Energetic Valorisation of Saltworks Bitterns via Reverse Electrodialysis: A Laboratory Experimental Campaign
Abstract
:1. Introduction
2. Experimental Setup and Procedure
2.1. Stack Configuration
2.2. Experimental Setup
2.3. Experimental Procedure
2.4. Performance Indicators
3. Results and Discussion
3.1. Influence of the Temperature
3.1.1. Influence of Dilute Solution Concentration
3.1.2. Influence of Feed velocity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature and Abbreviations
Nomenclature | |
A | Active membrane area (m2) |
I | Electric current (I) |
N | Number of cell pairs (-) |
OCV | Open circuit voltage (V) |
P | Power (W) |
PD | Power density (W/m2 cell pair) |
PDcorr | Corrected power density (W/m2 cell pair) |
PDnet,cover | Net Covered power density (W/m2 cell pair) |
PDpump | Pumping power density (W/m2) |
ΔP | Pressure drop (Pa) |
Q | Volumetric flow rate (mL/min) |
Qtot | Total feed volumetric flow rate (m3/sec) |
Rblank | Blank resistance (Ω) |
Rcell | Resistance of cell pair (Ω) |
Rstack | Stack internal resistance (Ω) |
Rload | Load resistance |
R | Real gas constant (J/mol/K) |
Vstack | Stack potential (V) |
T | Temperature (K) |
V | Fluid flow velocity (cm s−1) |
Abbreviations | |
AEM | Anion exchange membrane |
ERS | Electrode rinse solution |
IEMs | Ion exchange membrane |
HCS | High compartment solution |
LCS | Low compartment solution |
RED | Reverse Electrodialysis |
SGP | Salinity Gradient power |
z | Valence number |
References
- Elsaid, K.; Sayed, E.T.; Abdelkareem, M.A.; Baroutaji, A.; Olabi, A. Environmental impact of desalination processes: Mitigation and control strategies. Sci. Total Environ. 2020, 740, 140125. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Shemer, H.; Semiat, R. Energy and environmental issues in desalination. Desalination 2015, 366, 2–8. [Google Scholar] [CrossRef]
- Tedesco, M.; Brauns, E.; Cipollina, A.; Micale, G.; Modica, P.; Russo, G.; Helsen, J. Reverse electrodialysis with saline waters and concentrated brines: A laboratory investigation towards technology scale-up. J. Membr. Sci. 2015, 492, 9–20. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y.; Wang, Y.; Zhang, M.; Xiao, Q.; Duan, Y. Influential analysis of concentration polarization on water flux and power density in PRO process: Modeling and experiments. Desalination 2017, 412, 39–48. [Google Scholar] [CrossRef]
- Post, J.W.; Veerman, J.; Hamelers, H.V.; Euverink, G.J.; Metz, S.J.; Nymeijer, K.; Buisman, C.J. Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis. J. Membr. Sci. 2007, 288, 218–230. [Google Scholar] [CrossRef]
- Pawlowski, S.; Huertas, R.M.; Galinha, C.F.; Crespo, J.G.; Velizarov, S. On operation of reverse electrodialysis (RED) and membrane capacitive deionisation (MCDI) with natural saline streams: A critical review. Desalination 2019, 476, 114183. [Google Scholar] [CrossRef]
- Shah, S.A.; Haider, Z.; Shahbabaei, M.; Kim, D. Development of an Efficient System for Blue Energy Production Based on Reverse Electrodialysis (RED) by Optimizing Electrolyte Composition: Experimental and Theoretical Simulations. Energy Fuels 2022, 36, 6353–6361. [Google Scholar] [CrossRef]
- Shah, S.A.; Choi, S.-Y.; Cho, S.; Shahbabaei, M.; Singh, R.; Kim, D. Modified single-wall carbon nanotube for reducing fouling in perfluorinated membrane-based reverse electrodialysis. Int. J. Hydrogen Energy 2020, 45, 30703–30719. [Google Scholar] [CrossRef]
- Choi, S.-Y.; Sharma, P.P.; Shah, S.A.; Singh, R.; Kim, D.; Jin, K.-S. Controlling Fuel Crossover in Open Electrochemical Cells by Tuning the Water Nanochannel for Power Generation. ACS Sustain. Chem. Eng. 2020, 8, 8613–8623. [Google Scholar] [CrossRef]
- Sharma, P.P.; Singh, R.; Shah, S.A.; Yoo, C.H.; Lee, A.S.; Kim, D.; Na, J.-G.; Lee, J.S. Strategically Altered Fluorinated Polymer at Nanoscale for Enhancing Proton Conduction and Power Generation from Salinity Gradient. Membranes 2022, 12, 395. [Google Scholar] [CrossRef]
- Turek, M.; Bandura, B. Renewable energy by reverse electrodialysis. Desalination 2007, 205, 67–74. [Google Scholar] [CrossRef]
- Doornbusch, G.; van der Wal, M.; Tedesco, M.; Post, J.; Nijmeijer, K.; Borneman, Z. Multistage electrodialysis for desalination of natural seawater. Desalination 2021, 505, 114973. [Google Scholar] [CrossRef]
- Avci, A.H.; Tufa, R.A.; Fontananova, E.; Di Profio, G.; Curcio, E. Reverse Electrodialysis for energy production from natural river water and seawater. Energy 2018, 165, 512–521. [Google Scholar] [CrossRef]
- Cosenza, A.; Campisi, G.; Giacalone, F.; Randazzo, S.; Cipollina, A.; Tamburini, A.; Micale, G. Power Production from Produced Waters via Reverse Electrodialysis: A Preliminary Assessment. Energies 2022, 15, 4177. [Google Scholar] [CrossRef]
- Xu, S.; Leng, Q.; Wu, X.; Xu, Z.; Hu, J.; Wu, D.; Jing, D.; Wang, P.; Dong, F. Influence of output current on decolorization efficiency of azo dye wastewater by a series system with multi-stage reverse electrodialysis reactors. Energy Convers. Manag. 2020, 228, 113639. [Google Scholar] [CrossRef]
- Tamburini, A.; Tedesco, M.; Cipollina, A.; Micale, G.; Ciofalo, M.; Papapetrou, M.; Van Baak, W.; Piacentino, A. Reverse electrodialysis heat engine for sustainable power production. Appl. Energy 2017, 206, 1334–1353. [Google Scholar] [CrossRef]
- Ortega-Delgado, B.; Giacalone, F.; Catrini, P.; Cipollina, A.; Piacentino, A.; Tamburini, A.; Micale, G. Reverse electrodialysis heat engine with multi-effect distillation: Exergy analysis and perspectives. Energy Convers. Manag. 2019, 194, 140–159. [Google Scholar] [CrossRef]
- Micari, M.; Bevacqua, M.; Cipollina, A.; Tamburini, A.; Van Baak, W.; Putts, T.; Micale, G. Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications. J. Membr. Sci. 2018, 551, 315–325. [Google Scholar] [CrossRef]
- Kang, S.; Li, J.; Wang, Z.; Zhang, C.; Kong, X. Salinity gradient energy capture for power production by reverse electrodialysis experiment in thermal desalination plants. J. Power Sources 2021, 519, 230806. [Google Scholar] [CrossRef]
- Daniilidis, A.; Vermaas, D.A.; Herber, R.; Nijmeijer, K. Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis. Renew. Energy 2014, 64, 123–131. [Google Scholar] [CrossRef]
- Brauns, E. Towards a worldwide sustainable and simultaneous large-scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power. Desalination 2008, 219, 312–323. [Google Scholar] [CrossRef]
- Tedesco, M.; Scalici, C.; Vaccari, D.; Cipollina, A.; Tamburini, A.; Micale, G. Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines. J. Membr. Sci. 2016, 500, 33–45. [Google Scholar] [CrossRef]
- Available online: https://searcularmine.eu/about/project-overview/ (accessed on 23 November 2022).
- Available online: https://www.fujifilm.com/us/en/business/industrial-materials/ion-exchange-membranes/overview (accessed on 23 November 2022).
- Available online: https://www.fumatech.com/en/products/membranes-water-treatment-processes/ (accessed on 23 November 2022).
- Available online: https://www.watertechnologies.com/products/ionics-ion-exchange-membranes (accessed on 23 November 2022).
- Tufa, R.A.; Pawlowski, S.; Veerman, J.; Bouzek, K.; Fontananova, E.; di Profio, G.; Velizarov, S.; Crespo, J.G.; Nijmeijer, K.; Curcio, E. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Appl. Energy 2018, 225, 290–331. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Zhang, C.; Wang, H.; Kong, X. Power production from seawater and discharge brine of thermal desalination units by reverse electrodialysis. Appl. Energy 2022, 314, 118977. [Google Scholar] [CrossRef]
- Tufa, R.A.; Curcio, E.; Brauns, E.; van Baak, W.; Fontananova, E.; Di Profio, G. Membrane Distillation and Reverse Electrodialysis for Near-Zero Liquid Discharge and low energy seawater desalination. J. Membr. Sci. 2015, 496, 325–333. [Google Scholar] [CrossRef]
- Mei, Y.; Tang, C.Y. Co-locating reverse electrodialysis with reverse osmosis desalination: Synergies and implications. J. Membr. Sci. 2017, 539, 305–312. [Google Scholar] [CrossRef]
- Weinstein, J.N.; Leitz, F.B. Electric Power from Differences in Salinity: The Dialytic Battery. Science 1976, 191, 557–559. [Google Scholar] [CrossRef]
- Fontananova, E.; Zhang, W.; Nicotera, I.; Simari, C.; van Baak, W.; Di Profio, G.; Curcio, E.; Drioli, E. Probing membrane and interface properties in concentrated electrolyte solutions. J. Membr. Sci. 2014, 459, 177–189. [Google Scholar] [CrossRef]
- Benneker, A.M.; Rijnaarts, T.; Lammertink, R.G.; Wood, J.A. Effect of temperature gradients in (reverse) electrodialysis in the Ohmic regime. J. Membr. Sci. 2018, 548, 421–428. [Google Scholar] [CrossRef]
- Cui, W.-Z.; Ji, Z.-Y.; Tumba, K.; Zhang, Z.-D.; Wang, J.; Zhang, Z.-X.; Liu, J.; Zhao, Y.-Y.; Yuan, J.-S. Response of salinity gradient power generation to inflow mode and temperature difference by reverse electrodialysis. J. Environ. Manag. 2021, 303, 114124. [Google Scholar] [CrossRef]
Membrane | Fujifilm [24] | Fumatech [25] | Suez [26] | |||
---|---|---|---|---|---|---|
AEM Type 10 | CEM Type 10 | AEM FAB | CEM FKB | AEM AR103U | CEM CR67U | |
Thickness dry (μm) | 125 | 135 | 130 | 130 | 130 | 150 |
Electrical resistance (Ω cm2) | 1.7 | 2.0 | <8.5 | <5 | 1.4 | 2.0 |
Permselectivity | 95 | 99 | >93 | >98 | 90 | 90 |
IEC (meq g−1) | 1.8 | 1.5 | - | - | 2.37 | 1.92 |
Water permeability (mL bar−1 m−2 h−1) | 6.5 | 6.5 | - | - | - | - |
Parameter | Reference Test Value |
---|---|
Dilute concentration | 0.01–0.1 M NaCl |
Concentrate concentration | 5 M NaCl |
Fluid velocity | 1–3 cm s−1 |
Spacer thickness (µm) | 270 |
Temperature | 20–40 °C |
Effective area of membrane (m2) | 0.01 |
ERS solution composition | 0.1 M of FeK3(CN)6/FeK4(CN)6 and 0.6 M NaCl |
Conductivity | 105 mS/cm |
Pumping efficiency | 90% |
Temperature | 20–40 °C |
Stack | Fujifilm | Suez | Fumatech | |
---|---|---|---|---|
AEM | Type-10 | AR103U | FAB-PK-130 | |
CEM | Type-10 | CR67U | FKB-PK-130 | |
Flow velocity (cm s−1) | 1 | 1 | 1 | |
Internal leakage | <0.1% | HC | LC | 0% |
6% | 12% |
Membrane | Experimental Conditions | Concentration (mol L−1) | Performance | Reference | ||||
---|---|---|---|---|---|---|---|---|
Supplier | N° pairs | Flow velocity (cm s−1) | Area (cm2) | Temp (°C) | CHigh | CLow | Power density (W m−2)CP | |
Fuji Type 10 | 5 | 3 | 10 × 10 | 40 | 5 | 0.06 | 10.5 | This work |
Fuji- Type II | - | 8.7 mm s−1 | - | 50 | 3 | 0.6 | 0.26 | [28] |
Fumasep | 50 | 4 | 10 × 10 | 40 | 5 | 0.5 | 12 | [3] |
Neosepta® | 4 | 0.81 | 10 × 10 | 40 | 0.513 | 0.017 | 1.88 | [33] |
YDS | 8 | 0.717 | 17 × 7 | 40 | 66.70 g L−1 | 0.66 g L−1 | 0.88 | [34] |
Fuji-Type II | 10 | 8.55 mm s−1 | 0.118 × 0.065 m2 | 50 | 3 | 0.06 | 0.2 | [19] |
Neosepta® | 5 | 25 mL min−1 | 10 × 10 | 60 | 5 | 0.01 | 13.4 | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah Shah, S.; Cucchiara, R.; Vicari, F.; Cipollina, A.; Tamburini, A.; Micale, G. Energetic Valorisation of Saltworks Bitterns via Reverse Electrodialysis: A Laboratory Experimental Campaign. Membranes 2023, 13, 293. https://doi.org/10.3390/membranes13030293
Abdullah Shah S, Cucchiara R, Vicari F, Cipollina A, Tamburini A, Micale G. Energetic Valorisation of Saltworks Bitterns via Reverse Electrodialysis: A Laboratory Experimental Campaign. Membranes. 2023; 13(3):293. https://doi.org/10.3390/membranes13030293
Chicago/Turabian StyleAbdullah Shah, Syed, Roberta Cucchiara, Fabrizio Vicari, Andrea Cipollina, Alessandro Tamburini, and Giorgio Micale. 2023. "Energetic Valorisation of Saltworks Bitterns via Reverse Electrodialysis: A Laboratory Experimental Campaign" Membranes 13, no. 3: 293. https://doi.org/10.3390/membranes13030293
APA StyleAbdullah Shah, S., Cucchiara, R., Vicari, F., Cipollina, A., Tamburini, A., & Micale, G. (2023). Energetic Valorisation of Saltworks Bitterns via Reverse Electrodialysis: A Laboratory Experimental Campaign. Membranes, 13(3), 293. https://doi.org/10.3390/membranes13030293