. ACS Appl. Mater. Interfaces 2019, 11, 11459–11465. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou, H. Metal–Organic—Based Separator for Lithium–Sulfur Batteries. Nat. Energy 2016, 1, 16094. [Google Scholar] [CrossRef]
- Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. Metal–Organic Frameworks for Lithium–Sulfur Batteries. J. Mater. Chem. A 2019, 7, 3469–3491. [Google Scholar] [CrossRef]
- Yuan, N.; Sun, W.; Yang, J.; Gong, X.; Liu, R. Multifunctional MOF-Based Separator Materials for Advanced Lithium–Sulfur Batteries. Adv. Mater. Interfaces 2021, 8, 2001941. [Google Scholar] [CrossRef]
- Zheng, S.; Zhu, X.; Ouyang, Y.; Chen, K.; Chen, A.L.; Fan, X.; Miao, Y.E.; Liu, T.; Xie, Y. Metal-Organic Framework Decorated Polymer Nanofiber Composite Separator for Physiochemically Shielding Polysulfides in Stable Lithium-Sulfur Batteries. Energy and Fuels 2021, 35, 19154–19163. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, G.; Kang, W.; Deng, N.; Cheng, B. Taming Polysulfides and Facilitating Lithium-Ion Migration: Novel Electrospinning MOFs@PVDF-Based Composite Separator with Spiderweb-like Structure for Li-S Batteries. Electrochim. Acta 2021, 365, 137344. [Google Scholar] [CrossRef]
- Deng, N.; Wang, L.; Feng, Y.; Liu, M.; Li, Q.; Wang, G.; Zhang, L.; Kang, W.; Cheng, B.; Liu, Y. Co-Based and Cu-Based MOFs Modified Separators to Strengthen the Kinetics of Redox Reaction and Inhibit Lithium-Dendrite for Long-Life Lithium-Sulfur Batteries. Chem. Eng. J. 2020, 388, 124241. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, J.; Yin, L.; Hu, G.; Fang, R.; Cheng, H.M.; Li, F. Conductive Porous Vanadium Nitride/Graphene Composite as Chemical Anchor of Polysulfides for Lithium-Sulfur Batteries. Nat. Commun. 2017, 8, 14627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, K.; Luo, W.; Dai, J.; Zhang, X.; Li, R.; Zou, J.; Xu, Z. SiO2 Hollow Nanotubes Composite Aramid Fiber Interlayer for Absorbtion of Polysulfides in Highly Stable Lithium-Sulfur Batteries. Vacuum 2022, 195, 110684. [Google Scholar] [CrossRef]
- Zhang, C.; Li, K.; Dai, J.; Zhang, X.; Li, R.; Zou, J. High-Performance Lithium-Sulfur Batteries Achieved by a Multifunctional SiO2-Nanotubes/Carbon Composite Interlayer. J. Alloys Compd. 2022, 895, 162580. [Google Scholar] [CrossRef]
- Liao, C.; Mu, X.; Han, L.; Li, Z.; Zhu, Y.; Lu, J.; Wang, H.; Song, L.; Kan, Y.; Hu, Y. A Flame-Retardant, High Ionic-Conductivity and Eco-Friendly Separator Prepared by Papermaking Method for High-Performance and Superior Safety Lithium-Ion Batteries. Energy Storage Mater. 2022, 48, 123–132. [Google Scholar] [CrossRef]
- Yu, Y.; Jia, G.; Zhao, L.; Xiang, H.; Hu, Z.; Xu, G.; Zhu, M. Flexible and Heat-Resistant Polyphenylene Sulfide Ultrafine Fiber Hybrid Separators for High-Safety Lithium-Ion Batteries. Chem. Eng. J. 2023, 452, 139112. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Q.; Ruan, S.; Ma, C.; Jia, X.; Qiao, W.; Ling, L.; Wang, J. In-Situ Construction of g-C3N4/Carbon Heterostructure on Graphene Nanosheet: An Efficient Polysulfide Barrier for Advanced Lithium-Sulfur Batteries. Appl. Surf. Sci. 2022, 578, 152022. [Google Scholar] [CrossRef]
- Wang, X.; Jia, X.; Liang, Q.; Yang, J.; Li, Y.; Shao, D.; Feng, L.; Wang, S.; Song, H. Building Polysulfides Shuttle Barrier with Unblocked Li+ Transit Channels via In-Situ Grown FeOOH Modified Separator for Li-S Batteries. Appl. Surf. Sci. 2022, 606, 154903. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, S.; Li, J.; Chen, D.; Gu, X.; Sun, J.; Xu, B.; Zhang, S. Constructing Interlayers with Micro-Nano Particles to Enhance the Fire Safety and Polysulfide Adsorption Ability of Polypropylene Separators for Lithium-Sulfur Batteries. J. Power Sources 2022, 545, 231919. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, M.; Dong, C.; Wang, H.; Shen, C.; Wu, X.; An, Q.; Chang, G.; Xu, X.; Mai, L. The Continuous Efficient Conversion and Directional Deposition of Lithium (Poly)Sulfides Enabled by Bimetallic Site Regulation. Nano Energy 2022, 98, 107332. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, W.; Meng, G.; Zhang, J. Function-Directed Design of Battery Separators Based on Microporous Polyolefin Membranes. J. Mater. Chem. A 2022, 10, 14137–14170. [Google Scholar] [CrossRef]
- Chen, B.; Wei, J.; Li, X.; Ji, Y.; Liang, D.; Chen, T. Vanadium Dioxide Plates Reduced Graphene Oxide as Sulfur Cathodes for Efficient Polysulfides Trap in Long-Life Lithium-Sulfur Batteries. J. Colloid Interface Sci. 2023, 629, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.C.; Hsiang, H.I.; Chung, S.H. Investigation and Design of High-Loading Sulfur Cathodes with a High-Performance Polysulfide Adsorbent for Electrochemically Stable Lithium-Sulfur Batteries. ACS Sustain. Chem. Eng. 2022, 10, 9254–9264. [Google Scholar] [CrossRef]
- Tonoya, T.; Matsui, Y.; Hinago, H.; Ishikawa, M. Microporous Activated Carbon Derived from Azulmic Acid Precursor with High Sulfur Loading and Its Application to Lithium-Sulfur Battery Cathode. Electrochem. Commun. 2022, 140, 107333. [Google Scholar] [CrossRef]
- Wang, M.; Bai, Z.; Yang, T.; Nie, C.; Xu, X.; Wang, Y.; Yang, J.; Dou, S.; Wang, N. Advances in High Sulfur Loading Cathodes for Practical Lithium-Sulfur Batteries. Adv. Energy Mater. 2022, 12, 2201585. [Google Scholar] [CrossRef]
- Chu, R.; Nguyen, T.T.; Bai, Y.; Kim, N.H.; Lee, J.H. Uniformly Controlled Treble Boundary Using Enriched Adsorption Sites and Accelerated Catalyst Cathode for Robust Lithium–Sulfur Batteries. Adv. Energy Mater. 2022, 12, 2102805. [Google Scholar] [CrossRef]
- Liu, J.; Ding, Y.; Shen, Z.; Zhang, H.; Han, T.; Guan, Y.; Tian, Y.; Braun, P.V. A Lamellar Yolk–Shell Lithium-Sulfur Battery Cathode Displaying Ultralong Cycling Life, High Rate Performance, and Temperature Tolerance. Adv. Sci. 2022, 9, 2103517. [Google Scholar] [CrossRef]
- Lin, T.; Wang, H.; Du, X.; Zhang, D.; Zhang, Z.; Liu, G. A COF-Coated MOF Framework Polysulfide Barrier Design for Enhanced Performance in Lithium-Sulfur Batteries. Electrochim. Acta 2022, 412, 140156. [Google Scholar] [CrossRef]
- Liu, G.; Zeng, Q.; Sui, X.; Tian, S.; Li, X.; Wu, Q.; Wang, X.; Tao, K.; Xie, E.; Zhang, Z. Modulating the D-p Orbital Coupling of Manganese Chalcogenides for Efficient Polysulfides Conversion in Lithium–Sulfur Batteries. J. Power Sources 2022, 552, 232244. [Google Scholar] [CrossRef]
- Xiao, R.; Qiu, W.; Yang, M.; Zhang, Y.; Wang, X. Synthesis of Double-Shelled Co-LDH@rGO Nanocages through a Spray-Drying Process as an Advanced Sulfur Reservoir for Lithium-Sulfur Batteries. ACS Appl. Energy Mater. 2021, 4, 12623–12630. [Google Scholar] [CrossRef]
- Liu, Q.; Han, X.; Dou, Q.; Xiong, P.; Kang, Y.; Kim, B.K.; Park, H.S. NiFe-Layered Double Hydroxide Nanosheets Grafted onto Carbon Nanotubes for Functional Separator of Lithium Sulfur Batteries. Int. J. Energy Res. 2022, 46, 9634–9642. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, Q.; Yu, Y.; Liu, Y.; Chen, A.; Guan, J.; Wang, H.; Liu, W.; Liu, X.; Liu, X.; et al. Application of Transition Metal Boride Nanosheet as Sulfur Host in High Loading Li-S Batteries. Chem. Eng. J. 2023, 452, 139366. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, X.; Zhao, R.; Li, L.; Li, J.; Wu, F. MOF-808-Derived Ce-Doped ZrOF Composite as an Efficient Polysulfide Inhibitor for Advanced Lithium-Sulfur Batteries. J. Alloys Compd. 2022, 924, 166486. [Google Scholar] [CrossRef]
- Shobana, M.K.; Jeevanantham, B. Metal–Organic Framework Based Cathode Materials in Lithium–Sulfur Batteries. Lithium-Sulfur Batter. Mater. Chall. Appl. 2022, 333–360. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, X.; Gong, W.; Guo, S.; Ouyang, Y.; Li, D.; Xiao, Y.; Tan, C.; Xie, L.; Lu, H.; et al. Copolymerization of Sulfur Chains with Vinyl Functionalized Metal−Organic Framework for Accelerating Redox Kinetics in Lithium−Sulfur Batteries. Adv. Energy Mater. 2022, 12, 2104074. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, A.; Dash, J.K.; Patel, R. Recent Development in Novel Lithium-Sulfur Nanofiber Separators: A Review of the Latest Fabrication and Performance Optimizations. Membranes 2023, 13, 183. https://doi.org/10.3390/membranes13020183
Kim A, Dash JK, Patel R. Recent Development in Novel Lithium-Sulfur Nanofiber Separators: A Review of the Latest Fabrication and Performance Optimizations. Membranes. 2023; 13(2):183. https://doi.org/10.3390/membranes13020183
Chicago/Turabian StyleKim, Andrew, Jatis Kumar Dash, and Rajkumar Patel. 2023. "Recent Development in Novel Lithium-Sulfur Nanofiber Separators: A Review of the Latest Fabrication and Performance Optimizations" Membranes 13, no. 2: 183. https://doi.org/10.3390/membranes13020183
APA StyleKim, A., Dash, J. K., & Patel, R. (2023). Recent Development in Novel Lithium-Sulfur Nanofiber Separators: A Review of the Latest Fabrication and Performance Optimizations. Membranes, 13(2), 183. https://doi.org/10.3390/membranes13020183