Stability of the Structural and Transport Characteristics of (ZrO2)0.99−x(Sc2O3)x(R2O3)0.01 (R–Yb, Y, Tb, Gd) Electrolytic Membranes to High-Temperature Exposure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Dictation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, F.; Duan, C. Direct-Hydrocarbon Proton-Conducting Solid Oxide Fuel Cells. Sustainability 2021, 13, 4736. [Google Scholar] [CrossRef]
- Golkhatmi, S.Z.; Asghar, M.I.; Lund, P.D. A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools. Renew. Sustain. Energy Rev. 2022, 161, 112339. [Google Scholar] [CrossRef]
- Stambouli, A.B.; Traversa, E. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renew. Sustain. Energy Rev. 2002, 6, 433–455. [Google Scholar] [CrossRef]
- Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K. Progress in material selection for solid oxide fuel cell technology: A review. Prog. Mater. Sci. 2015, 72, 141–337. [Google Scholar] [CrossRef]
- Hussai, S.; Yangping, L. Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte. Energy Transit. 2020, 4, 113–126. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Hossaina, S.; Azad, A.T.; Petra, P.M.I.; Begum, F.; Eriksson, S.G.; Azad, A.K. Nanomaterials for solid oxide fuel cells: A review. Renew. Sustain. Energy Rev. 2018, 82, 353–368. [Google Scholar] [CrossRef]
- Arachi, Y.; Sakai, H.; Yamamoto, O.; Takeda, Y.; Imanishai, N. Electrical conductivity of the ZrO2 –Ln2O3 (Ln-lanthanides) system. Solid State Ion. 1999, 121, 133–139. [Google Scholar] [CrossRef]
- Ramírez-González, J.; West, A.R. Electrical properties of calcia-stabilised zirconia ceramics. J. Eur. Ceram. Soc. 2020, 40, 5602–5611. [Google Scholar] [CrossRef]
- Kumar, C.N.S.; Bauri, R. Enhancing the phase stability and ionic conductivity of scandia stabilized zirconia by rare earth co-doping. J. Phys. Chem. Solids 2014, 75, 642–650. [Google Scholar]
- Nikonov, A.V.; Khrustov, V.R.; Bokov, A.A.; Koleukh, D.S.; Zayats, S.V. Co-Doping Effect on the Properties of Scandia Stabilized ZrO2. Russ. J. Electrochem. 2014, 50, 625–629. [Google Scholar] [CrossRef]
- Nakayama, S.; Tokunaga, R.; Takata, M.; Kondo, S.; Nakajima, Y. Crystal phase, electrical properties, and solid oxide fuel cell electrolyte application of scandia-stabilized zirconia doped with rare earth elements. Open Ceram. 2021, 6, 100136. [Google Scholar] [CrossRef]
- Shukla, V.; Balani, K.; Subramaniam, A.; Omar, S. Phase stability and conductivity in the pseudo ternary system of xYb2O3-(12-x)Sc2O3-88ZrO2 (0 ≤ x ≤ 5). Solid State Ion. 2019, 332, 93–101. [Google Scholar] [CrossRef]
- Lakshmi, V.V.; Bauri, R. Phase formation and ionic conductivity studies on ytterbia co-doped scandia stabilized zirconia (0.9ZrO2–0.09Sc2O3–0.01Yb2O3) electrolyte for SOFCs. Solid State Sci. 2011, 13, 1520–1525. [Google Scholar] [CrossRef]
- Kumar, C.N.S.; Bauri, R.; Reddy, G.S. Phase stability and conductivity of rare earth co-doped nanocrystalline zirconia electrolytes for solid oxide fuel cells. J. Alloys Compd. 2020, 833, 155100. [Google Scholar] [CrossRef]
- Liu, F.; Diercks, D.; Hussain, A.M.; Dale, N.; Furuya, Y.; Miura, Y.; Fukuyama, Y.; Duan, C. Nanocomposite Catalyst for High-Performance and Durable Intermediate-Temperature Methane-Fueled Metal-Supported Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces 2022, 14, 53840–53849. [Google Scholar] [CrossRef] [PubMed]
- Badwal, S.P.S.; Ciacchi, F.T.; Milosevic, D. Scandia–zirconia electrolytes for intermediate temperature solid oxide fuel cell operation. Solid State Ion. 2000, 136–137, 91–99. [Google Scholar] [CrossRef]
- Haering, C.; Roosen, A.; Schichl, H.; Schnfller, M. Degradation of the electrical conductivity in stabilized zirconia system Part II: Scandia-stabilised zirconia. Solid State Ion. 2005, 176, 261–268. [Google Scholar] [CrossRef]
- Nomura, K.; Mizutani, Y.; Kawai, M.; Nakamura, Y.; Yamamoto, O. Aging and Raman scattering study of scandia and yttria doped zirconia. Solid State Ion. 2000, 132, 235–239. [Google Scholar] [CrossRef]
- Shukla, V.; Balani, K.; Subramaniam, A.; Omar, S. Effect of Thermal Aging on the Phase Stability of 1Yb2O3−xSc2O3−(99−x)ZrO2 (x = 7, 8 mol %.). J. Phys. Chem. C 2019, 123, 21982–21992. [Google Scholar] [CrossRef]
- Araki, W.; Koshikawa, T.; Yamaji, A.; Adachi, T. Degradation mechanism of scandia-stabilised zirconia electrolytes: Discussion based on annealing effects on mechanical strength, ionic conductivity, and Raman spectrum. Solid State Ion. 2009, 180, 1484–1489. [Google Scholar] [CrossRef]
- Spirin, A.; Ivanov, V.; Nikonov, A.; Lipilin, A.; Paranin, S.; Khrustov, V.; Spirina, A. Scandia-stabilized zirconia doped with yttria: Synthesis, properties, and ageing behavior. Solid State Ion. 2012, 225, 448–452. [Google Scholar] [CrossRef]
- Shukla, V.; Kumar, A.; Basheer, I.L.; Balani, K.; Subramaniam, A.; Omar, S. Structural characteristics and electrical conductivity of spark plasma sintered ytterbia Co-doped scandia stabilized zirconia. J. Am. Ceram. Soc. 2017, 100, 204–214. [Google Scholar] [CrossRef]
- Shanon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Cryst. A32 1976, 5, 751–767. [Google Scholar] [CrossRef]
- Osiko, V.W.; Borik, M.A.; Lomonova, E.E. Synthesis of Refractory Materials by Skull Melting Technique. In Springer Handbook of Crystal Growth; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2010; pp. 433–477. [Google Scholar]
- Eliseeva, G.M.; Burmistrov, I.N.; Agarkov, D.A.; Gamova, A.A.; Ionov, I.V.; Levin, M.N.; Solovyev, A.A.; Tartakovskii, I.I.; Kharton, V.V. In-situ Raman spectroscopy studies of oxygen spillover at solid oxide fuel cell anodes. Chem. Probl. 2020, 1, 9–19. [Google Scholar] [CrossRef]
- Agarkov, D.A.; Burmistrov, I.N.; Tsybrov, F.M.; Tartakovskii, I.I.; Kharton, V.V.; Bredikhin, S.I. In-situ Raman spectroscopy analysis of the interfaces between Ni-based SOFC anodes and stabilized zirconia electrolyte. Solid State Ion. 2017, 302, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Agarkov, D.A.; Burmistrov, I.N.; Tsybrov, F.M.; Tartakovskii, I.I.; Kharton, V.V.; Bredikhin, S.I. Kinetics of NiO reduction and morphological changes in composite anodes of solid oxide fuel cells: Estimate using Raman scattering technique. Russ. J. Electrochem. 2016, 52, 600–605. [Google Scholar] [CrossRef]
- Agarkov, D.A.; Burmistrov, I.N.; Tsybrov, F.M.; Tartakovskii, I.I.; Kharton, V.V.; Bredikhin, S.I.; Kveder, V.V. Analysis of interfacial processes at the SOFC electrodes by in-situ Raman spectroscopy. ECS Trans. 2015, 68, 2093–2103. [Google Scholar] [CrossRef] [Green Version]
- Batygov SKh Borik, M.A.; Kulebyakin, A.V.; Larina, N.A.; Lomonova, E.E.; Myzina, V.A.; Ryabochkina, P.A.; Sidorova, N.V.; Taratynova, A.D.; Tabachkova, N.Y. Spectral-luminescence properties of ZrO2−Sc2O3−Tb2O3 crystals. Opt. Spectrosc. 2022, 132, 86–92. [Google Scholar]
- Robles-Fernández, A.; Orera, A.; Peña, J.I.; Merino, R.I. Probing high oxygen activity in YSZ electrolyte. J. Electrochem. Soc. 2022, 169, 044503. [Google Scholar] [CrossRef]
- Hardin, C.L.; Kodera, Y.; Basun, S.A.; Evans, D.R.; Garay, J.E. Transparent, luminescent terbium doped zirconia: Development of optical-structural ceramics with integrated temperature measurement functionalities. Opt. Mater. Express 2013, 3, 893–903. [Google Scholar]
- Hemberger, Y.; Wichtner, N.; Berthold, C.; Nickel, K.G. Quantification of Yttria in Stabilized Zirconia by Raman Spectroscopy. Int. J. Appl. Ceram. Technol. 2016, 13, 116–124. [Google Scholar] [CrossRef]
- Yashima, M.; Sasaki, S.; Kakihana, M.; Yamaguchi, Y.A.; Arashi, H.A.; Yoshimura, M.A. Oxygen-Induced Structural-Change of the Tetragonal Phase Around the Tetragonal-Cubic Phase-Boundary in ZrO2-YO1.5 Solid-Solutions. Acta Cryst. B Struct. Sci. 1994, 50, 663–672. [Google Scholar] [CrossRef]
- Yashima, M.; Ohtake, K.; Kakihana, M.; Arashi, H.; Yoshimura, M. Determination of Tetragonal–Cubic Phase Boundary of Zr1−XRXO2−X/2 (R = Nd, Sm, Y, Er and Yb) by Raman Scattering. J. Phys. Chem. Solids 1996, 57, 17–24. [Google Scholar] [CrossRef]
- Yamaji, A.; Koshikawa, T.; Araki, W.; Adachi, T. Stabilization of a zirconia system and evaluation of its electrolyte characteristics for a fuel cell: Based on electrical and mechanical considerations. J. Eng. Mater. Technol. 2008, 131, 011010–011016. [Google Scholar] [CrossRef]
- Borik, M.A.; Volkova, T.V.; Kuritsyna, I.E.; Lomonova, E.E.; Myzina, V.A.; Ryabochkina, P.A.; Tabachkova, N.Y. Features of the local structure and transport properties of ZrO2-Y2O3-Eu2O3 solid solutions. J. Alloys Compd. 2019, 770, 320–326. [Google Scholar] [CrossRef]
Chemical Composition | Short Designation | Appearance | Phase Composition | ||
---|---|---|---|---|---|
After Growth | After Annealing | After Growth | After Annealing | ||
(ZrO2)0.99−x(Sc2O3)x(Yb2O3)0.01 series | |||||
(ZrO2)0.91(Sc2O3)0.08(Yb2O3)0.01 | 8Sc1YbSZ | muddy | muddy | t` | t` |
(ZrO2)0.90(Sc2O3)0.09(Yb2O3)0.01 | 9Sc1YbSZ | transparent | transparent | c | c |
(ZrO2)0.89(Sc2O3)0.1(Yb2O3)0.01 | 10Sc1YbSZ | inhomogeneous in volume (muddy and transparent areas) | muddy throughout | c + r | r |
(ZrO2)0.99−x(Sc2O3)x(Y2O3)0.01 series | |||||
(ZrO2)0.91(Sc2O3)0.08(Y2O3)0.01 | 8Sc1YSZ | muddy | muddy | t` | t` |
(ZrO2)0.90(Sc2O3)0.09(Y2O3)0.01 | 9Sc1YSZ | inhomogeneous in volume (muddy and transparent areas) | inhomogeneous in volume (muddy and transparent areas) | t`+ c | t` + c |
(ZrO2)0.89(Sc2O3)0.1(Y2O3)0.01 | 10Sc1YSZ | transparent | transparent | c | c |
(ZrO2)0.99−x(Sc2O3)x(Tb2O3)0.01 series | |||||
ZrO2)0.91(Sc2O3)0.08(Tb2O3)0.01 | 8Sc1TbSZ | muddy, yellow color | muddy, yellow color | t` | t` |
(ZrO2)0.90(Sc2O3)0.09(Tb2O3)0.01 | 9Sc1TbSZ | transparent, yellow color | transparent, yellow color | c | c |
(ZrO2)0.89(Sc2O3)0.10(Tb2O3)0.01 | 10Sc1TbSZ | transparent, yellow color | transparent, yellow color | c | c |
(ZrO2)0.99−x(Sc2O3)x(Gd2O3)0.01 series | |||||
(ZrO2)0.89 (Sc2O3)0.08(Gd2O3)0.01 | 8Sc1GdSZ | muddy | muddy | t` | t` |
(ZrO2)0.90 (Sc2O3)0.09(Gd2O3)0.01 | 9Sc1GdSZ | inhomogeneous in volume (muddy and transparent areas) | muddy | t` + c | t` |
(ZrO2)0.89(Sc2O3)0.1(Gd2O3)0.01 | 10Sc1GdSZ | transparent | transparent | c | c |
Type of Stabilizing Oxide | Lattice Parameter a, nm | Lattice Parameter c, nm | ||
---|---|---|---|---|
Before Annealing | After Annealing | Before Annealing | After Annealing | |
Yb2O3 | 0.35982 (1) | 0.35981 (1) | 0.51131 (2) | 0.51143 (2) |
Tb2O3.5 | 0.35993 (1) | 0.35992 (1) | 0.51138 (2) | 0.51147 (2) |
Y2O3 | 0.36004 (1) | 0.36004 (1) | 0.51190 (2) | 0.51211 (2) |
Gd2O3 | 0.36017 (1) | 0.36016 (1) | 0.51198 (2) | 0.51219 (2) |
Type of Stabilizing Oxide | Lattice Parameter a, nm | |||
---|---|---|---|---|
9 mol% Sc2O3 | 10 mol% Sc2O3 | |||
Before Annealing | After Annealing | Before Annealing | After Annealing | |
Yb2O3 | 0.50937 (1) | 0.50937 (1) | 0.50931 (1) | |
Tb2O3.5 | 0.50955 (1) | 0.50950 (1) | 0.50943 (1) | 0.50938 (1) |
Y2O3 | 0.50962 (1) | 0.50962 (1) | 0.50959 (1) | 0.50958 (1) |
Gd2O3 | 0.50982 (1) | 0.50983 (1) | 0.50973 (1) | 0.50973 (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarkov, D.; Borik, M.; Korableva, G.; Kulebyakin, A.; Kuritsyna, I.; Larina, N.; Lomonova, E.; Milovich, F.; Myzina, V.; Ryabochkina, P.; et al. Stability of the Structural and Transport Characteristics of (ZrO2)0.99−x(Sc2O3)x(R2O3)0.01 (R–Yb, Y, Tb, Gd) Electrolytic Membranes to High-Temperature Exposure. Membranes 2023, 13, 312. https://doi.org/10.3390/membranes13030312
Agarkov D, Borik M, Korableva G, Kulebyakin A, Kuritsyna I, Larina N, Lomonova E, Milovich F, Myzina V, Ryabochkina P, et al. Stability of the Structural and Transport Characteristics of (ZrO2)0.99−x(Sc2O3)x(R2O3)0.01 (R–Yb, Y, Tb, Gd) Electrolytic Membranes to High-Temperature Exposure. Membranes. 2023; 13(3):312. https://doi.org/10.3390/membranes13030312
Chicago/Turabian StyleAgarkov, Dmitrii, Mikhail Borik, Galina Korableva, Alexey Kulebyakin, Irina Kuritsyna, Nataliya Larina, Elena Lomonova, Filipp Milovich, Valentina Myzina, Polina Ryabochkina, and et al. 2023. "Stability of the Structural and Transport Characteristics of (ZrO2)0.99−x(Sc2O3)x(R2O3)0.01 (R–Yb, Y, Tb, Gd) Electrolytic Membranes to High-Temperature Exposure" Membranes 13, no. 3: 312. https://doi.org/10.3390/membranes13030312
APA StyleAgarkov, D., Borik, M., Korableva, G., Kulebyakin, A., Kuritsyna, I., Larina, N., Lomonova, E., Milovich, F., Myzina, V., Ryabochkina, P., Tabachkova, N., Volkova, T., & Zakharov, D. (2023). Stability of the Structural and Transport Characteristics of (ZrO2)0.99−x(Sc2O3)x(R2O3)0.01 (R–Yb, Y, Tb, Gd) Electrolytic Membranes to High-Temperature Exposure. Membranes, 13(3), 312. https://doi.org/10.3390/membranes13030312