Optical Properties of Electrospun Nanofiber Mats
Abstract
:1. Introduction
2. Absorption/Absorbance
3. Optical Band Gap Investigation
4. Transmission
5. Dielectric Constant and Index of Refraction
6. Photoluminescence
7. Polarization
8. Bathochromic Shift
9. Dyeing
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.S.; Chen, S.-S.; Li, C.-W.; Nguyen, N.C.; Nguyen, H.T. A comprehensive review: Electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Adv. 2016, 6, 85495–85514. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J.D.; Cheng, H.; Li, G.Y.; Cho, H.J.; Jiang, M.J.; Gao, Q.; Zhang, X.W. Developments of Advanced Electrospinning Techniques: A Critical Review. Adv. Mater. Technol. 2021, 6, 2100410. [Google Scholar] [CrossRef]
- Wilk, S.; Benko, A. Advances in Fabricating the Electrospun Biopolymer-Based Biomaterials. J. Funct. Biomater. 2021, 12, 26. [Google Scholar] [CrossRef]
- Storck, J.L.; Wortmann, M.; Brockhagen, B.; Frese, N.; Diestelhorst, E.; Grothe, T.; Hellert, C.; Ehrmann, A. Comparative Study of Metal Substrates for Improved Carbonization of Electrospun PAN Nanofibers. Polymers 2022, 14, 721. [Google Scholar] [CrossRef] [PubMed]
- Peranidze, K.; Safronova, T.V.; Kildeeva, N.R. Fibrous Polymer-Based Composites Obtained by Electrospinning for Bone Tissue Engineering. Polymers 2022, 14, 96. [Google Scholar] [CrossRef]
- McClellan, P.; Landis, W.J. Recent Applications of Coaxial and Emulsion Electrospinning Methods in the Field of Tissue Engineering. BioRes. Open Access 2016, 5, 212–227. [Google Scholar] [CrossRef]
- Moulefera, I.; Trabelsi, M.; Mamun, A.; Sabantina, L. Electrospun carbon nanofibers from biomass and biomass blends—Current trends. Polymers 2021, 13, 1071. [Google Scholar] [CrossRef]
- Rathore, P.; Schiffman, J.D. Beyond the single-nozzle: Coaxial electrospinning enables innovative nanofiber chemistries, geometries, and applications. ACS Appl. Mater. Interfaces 2021, 13, 48–66. [Google Scholar] [CrossRef]
- Isaac, B.; Taylor, R.M.; Reifsnider, K. Mechanical and dielectric properties of aligned electrospun fibers. Fibers 2021, 9, 4. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, S.Y.; Kim, C.H.; Park, Y.C.; Kim, M.-H.; Seol, J.H. Electromagnetic Interference Shield of Highly Thermal-Conducting, Light-Weight, and Flexible Electrospun Nylon 66 Nanofiber-Silver Multi-Layer Film. Polymers 2020, 12, 1805. [Google Scholar] [CrossRef] [PubMed]
- Storck, J.L.; Grothe, T.; Mamun, A.; Sabantina, L.; Klöcker, M.; Blachowicz, T.; Ehrmann, A. Orientation of Electrospun Magnetic Nanofibers Near Conductive Areas. Materials 2020, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Pant, B.; Park, M.; Park, S.-J. Drug Delivery Applications of Core-Sheath Nanofibers Prepared by Coaxial Electrospinning: A Review. Pharmaceutics 2019, 11, 305. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ju, K.Y.; Wang, Z.Q.; Li, W.; Ke, H.Z.; He, J.H. Electrospun Jets Number and Nanofiber Morphology Effected by Voltage Value: Numerical Simulation and Experimental Verification. Nanoscale Res. Lett. 2019, 14, 310. [Google Scholar] [CrossRef]
- Afshar, S.; Rashedi, S.; Nazockdast, H.; Ghazalian, M. Preparation and characterization of electrospun poly(lactic acid)-chitosan core-shell nanofibers with a new solvent system. Int. J. Biol. Macromol. 2019, 138, 1130–1137. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, A. Conductive electrospun nanofiber mats. Materials 2020, 13, 152. [Google Scholar] [CrossRef]
- Zhang, L.-K.; Chen, Y.; Liu, Q.; Deng, W.T.; Yue, Y.Q.; Meng, F.B. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 111, 57–65. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, A. Most recent developments in electrospun magnetic nanofibers: A review. J. Eng. Fibers Fabr. 2020, 15, 1558925019900843. [Google Scholar] [CrossRef]
- Darwish, M.S.A.; Bakry, A.; Al-Harbi, L.M.; Khowdiary, M.M.; El-Henawy, A.A.; Yoon, J.W. Core/shell PA6 @ Fe3O4 nanofibers: Magnetic and shielding behavior. J. Dispers. Sci. Technol. 2020, 41, 1711–1719. [Google Scholar] [CrossRef]
- Mamun, A.; Klöcker, M.; Blachowicz, T.; Sabantina, L. Investigation of the Morphological Structure of Needle-Free Electrospun Magnetic Nanofiber Mats. Magnetochemistry 2022, 8, 25. [Google Scholar] [CrossRef]
- Mamun, A.; Sabantina, L.; Klöcker, M.; Heide, A.; Blachowicz, T.; Ehrmann, A. Electrospinning Nanofiber Mats with Magnetite Nanoparticles Using Various Needle-Based Techniques. Polymers 2022, 14, 533. [Google Scholar] [CrossRef] [PubMed]
- Damberga, D.; Viter, R.; Fedorenko, V.; Iatsunskyi, I.; Coy, E.; Graniel, O.; Balme, S.; Miele, P.; Bechelany, M. Photoluminescence Study of Defects in ZnO-Coated Polyacrylonitrile Nanofibers. J. Phys. Chem. C 2020, 124, 9434–9441. [Google Scholar] [CrossRef]
- Kumar, A.; Jose, R.; Fujihara, K.; Wang, J.; Ramakrishna, S. Structural and Optical Properties of Electrospun TiO2 Nanofibers. Chem. Mater. 2007, 19, 6536–6542. [Google Scholar] [CrossRef]
- Tebyetekerwa, M.; Ramakrishna, S. What Is Next for Electrospinning? Matter 2020, 2, 279–283. [Google Scholar] [CrossRef]
- Jiang, D.-H.; Tsai, Y.-H.; Veeramuthu, L.; Liang, F.-C.; Chen, L.-C.; Lin, C.C.; Sato, T.; Tung, S.-H.; Kuo, C.-C. Novel ultra-stable and highly luminescent white light-emitting diodes from perovskite quantum dots—Polymer nanofibers through biaxial electrospinning. APL Mater. 2019, 7, 111105. [Google Scholar] [CrossRef]
- Farahani, A.; Sereshti, H. An integrated microfluidic device for solid-phase extraction and spectrophotometric detection of opium alkaloids in urine samples. Anal. Bioanal. Chem. 2020, 412, 129–138. [Google Scholar] [CrossRef]
- Nirwan, V.P.; Lasak, M.; Ciepluch, K.; Fahmi, A. Hybrid Nanomat: Copolymer Template CdSe Quantum Dots In Situ Stabilized and Immobilized within Nanofiber Matrix. Nanomaterials 2023, 13, 630. [Google Scholar] [CrossRef]
- Khalili, S.; Chenari, H.M. Successful electrospinning fabrication of ZrO2 nanofibers: A detailed physical—Chemical characterization study. J. Alloys Compd. 2020, 825, 154414. [Google Scholar] [CrossRef]
- De Souza, F.L.A.; Amorim, C.G.; da Nova Araújo, A.; Satínský, D.; Silveira Paim, A.P.; Montenegro, M.C.B.S.M. Malachite Green Optical Sensor Based on Electrospun Polyimide Nanofiber. Chemosensors 2022, 10, 348. [Google Scholar] [CrossRef]
- Venkatesan, M.; Veeramuthu, L.; Liang, F.-C.; Chen, W.-C.; Cho, C.-J.; Chen, C.-W.; Chen, J.-Y.; Yan, Y.; Chang, S.-H.; Kuo, C.-C. Evolution of electrospun nanofibers fluorescent and colorimetric sensors for environmental toxicants, pH, temperature, and cancer cells—A review with insights on applications. Chem. Eng. J. 2020, 397, 125431. [Google Scholar] [CrossRef]
- Li, X.Q.; Gu, J.P.; Zhou, Z.; Ma, L.F.; Tang, Y.P.; Gao, J.W.; Wang, Q.M. New lanthanide ternary complex system in electrospun nanofibers: Assembly, physico-chemical property and sensor application. Chem. Eng. J. 2019, 358, 67–73. [Google Scholar] [CrossRef]
- Teli, M.D.; Nadathur, G.T. Reversible colourimetric sensing of volatile phase by dye doped electrospun silica based nanofibers. J. Environ. Chem. Eng. 2020, 8, 103920. [Google Scholar] [CrossRef]
- Aliheidari, N.; Aliahmad, N.; Agarwal, M.; Dalir, H. Electrospun Nanofibers for Label-Free Sensor Applications. Sensors 2019, 19, 3587. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.M.; Muller-Karger, F.E.; Zepp, R.G. Absorbance, absorption coefficient, and apparent quantum yield: A comment on common ambiguity in the use of these optical concepts. Limnol. Oceanogr. 2002, 47, 1261–1267. [Google Scholar] [CrossRef]
- Bohr, C.; Pfeiffer, M.; Öz, S.; von Toperczer, F.; Lepcha, A.; Fischer, T.; Schütz, M.; Lindfors, K.; Mathur, S. Electrospun Hybrid Perovskite Fibers—Flexible Networks of One-Dimensional Semiconductors for Light-Harvesting Applications. ACS Appl. Mater. Interfaces 2019, 11, 25163–25169. [Google Scholar] [CrossRef]
- Jo, S.Y.; Kim, H.C.; Lee, T.S. Decoration of conjugated polyquinoxaline dots on mesoporous TiO2 nanofibers for visible-light-driven photocatalysis. Polymer 2021, 228, 123892. [Google Scholar] [CrossRef]
- Hefez, A.M.; Abdellah, A.M.; Panaitescu, E.; Menon, L.; Allam, N.K. Highly porous Ba3Ti4Nb4O21 perovskite nanofibers as photoanodes for quasi-solid state dye-sensitized solar cells. Sol. Energy 2020, 206, 413–419. [Google Scholar] [CrossRef]
- Liu, H.J.; Liu, Y.; Wang, L.M.; Qin, X.H.; Yu, J.Y. Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation. Carbon 2021, 177, 199–206. [Google Scholar] [CrossRef]
- Halicka, K.; Cabaj, J. Electrospun Nanofibers for Sensing and Biosensing Applications—A Review. Int. J. Mol. Sci. 2021, 22, 6357. [Google Scholar] [CrossRef]
- Kailasa, S.; Reddy, M.S.B.; Maurya, M.R.; Rani, B.G.; Rao, K.V.; Sadasivuni, K.K. Electrospun Nanofibers: Materials, Synthesis Parameters, and Their Role in Sensing Applications. Macromol. Mater. Eng. 2021, 306, 2100410. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; El-Newehy, M.H.; Aldalbahi, A.; Salem, W.M.; Khattab, T.A. Immobilization of anthocyanin extract from red-cabbage into electrospun polyvinyl alcohol nanofibers for colorimetric selective detection of ferric ions. J. Environ. Chem. Eng. 2021, 9, 105072. [Google Scholar] [CrossRef]
- Abedalwafa, M.A.; Tang, Z.M.; Qiao, Y.S.; Mei, Q.Q.; Yang, G.; Li, Y.; Wang, L. An aptasensor strip-based colorimetric determination method for kanamycin using cellulose acetate nanofibers decorated DNA–gold nanoparticle bioconjugates. Microchim. Acta 2020, 187, 360. [Google Scholar] [CrossRef]
- Norouzi, M.; Fazeli, A.; Tavakoli, O. Photocatalytic degradation of phenol under visible light using electrospun Ag/TiO2 as a 2D nano-powder: Optimizing calcination temperature and promoter content. Adv. Powder Technol. 2022, 33, 103792. [Google Scholar] [CrossRef]
- Zheng, X.R.; Liu, Y.Q.; Liu, X.B.; Li, Q.B.; Zheng, Y.M. A novel PVDF-TiO2@g-C3N4 composite electrospun fiber for efficient photocatalytic degradation of tetracycline under visible light irradiation. Ecotoxicol. Environ. Saf. 2021, 210, 111866. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Raza, S.; Liu, C.K. Directly electrospinning synthesized Z-scheme heterojunction TiO2@Ag@Cu2O nanofibers with enhanced photocatalytic degradation activity under solar light irradiation. J. Environ. Chem. Eng. 2021, 9, 106133. [Google Scholar] [CrossRef]
- Jian, S.J.; Tian, Z.W.; Hu, J.P.; Zhang, K.Y.; Zhang, L.; Duan, G.G.; Yang, W.S.; Jiang, S.H. Enhanced visible light photocatalytic efficiency of La-doped ZnO nanofibers via electrospinning-calcination technology. Adv. Powder Mater. 2022, 1, 100004. [Google Scholar] [CrossRef]
- Baylan, E.; Yildirim, O.A. Highly efficient photocatalytic activity of stable manganese-doped zinc oxide (Mn:ZnO) nanofibers via electrospinning method. Mater. Sci. Semicond. Proc. 2019, 103, 104621. [Google Scholar] [CrossRef]
- Lim, G.-D.; Yoo, J.-H.; Ji, M.J.; Lee, Y.I. Visible light driven photocatalytic degradation enhanced by α/β phase heterojunctions on electrospun Bi2O3 nanofibers. J. Alloys Compd. 2019, 806, 1060–1067. [Google Scholar] [CrossRef]
- Aghasiloo, P.; Yousefzadeh, M.; Latifi, M.; Jose, R. Highly porous TiO2 nanofibers by humid-electrospinning with enhanced photocatalytic properties. J. Alloys Compd. 2019, 790, 257–265. [Google Scholar] [CrossRef]
- Wei, L.J.; Zhang, H.M.; Cao, J. Electrospinning of Ag/ZnWO4/WO3 composite nanofibers with high visible light photocatalytic activity. Mater. Lett. 2019, 236, 171–174. [Google Scholar] [CrossRef]
- Zhang, G.X.; Zhang, H.M.; Wang, R.F.; Liu, H.X.; He, Q.C.; Zhang, X.J.; Li, Y.J. Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity. J. Mater. Sci. Mater. Electron. 2021, 32, 7307–7318. [Google Scholar] [CrossRef]
- Lu, Y.c.; Ou, X.Y.; Wang, W.G.; Fan, J.J.; Lv, K. Fabrication of TiO2 nanofiber assembly from nanosheets (TiO2-NFs-NSs) by electrospinning-hydrothermal method for improved photoreactivity. Chin. J. Catal. 2020, 41, 209–218. [Google Scholar] [CrossRef]
- Sharma, D.; Patel, N.; Panjabi, S.; Patel, V. Structural, morphological, optical, and thermal properties of electrospun PbS/PVP-PEO nanofibers. Ceram. Int. 2023, 49, 8839–8846. [Google Scholar] [CrossRef]
- Manikandan, A.; Hema, E.; Durka, M.; Seevakan, K.; Alagesan, T.; Arul Antony, S. Room Temperature Ferromagnetism of Magnetically Recyclable Photocatalyst of Cu1−xMnxFe2O4-TiO2 (0.0 ≤ x ≤ 0.5) Nanocomposites. J. Supercond. Nov. Magn. 2015, 28, 1783–1795. [Google Scholar] [CrossRef]
- Rosman, N.; Salleh, W.N.W.; Aziz, F.; Ismail, A.F.; Harun, Z.; Bahri, S.S.; Nagai, K. Electrospun Nanofibers Embedding ZnO/Ag2CO3/Ag2O Heterojunction Photocatalyst with Enhanced Photocatalytic Activity. Catalysts 2019, 9, 565. [Google Scholar] [CrossRef]
- Bolarinwa, H.S.; Onuu, M.U.; Animashaun, L.O.; Alayande, S.O.; Fasasi, A.Y. Effect of tin on bandgap narrowing and optical properties of ZnO–Zn2SnO4 electrospun nanofibre composite. J. Taibah Univ. Sci. 2020, 14, 1251–1261. [Google Scholar] [CrossRef]
- Saadati, M.; Akhavan, O.; Fazli, H. Single-Layer MoS2-MoO3−x Heterojunction Nanosheets with Simultaneous Photoluminescence and Co-Photocatalytic Features. Catalysts 2021, 11, 1445. [Google Scholar] [CrossRef]
- Matysiak, W.; Tanski, T.; Smok, W.; Golombek, K.; Schab-Balcerzak, E. Effect of conductive polymers on the optical properties of electrospun polyacrylonitryle nanofibers filled by polypyrrole, polythiophene and polyaniline. Appl. Surf. Sci. 2020, 509, 145068. [Google Scholar] [CrossRef]
- Bayan, M.A.H.; Taromi, F.A.; Lanzi, M.; Pierini, F. Enhanced efficiency in hollow core electrospun nanofiber-based organic solar cells. Sci. Rep. 2021, 11, 21144. [Google Scholar] [CrossRef]
- Wang, T.; Gao, Y.; Tang, T.; Bian, H.q.; Zhang, Z.M.; Xu, J.H.; Xiao, H.; Chu, X. Preparation of ordered TiO2 nanofibers/nanotubes by magnetic field assisted electrospinning and the study of their photocatalytic properties. Ceram. Int. 2019, 45, 14404–14410. [Google Scholar] [CrossRef]
- Sabzehmeidani, M.M.; Karimi, H.; Ghaedi, M. Visible light-induced photo-degradation of methylene blue by n–p heterojunction CeO2/CuS composite based on ribbon-like CeO2 nanofibers via electrospinning. Polyhedron 2019, 170, 160–171. [Google Scholar] [CrossRef]
- Safartoobi, A.; Mazloom, J.; Ghodsi, F.E.; Boustani, K. Surface morphology, optical band gap and magnetic behavior of Cu(1-x)MnxFe2O4 nanofibers prepared by sol-gel electrospinning. J. Magn. Magn. Mater. 2023, 569, 170397. [Google Scholar] [CrossRef]
- Gea, S.; Situmorang, S.A.; Pasaribu, N.; Piliang, A.F.R.; Attaurrazaq, B.; Sari, R.M.; Pasaribu, K.M.; Goutianos, S. Facile synthesis of ZnO–Ag nanocomposite supported by graphene oxide with stabilised band-gap and wider visible-light region for photocatalyst application. J. Mater. Res. Technol. 2022, 19, 2730–2741. [Google Scholar] [CrossRef]
- Tanski, T.; Smok, W.; Matysiak, W. Characterization of morphology and optical properties of SnO2 nanowires prepared by electrospinning. Bull. Pol. Acad. Sci. Tech. Sci. 2021, 69, e137507. [Google Scholar]
- Matysiak, W.; Tanski, T. Analysis of the morphology, structure and optical properties of 1D SiO2 nanostructures obtained with sol-gel and electrospinning methods. Appl. Surf. Sci. 2019, 489, 34–43. [Google Scholar] [CrossRef]
- Mäntele, W.; Deniz, E. UV–VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 965–968. [Google Scholar] [CrossRef]
- Cao, J.S.; Cheng, Z.Q.; Kang, L.J.; Lin, M.; Han, L.H. Patterned nanofiber air filters with high optical transparency, robust mechanical strength, and effective PM2.5 capture capability. RSC Adv. 2020, 10, 20155–20161. [Google Scholar] [CrossRef]
- Xiao, Y.N.; Luo, H.; Tang, R.X.; Hou, J.Z. Preparation and Applications of Electrospun Optically Transparent Fibrous Membrane. Polymers 2021, 13, 506. [Google Scholar] [CrossRef]
- Long, Z.H.; Xu, X.J.; Yang, W.; Hu, M.; Shtansky, D.V.; Golber, T.; Fang, X.S. Cross-Bar SnO2-NiO Nanofiber-Array-Based Transparent Photodetectors with High Detectivity. Adv. Electron. Mater. 2020, 6, 1901048. [Google Scholar] [CrossRef]
- Lu, X.Y.; Si, Y.; Zhang, S.; Yu, J.Y.; Ding, B. In Situ Synthesis of Mechanically Robust, Transparent Nanofiber-Reinforced Hydrogels for Highly Sensitive Multiple Sensing. Adv. Funct. Mater. 2021, 31, 2103117. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Wang, Y.; Cui, W.G. Advanced electrospun hydrogel fibers for wound healing. Comp. Part B Eng. 2021, 223, 109101. [Google Scholar] [CrossRef]
- Kim, H.; McSherry, S.; Brown, B.; Lenert, A. Selectively Enhancing Solar Scattering for Direct Radiative Cooling through Control of Polymer Nanofiber Morphology. ACS Appl. Mater. Interfaces 2020, 12, 43553–43559. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, M.Y.; Shao, W.L.; Yue, W.L.; Hu, B.J.; Weng, K.; Chen, Y.K.; Liao, X.; He, J.X. Preparation of a polyurethane electret nanofiber membrane and its air-filtration performance. J. Colloid Interface Sci. 2019, 557, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Huang, J.Y.; Mao, J.J.; Chen, Z.; Chen, G.Q.; Lai, Y.K. Transparent Antibacterial Nanofiber Air Filters with Highly Efficient Moisture Resistance for Sustainable Particulate Matter Capture. Iscience 2019, 19, 214–223. [Google Scholar] [CrossRef]
- Wang, X.X.; Xiang, H.; Song, C.; Zhu, D.Y.; Sui, J.X.; Liu, Q.; Long, Y.Z. Highly efficient transparent air filter prepared by collecting-electrode-free bipolar electrospinning apparatus. J. Hazard. Mater. 2020, 385, 121535. [Google Scholar] [CrossRef]
- Liang, W.; Xu, Y.; Li, X.; Wang, X.-X.; Zhang, H.-D.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. Transparent Polyurethane Nanofiber Air Filter for High-Efficiency PM2.5 Capture. Nanoscale Res. Lett. 2019, 14, 361. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Fathi, M.; Kadivar, M. Production and characterization of chitosan-gelatin nanofibers by nozzle-less electrospinning and their application to enhance edible film’s properties. Food Packag. Shelf Life 2019, 22, 100387. [Google Scholar] [CrossRef]
- Feng, S.Y.; Zhang, F.; Ahmed, S.; Liu, Y.W. Physico-Mechanical and Antibacterial Properties of PLA/TiO2 Composite Materials Synthesized via Electrospinning and Solution Casting Processes. Coatings 2019, 9, 525. [Google Scholar] [CrossRef]
- Choi, Y.-I.; Hwang, B.-U.; Meeseepong, M.; Hanif, A.; Ramasundaram, S.; Trung, T.Y.; Lee, N.-E. Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions. Nanoscale 2019, 11, 3916–3924. [Google Scholar] [CrossRef]
- Al-Dhahebi, A.M.; Bose Gopinath, S.C.; Saheed, M.S.M. Graphene impregnated electrospun nanofiber sensing materials: A comprehensive overview on bridging laboratory set-up to industry. Nano Converg. 2020, 7, 27. [Google Scholar] [CrossRef]
- Wooten, F. Optical Properties of Solids; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Bhatta, T.; Maharjan, P.; Cho, H.; Park, C.; Yoon, S.H.; Sharma, S.; Salauddin, M.; Rahman, M.T.; Rana, S.M.S.; Park, J.Y. High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers. Nano Energy 2021, 81, 105670. [Google Scholar] [CrossRef]
- Bhagyaraj, S.; Sobolciak, P.; Al-Ghouti, M.A.; Krupa, I. Copolyamide–Clay Nanotube Polymer Composite Nanofiber Membranes: Preparation, Characterization and Its Asymmetric Wettability Driven Oil/Water Emulsion Separation towards Sewage Remediation. Polymers 2021, 13, 3710. [Google Scholar] [CrossRef] [PubMed]
- Palwai, S.; Batra, A.; Kotru, S.; Vaseashta, A. Electrospun Polyvinylidene Fluoride Nanofiber Membrane-Based Flexible Capacitive Tactile Sensors for Biomedical Applications. Surf. Eng. Appl. Electrochem. 2022, 58, 194–201. [Google Scholar] [CrossRef]
- Matysiak, W. Synthesis of 1D Bi2O3 nanostructures from hybrid electrospun fibrous mats and their morphology, structure, optical and electrical properties. Sci. Rep. 2022, 12, 4046. [Google Scholar] [CrossRef]
- Qamar, Z.; Khan, T.M.; Abideen, Z.U.; Shahszad, K.; Hassan, A.; Khan, S.U.; Haider, S.; Akhtar, M.S. Optical, morphological, and impedance characteristics of Ni(x)–(CdO)(1−x) nanofibers fabricated by electrospinning technique. Mater. Sci. Eng. B 2022, 282, 115779. [Google Scholar] [CrossRef]
- Soliman, T.S.; Vshivkov, S.A. Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films. J. Non Cryst. Solids 2019, 519, 119452. [Google Scholar] [CrossRef]
- Yu, W.W.; Qu, L.; Guo, W.; Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860. [Google Scholar] [CrossRef]
- Rancourt, J.D. Optical Thin Films: User Handbook; SPIE Press: Bellingham, WA, USA, 1996. [Google Scholar]
- Mergen, Ö.B.; Arda, E. Determination of Optical Band Gap Energies of CS/MWCNT Bio-nanocomposites by Tauc and ASF Methods. Synth. Met. 2020, 269, 116539. [Google Scholar] [CrossRef]
- Kenawy, E.-R.; Ghazy, A.R.; Al-Hossainy, A.F.; Rizk, H.F.; Shendy, S. Synthesis, characterization, TD-DFT method, and optical properties of novel nanofiber conjugated polymer. Synth. Met. 2022, 291, 117206. [Google Scholar] [CrossRef]
- Matysiak, W.; Tanski, T. Novel bimodal ZnO (amorphous)/ZnO NPs (crystalline) electrospun 1D nanostructure and their optical characteristic. Appl. Surf. Sci. 2019, 474, 232–242. [Google Scholar] [CrossRef]
- Ibrahim, A.M.M.; Elfadl, A.; El Sayed, A.M.; Ibrahim, I.M. Improving the optical, dielectric properties and antimicrobial activity of Chitosan–PEO by GO/MWCNTs: Nanocomposites for energy storage and food packaging applications. Polymer 2023, 267, 125650. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Bani-Salameh, A.A.; Al-Bataineh, Q.M.; Jum’h, I.; Telfah, A.D. Optical, structural and morphological properties of synthesized PANI-CSA-PEO-based GaN nanocomposite films for optoelectronic applications. Polym. Bull. 2023, 80, 809–828. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Jia, S.Y.; Wu, W.T.; Xiao, G.M.; Sundarrajan, S.; Ramakrishna, S. Electrospun transparent nanofibers as a next generation face filtration media: A review. Biomater. Adv. 2023, 149, 213390. [Google Scholar] [CrossRef] [PubMed]
- Kerker, E.; Steinhäußer, D.; Mamun, A.; Trabelsi, M.; Fiedler, J.; Sabantina, L.; Juhász Junger, I.; Schiek, M.; Ehrmann, A.; Kaschuba, R. Spectroscopic investigation of highly-scattering nanofiber mats during drying and film formation. Optik 2020, 208, 164081. [Google Scholar] [CrossRef]
- Grothe, T.; Böhm, T.; Habashy, K.; Abdullaeva, O.S.; Zablocki, J.; Lützen, A.; Dedek, K.; Schiek, M.; Ehrmann, A. Optical Index Matching, Flexible Electrospun Substrates for Seamless Organic Photocapacitive Sensors. Phys. Stat. Sol. 2021, 258, 2000543. [Google Scholar] [CrossRef]
- Mustafa, M.N.; Shafie, S.; Wahid, M.H.; Sulaiman, Y. Light scattering effect of polyvinylalcohol/titanium dioxide nanofibers in the dye-sensitized solar cell. Sci. Rep. 2019, 9, 14952. [Google Scholar] [CrossRef]
- Mustafa, M.N.; Shafie, S.; Wahid, M.H.; Sulaiman, Y. Optimization of power conversion efficiency of polyvinyl-alcohol/titanium dioxide as light scattering layer in DSSC using response surface methodology/central composite design. Results Phys. 2019, 15, 102559. [Google Scholar] [CrossRef]
- Wriedt, T. Mie theory: A review. In The Mie Theory; Hergert, W., Wriedt, T., Eds.; Springer Series in Optical Sciences 169; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Li, X.S.; Zhou, J.X.; Quan, Z.Z.; Wang, L.M.; Li, F.X.; Qin, X.H.; Yu, J.Y. Light scattering tunability of nanofiber membrane for enhancing color yield. Dye. Pigment. 2021, 193, 109462. [Google Scholar] [CrossRef]
- Pirdadeh-Beiranvand, M.; Afkhami, A.; Madrakian, T. Ni0.5Zn0.5Fe2O4 nanoparticles-decorated poly (vinyl alcohol) nanofiber as resonance light scattering probe for determination of sunitinib in serum samples. Talanta 2020, 218, 121190. [Google Scholar] [CrossRef]
- Dolbashian, C.; Chavez, B.L.; Bauer, M.; Budi, M.; Andrew, J.S.; Crawford, T.M. Magnetic properties of aligned multiferroic Janus nanofiber agglomerates measured with the scattered magneto-optical Kerr effect. J. Phys. D Appl. Phys. 2020, 53, 195002. [Google Scholar] [CrossRef]
- Brocks, O.; Stasiak, A.; Biedinger, J.; Wortmann, M.; Blachowicz, T.; Kaschuba, R.; Ehrmann, A. MOKE and MFM on magnetically coated nanofiber mats: Transferring well-known methods to uncommon samples. Appl. Res. 2023, 2, e202200113. [Google Scholar] [CrossRef]
- George, G.; Luo, Z.P. A Review on Electrospun Luminescent Nanofibers: Photoluminescence Characteristics and Potential Applications. Curr. Nanosci. 2020, 16, 321–362. [Google Scholar] [CrossRef]
- Abdu, M.T.; Khattab, T.A.; Abdelrahman, M.S. Development of Photoluminescent and Photochromic Polyester Nanocomposite Reinforced with Electrospun Glass Nanofibers. Polymers 2023, 15, 761. [Google Scholar] [CrossRef] [PubMed]
- George, G.; Shrivastava, N.; Moore, T.L.; Edwards, C.S.; Lin, Y.L.; Wen, J.G.; Luo, Z.P. Rare-earth-doped electrospun scheelite CaWO4 nanofibers with excitation-dependent photoluminescence and high-linearity cathodoluminescence for ratiometric UV wavelength and radiation sensors. Opt. Mater. 2022, 126, 112130. [Google Scholar] [CrossRef]
- Mazivila, S.J.; Soares, J.X.; Santos, J.L.M. A tutorial on multi-way data processing of excitation-emission fluorescence matrices acquired from semiconductor quantum dots sensing platforms. Anal. Chim. Acta 2022, 1211, 339216. [Google Scholar] [CrossRef]
- Wehlage, D.; Blattner, H.; Mamun, A.; Kutzli, I.; Diestelhorst, E.; Rattenholl, A.; Gudermann, F.; Lütkemeyer, D.; Ehrmann, A. Cell growth on electrospun nanofiber mats from polyacrylonitrile (PAN) blends. AIMS Bioeng. 2020, 7, 43–54. [Google Scholar] [CrossRef]
- Wehlage, D.; Blattner, H.; Sabantina, L.; Böttjer, R.; Grothe, T.; Rattenholl, A.; Gudermann, F.; Lütkemeyer, D.; Ehrmann, A. Sterilization of PAN/Gelatine Nanofi brous Mats for Cell Growth. Tekstilec 2019, 62, 78–88. [Google Scholar] [CrossRef]
- Oh, H.Y.; Kang, G.M.; Park, M.W. Polymer-Mediated In Situ Growth of Perovskite Nanocrystals in Electrospinning: Design of Composite Nanofiber-Based Highly Efficient Luminescent Solar Concentrators. ACS Appl. Energy Mater. 2022, 5, 15844–15855. [Google Scholar] [CrossRef]
- Hatamvand, M.; Gholipour, S.; Chen, M.Y.; Zhou, Y.; Jiang, T.T.; Hu, Z.L.; Chen, Y.H.; Huang, W. Dual-side interfacial passivation of FAPbI3 perovskite film by Naphthylmethylammonium iodide for highly efficient and stable perovskite solar cells. Chem. Eng. J. 2023, 460, 141788. [Google Scholar] [CrossRef]
- Cai, X.; Liu, F.C.; Yu, A.R.; Qin, J.J.; Hatamvand, M.; Ahmed, I.; Luo, J.Y.; Zhang, Y.M.; Zhang, H.; Zhan, Y.Q. Data-driven design of high-performance MASnxPb1−xI3 perovskite materials by machine learning and experimental realization. Light Sci. Appl. 2022, 11, 234. [Google Scholar] [CrossRef]
- Chen, L.J.; Chuang, Y.; Yang, W.-D.; Tsai, K.-C.; Chen, C.-W.; Dong, C.-D. All-inorganic perovskite CsPbX3 electrospun nanofibers with color-tunable photoluminescence and high performance optoelectronic applications. J. Alloys Compd. 2021, 856, 157426. [Google Scholar] [CrossRef]
- Zhao, B.; Gao, X.B.; Pan, K.; Deng, J.P. Chiral Helical Polymer/Perovskite Hybrid Nanofibers with Intense Circularly Polarized Luminescence. ACS Nano 2021, 15, 7463–7471. [Google Scholar] [CrossRef] [PubMed]
- Zhan, G.X.; Zhang, J.R.; Zhang, L.H.; Ou, Z.; Yang, H.; Qian, Y.; Zhang, X.; Xing, Z.; Zhang, L.; Li, C.; et al. Stimulating and Manipulating Robust Circularly Polarized Photoluminescence in Achiral Hybrid Perovskites. Nano Lett. 2022, 22, 3961–3968. [Google Scholar] [CrossRef] [PubMed]
- Abu-Sari, S.M.; Ang, B.C.; Daud, W.M.A.W.; Patah, M.F.A. Visible-light-driven photocatalytic hydrogen production on defective, sulfur self-doped g-C3N4 nanofiber fabricate via electrospinning method. J. Environ. Chem. Eng. 2023, 11, 109318. [Google Scholar] [CrossRef]
- Deliormanli, A.M.; Rahman, B.; Oguzlar, S.; Ertekin, K. Structural and luminescent properties of Er3+ and Tb3+-doped sol–gel-based bioactive glass powders and electrospun nanofibers. J. Mater. Sci. 2021, 56, 14487–14504. [Google Scholar] [CrossRef]
- Myndrul, V.; Vyslouzilová, L.; Klápst’ová, A.; Coy, E.; Jancelewicz, M.; Iatsunskyi, I. Formation and Photoluminescence Properties of ZnO Nanoparticles on Electrospun Nanofibers Produced by Atomic Layer Deposition. Coatings 2020, 10, 1199. [Google Scholar] [CrossRef]
- Jiang, T.T.; Du, B.S.; Zhang, H.; Yu, D.F.; Sun, L.; Zhao, G.Y.; Yang, C.H.; Sun, Y.; Yu, M.; Ashfold, M.N.R. High-performance photoluminescence-based oxygen sensing with Pr-modified ZnO nanofibers. Appl. Surf. Sci. 2019, 483, 922–928. [Google Scholar] [CrossRef]
- Varkey, V.; Chandran, A.R.; Jose, E.T.; Paul, I.; Jose, G. Fabrication of photoluminescent electrospun poly(styrene-co-methyl methacrylate) nanofibers integrated with LaPO4:Eu3+ for optical applications. Mater. Today Proc. 2021, 47, 921–926. [Google Scholar] [CrossRef]
- Osali, S.; Esfahani, H.; DAbir, F.; Tajaslan, P. Structural and electro-optical properties of electrospun Cu-Doped ZnO thin films. Solid State Sci. 2019, 98, 106038. [Google Scholar] [CrossRef]
- Li, P.P.; Gao, X.B.; Zhao, B.; Pan, K.; Deng, J.P. Multi-color Tunable and White Circularly Polarized Luminescent Composite Nanofibers Electrospun from Chiral Helical Polymer. Adv. Fiber Mater. 2022, 4, 1632–1644. [Google Scholar] [CrossRef]
- Cotrim, M.; Oréfice, R. Biocompatible and fluorescent polycaprolactone/silk electrospun nanofiber yarns loaded with carbon quantum dots for biotextiles. Polym. Adv. Technol. 2020, 32, 87–96. [Google Scholar] [CrossRef]
- Gao, M.; Xu, G.C.; Zhang, R.H.; Liu, Z.; Xia, H.; Shao, B.; Xue, C.; Li, J.; Miao, S.; Fu, W.; et al. Electrospinning Superassembled Mesoporous AIEgen–Organosilica Frameworks Featuring Diversified Forms and Superstability for Wearable and Washable Solid-State Fluorescence Smart Sensors. Anal. Chem. 2021, 93, 2367–2376. [Google Scholar] [CrossRef] [PubMed]
- Chavoshy, H.Z.; Ghasemi, R. Fabrication of a novel fluorescent polyacrylonitrile electrospun nanofiber for DNA-based optical biosensing of microRNA-21. Nano Express 2020, 1, 020031. [Google Scholar] [CrossRef]
- Santos, A.P.L.A.; Deokaran, G.O.; Costa, C.V.; Gama, L.I.; Júnior, E.G.M.; de Assis, A.M.; de Freitas, J.D.; de Araujo, W.R.; Dias, R.P.; da Silva, J.C.; et al. A “turn-off” fluorescent sensor based on electrospun polycaprolactone nanofibers and fluorene (bisthiophene) derivative for nitroaromatic explosive detection. Forensic Sci. Int. 2021, 329, 111056. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liu, X.; Jia, J.; Wu, H.; Xie, J.; Jia, Y.T. Electrospun Nanofiber Membranes from 1,8-Naphthimide-Based Polymer/Poly (vinyl alcohol) for pH Fluorescence Sensing. Molecules 2022, 27, 520. [Google Scholar] [CrossRef]
- Yang, J.L.; Li, P.P.; Zhao, B.; Pan, K.; Deng, J.P. Electrospinning chiral fluorescent nanofibers from helical polyacetylene: Preparation and enantioselective recognition ability. Nanoscale Adv. 2020, 2, 1301–1308. [Google Scholar] [CrossRef]
- Zhou, R.; Zhao, X.; Pun, E.Y.B.; Lin, H. Temperature sensitivity based on Er3+ fluorescence fluctuation in Gd2Ti2O7: Er3+-Yb3+ porous nanofibers. J. Alloys Compd. 2020, 838, 155554. [Google Scholar] [CrossRef]
- Pebdeni, A.B.; Hosseini, M.; Barkhordari, A. Smart fluorescence aptasensor using nanofiber functionalized with carbon quantum dot for specific detection of pathogenic bacteria in the wound. Talanta 2022, 246, 123454. [Google Scholar] [CrossRef]
- Zhang, F.-H.; Jiang, R.-X.; Cao, W.; Du, B.; Cao, D.-Y.; Ding, Z.-J.; Li, Z.-J. Construction of anisotropic fluorescent nanofibers assisted by electro-spinning and its optical sensing applications. RSC Adv. 2019, 9, 12585–12589. [Google Scholar] [CrossRef]
- Khattab, T.A.; Tolba, E.; Gaffer, H.; Kamel, S. Development of Electrospun Nanofibrous-Walled Tubes for Potential Production of Photoluminescent Endoscopes. Ind. Eng. Chem. Res. 2021, 60, 10044–10055. [Google Scholar] [CrossRef]
- Alatawi, N.M.; Alkhamis, K.M.; Munshi, A.M.; Althagafi, I.; El-Metwaly, N.M. Dual mode stimuli-responsive color-tunable transparent photoluminescent anticounterfeiting polycarbonate electrospun nanofibers embedded with lanthanide-doped aluminate. J. Appl. Polym. Sci. 2023, 140, e53634. [Google Scholar] [CrossRef]
- Presley, K.F.; Reinsch, B.M.; Cybyk, D.B.; Ly, J.T.; Schweller, R.M.; Dalton, M.J.; Lannutti, J.J.; Grusenmeyer, T.A. Oxygen sensing performance of biodegradable electrospun nanofibers: Influence of fiber composition and core-shell geometry. Sens. Act. B Chem. 2021, 329, 129191. [Google Scholar] [CrossRef]
- Mao, Y.Y.; Akram, M.; Shi, J.Y.; Wen, J.X.; Yang, C.; Jiang, J.P.; Lu, Z.G.; Zhou, B.P.; Tian, Y.Q. Optical oxygen sensors based on microfibers formed from fluorinated copolymers. Sens. Act. B Chem. 2019, 282, 885–895. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, X.-Y.; Xu, Y. Oxygen sensitive electrospun nanofibers doped with rare earth complexes: Characterization and performance. Opt. Mater. 2022, 125, 112099. [Google Scholar] [CrossRef]
- Burger, T.; Winkler, C.; Dalfen, I.; Slugovc, C.; Borisov, S.M. Porphyrin based metal–organic frameworks: Highly sensitive materials for optical sensing of oxygen in gas phase. J. Mater. Chem. C 2021, 9, 17099–17112. [Google Scholar] [CrossRef]
- Presley, K.; Shahhosseini, M.; Shi, D.; Castro, C.; Lannutti, J. Analysis of long-term optical performance of phosphorescent oxygen sensing polymeric nanofibers. Polym. Test. 2019, 80, 106127. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Yuan, J.-B.; Qin, Z.-Q.; Li, H.Y.; Xue, W.; Li, T.-Y. Selective and sensitive detection of Zn(II) in solution and nanofibers using phosphorescent iridium(III) complexes. Sep. Purif. Technol. 2023, 309, 123040. [Google Scholar] [CrossRef]
- Wawryszyn, M.; Wilhelm, R.; Kim, J.; Zhong, X.; Raymond, J.E.; Thelen, R.; Trouillet, V.; Schwotzer, M.; Bräse, S.; Kim, D.H.; et al. Emergence of Structural Phosphorescence in Free-Standing, Laterally Organized Polymer Nanofiber Membranes. ACS Appl. Polym. Mater. 2023, 5, 1670–1680. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Wang, H.; Li, L.; Han, T.; Liang, X.; Dong, L.J. Flexible photoluminescent humidity sensing material based on electrospun PVA nanofibers comprising surface-carboxylated QDs. Sens. Act. B Chem. 2019, 284, 258–264. [Google Scholar] [CrossRef]
- Gao, R.; Fang, X.Y.; Yang, D.P. Recent developments in stimuli-responsive luminescent films. J. Mater. Chem. C 2019, 7, 3399–3412. [Google Scholar] [CrossRef]
- Cho, M.J.; Ko, F.K.; Renneckar, S. Molecular Orientation and Organization of Technical Lignin-Based Composite Nanofibers and Films. Biomacromolecules 2019, 20, 4485–4493. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Sun, B.L.; Lu, X.F.; Wang, C.; Su, Z.H. Molecular Orientation in Individual Electrospun Nanofibers Studied by Polarized AFM–IR. Macromolecules 2019, 52, 9639–9645. [Google Scholar] [CrossRef]
- Ruan, S.L.; Wei, S.Y.; Gong, W.Z.; Li, Z.; Gu, J.F.; Shen, C.Y. Strengthening, toughening, and self-healing for carbon fiber/epoxy composites based on PPESK electrospun coaxial nanofibers. J. Appl. Polym. Sci. 2021, 138, 50063. [Google Scholar] [CrossRef]
- Thum, M.D.; Ratchford, D.C.; Casalini, R.; Wynne, J.H.; Lundin, J.G. Azobenzene-Doped Liquid Crystals in Electrospun Nanofibrous Mats for Photochemical Phase Control. ACS Appl. Nano Mater. 2021, 4, 297–304. [Google Scholar] [CrossRef]
- Thum, M.D.; Ratchford, D.C.; Casalini, R.; Kolacz, J.; Lundin, J.G. Photochemical phase and alignment control of a nematic liquid crystal in core-sheath nanofibers. J. Mater. Chem. C 2021, 9, 12859–12867. [Google Scholar] [CrossRef]
- Anisiei, A.; Bostanaru, A.-C.; Mares, M.; Marin, L. Imination of chitosan nanofibers in a heterogeneous system. Synthesis optimization and impact on fiber morphology. Cellul. Chem. Technol. 2021, 55, 785–793. [Google Scholar] [CrossRef]
- Bernardo, C.R.; Baptista, R.M.F.; de Matos Gomes, E.; Lopes, P.E.; Raposa, M.M.M.; Costa, S.P.G.; Belsley, M.S. Anisotropic PCL nanofibers embedded with nonlinear nanocrystals as strong generators of polarized second harmonic light and piezoelectric currents. Nanoscale Adv. 2020, 2, 1206–1213. [Google Scholar] [CrossRef]
- Meng, L.H.; Yang, C.G.; Meng, J.J.; Wang, Y.Z.; Ge, Y.; Shao, Z.Q.; Zhang, G.F.; Rogach, A.L.; Zhong, H.Z. In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission. Nano Res. 2019, 12, 1411–1416. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Jia, S.; Luo, W.; Meng, L.H.; Wang, B.; Meng, X.T.; Liu, J.X.; Zhong, H.Z.; Shao, Z.Q. Inch-sized aligned polymer nanofiber films with embedded CH3NH3PbBr3 nanocrystals: Electrospinning fabrication using a folded aluminum foil as the collector. Nanotechnology 2020, 31, 075708. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Su, C.-Y.; Hsu, C.-H.; Zhang, Y.-H.; Zhang, Q.-C.; Chang, C.-L.; Hua, C.-C.; Chen, W.-C. Solvent Effects on Morphology and Electrical Properties of Poly (3-hexylthiophene) Electrospun Nanofibers. Polymers 2019, 11, 1501. [Google Scholar] [CrossRef]
- Fu, H.; Hou, H.L.; Fang, Z.; Chen, C.Y.; Yang, W.Y.; Li, J.G.; Zheng, J.J. Aligned packaging of in situ grown CsPbBr3 nanorods within polystyrene nanofibers for enhanced polarized luminescence properties. J. Mater. Chem. C 2021, 9, 3806–3813. [Google Scholar] [CrossRef]
- Seo, D.K.; Park, J.H.; Shin, T.J.; Yoo, P.J.; Park, J.H.; Kwak, K.W. Bathochromic Shift in Absorption Spectra of Conjugated Polymer Nanoparticles with Displacement along Backbones. Macromol. Res. 2015, 23, 574–577. [Google Scholar] [CrossRef]
- Juhász Junger, I.; Udomrungkhajornchai, S.; Grimmelsmann, N.; Blachowicz, T.; Ehrmann, A. Effect of Caffeine Copigmentation of Anthocyanin Dyes on DSSC Efficiency. Materials 2019, 12, 2692. [Google Scholar] [CrossRef]
- Mamun, A.; Trabelsi, M.; Klöcker, M.; Sabantina, L.; Großerhode, C.; Blachowicz, T.; Grötsch, G.; Cornelißen, C.; Streitenberger, A.; Ehrmann, A. Electrospun Nanofiber Mats with Embedded Non-Sintered TiO2 for Dye-Sensitized Solar Cells (DSSCs). Fibers 2019, 7, 60. [Google Scholar] [CrossRef]
- Dotter, M.; Placke, L.L.; Storck, J.L.; Güth, U. Characterization of PAN-TiO2 Nanofiber Mats and their Application as Front Electrodes for Dye-sensitized Solar Cells. Tekstilec 2022, 65, 298–306. [Google Scholar] [CrossRef]
- Yogeswari, C.; Hijas, K.M.; Abith, M.; Sabari Girisum, T.C.; Nagalakshmi, R. Intensity-dependent two-photon absorption and its saturation in 2-methyl 4-nitroaniline nanofibers. J. Mater. Sci. Mater. Electron. 2020, 32, 360–372. [Google Scholar] [CrossRef]
- Albuquerque de Oliveira, M.C.; de Souza Menezes, L.; Pincheira, P.I.R.; Rojas-Ulloa, C.; Gomez, N.R.; Pequeno de Oliveira, H.; Leonidas Gomes, A.S. A random laser based on electrospun polymeric composite nanofibers with dual-size distribution. Nanoscale Adv. 2019, 1, 728–734. [Google Scholar] [CrossRef]
- Gal, M.; Cristea, C.; Craciun, A.M.; Turza, A.; Barbu-Tudoran, L.; Balazs, B.; Lovasz, T.; Silaghi-Dumitrescu, L. New fluorescent electrospun polymer materials containing phenothiazinyl carboxylate metal salts for versatile latent fingerprint detection. Dye. Pigment. 2023, 211, 111085. [Google Scholar] [CrossRef]
- Philip, P.; Jose, T.; Prakash, J.; Cherian, S.K. Surface Plasmon Resonance-Enhanced Bathochromic-Shifted Photoluminescent Properties of Pure and Structurally Modified Electrospun Poly(methyl methacrylate) (PMMA) Nanofibers Incorporated with Green-Synthesized Silver Nanoparticles. J. Electron. Mater. 2021, 50, 4834–4849. [Google Scholar] [CrossRef]
- Baptista, R.M.F.; Bernardo, C.R.; Belsley, M.S.; de Matos Gomes, E. Electrospun fibers with highly polarized second harmonic light from 2-amino-4-nitroaniline and 3-nitroaniline nanocrystals embedded in poly-L-lactic acid polymer. Opt. Mater. 2021, 116, 111089. [Google Scholar] [CrossRef]
- Kato, R.; Kahara, H.; Ishii, Y.; Hattori, T. Anion sensing properties of electrospun nanofibers incorporating a thiourea-based chromoionophore in methanol. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117656. [Google Scholar] [CrossRef] [PubMed]
- Gal, M.; Cristea, C.; Lovasz, T.; Cracium, A.-M.; Turzu, A.; Porumb, D.; Gal, E.; Katona, G.; Silaghi-Dumitrescu, L.; Gaina, L. New fluorescent phenothiazine carboxylates for fluorescent nanomaterials. J. Mol. Struct. 2021, 1246, 131174. [Google Scholar] [CrossRef]
- Hyun, J.O.; Yeang, B.J.; Park, Y.K.; Choi, H.J.; Kim, J.H.; Kang, Y.S.; Bae, Y.; Kim, J.Y.; Lim, S.J.; Lee, W.; et al. Washable Colorimetric Nanofiber Nonwoven for Ammonia Gas Detection. Polymers 2020, 12, 1585. [Google Scholar]
- Park, M.J.; Kim, S.H.; Kwak, C.H.; Shanmugam, K.R.; Han, Y.-K.; Cho, Y.J.; Huh, Y.S. Visual colorimetric detection of ammonia under gaseous and aqueous state: Approach on cesium lead bromide perovskite-loaded porous electrospun nanofibers. J. Ind. Eng. Chem. 2021, 97, 515–522. [Google Scholar] [CrossRef]
- Trabelsi, M.; Mamun, A.; Klöcker, M.; Brockhagen, B.; Kinzel, F.; Kapanadze, D.; Sabantina, L. Polyacrylonitrile (PAN) nanofiber mats for mushroom mycelium growth investigations and formation of mycelium-reinforced nanocomposites. J. Eng. Fibers Fabr. 2021, 16, 15589250211037982. [Google Scholar] [CrossRef]
- Pang, L.L.; Ming, J.F.; Pan, F.K.; Ning, X. Fabrication of Silk Fibroin Fluorescent Nanofibers via Electrospinning. Polymers 2019, 11, 986. [Google Scholar] [CrossRef]
- Min, K.; Kim, S.; Kim, C.G.; Kim, S. Colored and fluorescent nanofibrous silk as a physically transient chemosensor and vitamin deliverer. Sci. Rep. 2017, 7, 5448. [Google Scholar] [CrossRef]
- Elveren, B.; Hribernik, S.; Kurecic, M. Fabrication of Polysaccharide-Based Halochromic Nanofibers via Needle-Less Electrospinning and Their Characterization: A Study of the Leaching Effect. Polymers 2022, 14, 4239. [Google Scholar] [CrossRef]
- Fadil, F.; Adli, F.A.; Affandi, N.D.N.; Harun, A.M.; Alam, M.K. Dope-Dyeing of Polyvinyl Alcohol (PVA) Nanofibres with Remazol Yellow FG. Polymers 2020, 12, 3043. [Google Scholar] [CrossRef]
- Yan, X.; You, M.-H.; Lou, T.; Yu, M.; Zhang, J.-C.; Gong, M.-G.; Lv, F.-Y.; Huang, Y.-Y.; Long, Y.-Z. Colorful Hydrophobic Poly (Vinyl Butyral)/Cationic Dye Fibrous Membranes via a Colored Solution Electrospinning Process. Nanoscale Res. Lett. 2016, 11, 540. [Google Scholar] [CrossRef]
- Balakrishnan, N.K.; Koenig, K.; Seide, G. The Effect of Dye and Pigment Concentrations on the Diameter of Melt-Electrospun Polylactic Acid Fibers. Polymers 2020, 12, 2321. [Google Scholar] [CrossRef]
- Kishimoto, M.; Izawa, H.; Saimoto, H.; Ifuku, S. Dyeing of chitin nanofibers with reactive dyes and preparation of their sheets and nanofiber/resin composites. Cellulose 2022, 29, 2829–2837. [Google Scholar] [CrossRef]
- Li, X.S.; Yang, Y.C.; Quan, Z.Z.; Wang, L.M.; Ji, D.X.; Li, F.X.; Qin, X.H.; Yu, J.Y.; Ramakrishna, S. Tailoring body surface infrared radiation behavior through colored nanofibers for efficient passive radiative heating textiles. Chem. Eng. J. 2022, 430, 133093. [Google Scholar] [CrossRef]
- Jatoi, A.W.; Abro, M.I.; Gianchandani, P.K.; Jhatial, A.K. Coloration of Polycaprolactone Nanofibers by Continuous and Semicontinuous Methods. J. Text. Inst. 2022. [Google Scholar] [CrossRef]
- Qin, Y.J.; Zhang, Q.; Pan, W.; Zhang, J.T.; Wang, Z.B.; Qi, Y.; Yu, H.Q. Dyeable PAN/CuS Nanofiber Membranes with Excellent Mechanical and Photothermal Conversion Properties via Electrospinning. ACS Appl. Polym. Mater. 2022, 4, 9144–9150. [Google Scholar] [CrossRef]
- Li, X.S.; Yang, Y.C.; Zhang, H.N.; Quan, Z.Z.; Qin, X.H.; Li, F.X.; Wang, R.W.; Yu, J.Y. Modified polyacrylonitrile nanofibers for improved dyeability using anionic dyes. Appl. Nanosci. 2020, 10, 2025–2035. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blachowicz, T.; Ehrmann, A. Optical Properties of Electrospun Nanofiber Mats. Membranes 2023, 13, 441. https://doi.org/10.3390/membranes13040441
Blachowicz T, Ehrmann A. Optical Properties of Electrospun Nanofiber Mats. Membranes. 2023; 13(4):441. https://doi.org/10.3390/membranes13040441
Chicago/Turabian StyleBlachowicz, Tomasz, and Andrea Ehrmann. 2023. "Optical Properties of Electrospun Nanofiber Mats" Membranes 13, no. 4: 441. https://doi.org/10.3390/membranes13040441
APA StyleBlachowicz, T., & Ehrmann, A. (2023). Optical Properties of Electrospun Nanofiber Mats. Membranes, 13(4), 441. https://doi.org/10.3390/membranes13040441