Preparation of a Low-Protein-Fouling and High-Protein-Retention Membrane via Novel Pre-Hydrolysis Treatment of Polyacrylonitrile (PAN)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.3. Characterization of hPAN
2.4. Characterization of Membranes
2.5. Filtration Experiment
3. Results and Discussion
3.1. Chemical Composition of hPAN
3.2. Membrane Functional Groups
3.3. Membrane Hydrophilicity
3.4. Membrane Morphology
3.5. Protein Filtration Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vollet Marson, G.; Belleville, M.-P.; Lacour, S.; Dupas Hubinger, M. Membrane Fractionation of Protein Hydrolysates from By-Products: Recovery of Valuable Compounds from Spent Yeasts. Membranes 2020, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Hatti-Kaul, R.; Mattiasson, B. Isolation and Purification of Proteins; CRC Press: Boca Raton, FL, USA, 2003; ISBN 0824747593. [Google Scholar]
- Saxena, A.; Tripathi, B.P.; Kumar, M.; Shahi, V.K. Membrane-Based Techniques for the Separation and Purification of Proteins: An Overview. Adv. Colloid Interface Sci. 2009, 145, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Benoit, S.; Chamberland, J.; Doyen, A.; Margni, M.; Bouchard, C.; Pouliot, Y. Integrating Pressure-Driven Membrane Separation Processes to Improve Eco-Efficiency in Cheese Manufacture: A Preliminary Case Study. Membranes 2020, 10, 287. [Google Scholar] [CrossRef] [PubMed]
- Saksena, S.; Zydney, A.L. Effect of Solution PH and Ionic Strength on the Separation of Albumin from Immunoglobulins (IgG) by Selective Filtration. Biotechnol. Bioeng. 1994, 43, 960–968. [Google Scholar] [CrossRef]
- Van Reis, R.; Brake, J.M.; Charkoudian, J.; Burns, D.B.; Zydney, A.L. High-Performance Tangential Flow Filtration Using Charged Membranes. J. Membr. Sci. 1999, 159, 133–142. [Google Scholar] [CrossRef]
- Nath, A.; Chakraborty, S.; Bhattacharjee, C.; Chowdhury, R. Studies on the Separation of Proteins and Lactose from Casein Whey by Cross-Flow Ultrafiltration. Desalin. Water Treat. 2015, 54, 481–501. [Google Scholar] [CrossRef]
- Zydney, A. Charged Ultrafiltration Membrane. In Encyclopedia of Membranes; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–2. [Google Scholar]
- Kumar, M.; Ulbricht, M. Low Fouling Negatively Charged Hybrid Ultrafiltration Membranes for Protein Separation from Sulfonated Poly(Arylene Ether Sulfone) Block Copolymer and Functionalized Multiwalled Carbon Nanotubes. Sep. Purif. Technol. 2014, 127, 181–191. [Google Scholar] [CrossRef]
- Arunkumar, A.; Etzel, M.R. Negatively Charged Tangential Flow Ultrafiltration Membranes for Whey Protein Concentration. J. Membr. Sci. 2015, 475, 340–348. [Google Scholar] [CrossRef]
- Ye, Y.; Han, Q.; Zhao, C.; Ke, W.; Qiu, M.; Chen, X.; Fan, Y. Improved Negative Charge of Tight Ceramic Ultrafiltration Membranes for Protein-Resistant and Easy-Cleaning Performance. Sep. Purif. Technol. 2023, 309, 123082. [Google Scholar] [CrossRef]
- Scharnagl, N.; Buschatz, H. Polyacrylonitrile (PAN) Membranes for Ultra- and Microfiltration. Desalination 2001, 139, 191–198. [Google Scholar] [CrossRef]
- Pérez-Álvarez, L.; Ruiz-Rubio, L.; Moreno, I.; Vilas-Vilela, J.L. Characterization and Optimization of the Alkaline Hydrolysis of Polyacrylonitrile Membranes. Polymers 2019, 11, 1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litmanovich, A.D.; Platé, N.A. Alkaline Hydrolysis of Polyacrylonitrile. On the Reaction Mechanism. Macromol. Chem. Phys. 2000, 201, 2176–2180. [Google Scholar] [CrossRef]
- Yang, X.; Liew, S.R.; Bai, R. Simultaneous Alkaline Hydrolysis and Non-Solvent Induced Phase Separation Method for Polyacrylonitrile (PAN) Membrane with Highly Hydrophilic and Enhanced Anti-Fouling Performance. J. Memb. Sci. 2021, 635, 119499. [Google Scholar] [CrossRef]
- Baek, Y.; Kang, J.; Theato, P.; Yoon, J. Measuring Hydrophilicity of RO Membranes by Contact Angles via Sessile Drop and Captive Bubble Method: A Comparative Study. Desalination 2012, 303, 23–28. [Google Scholar] [CrossRef]
- Hashino, M.; Hirami, K.; Ishigami, T.; Ohmukai, Y.; Maruyama, T.; Kubota, N.; Matsuyama, H. Effect of Kinds of Membrane Materials on Membrane Fouling with BSA. J. Membr. Sci. 2011, 384, 157–165. [Google Scholar] [CrossRef]
- Hwang, L.L.; Tseng, H.H.; Chen, J.C. Fabrication of Polyphenylsulfone/Polyetherimide Blend Membranes for Ultrafiltration Applications: The Effects of Blending Ratio on Membrane Properties and Humic Acid Removal Performance. J. Membr. Sci. 2011, 384, 72–81. [Google Scholar] [CrossRef]
- Boyraz, E.; Yalcinkaya, F. Hydrophilic Surface-Modified PAN Nanofibrous Membranes for Efficient Oil–Water Emulsion Separation. Polymers 2021, 13, 197. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Zhou, T.; Liu, X.; Yuan, Q.; Zhang, A. New Understanding on the Reaction Pathways of the Polyacrylonitrile Copolymer Fiber Pre-Oxidation: Online Tracking by Two-Dimensional Correlation FTIR Spectroscopy. RSC Adv. 2016, 6, 4397–4409. [Google Scholar] [CrossRef]
- Friedlander, H.N.; Peebles, L.H.; Brandrup, J.; Kirby, J.R. On the Chromophore of Polyacrylonitrile. VI. Mechanism of Color Formation in Polyacrylonitrile. Macromolecules 1968, 1, 79–86. [Google Scholar] [CrossRef]
- Zhang, F.; Gao, S.; Zhu, Y.; Jin, J. Alkaline-Induced Superhydrophilic/Underwater Superoleophobic Polyacrylonitrile Membranes with Ultralow Oil-Adhesion for High-Efficient Oil/Water Separation. J. Membr. Sci. 2016, 513, 67–73. [Google Scholar] [CrossRef]
- Sablani, S.; Goosen, M.; Al-Belushi, R.; Wilf, M. Concentration Polarization in Ultrafiltration and Reverse Osmosis: A Critical Review. Desalination 2001, 141, 269–289. [Google Scholar] [CrossRef]
- Salehi, E.; Madaeni, S.S. Influence of Conductive Surface on Adsorption Behavior of Ultrafiltration Membrane. Appl. Surf. Sci. 2010, 256, 3010–3017. [Google Scholar] [CrossRef]
- Ji, M.; Luo, J.; Wei, J.; Woodley, J.; Daugaard, A.E.; Pinelo, M. Commercial Polysulfone Membranes Pretreated with Ethanol and NaOH: Effects on Permeability, Selectivity and Antifouling Properties. Sep. Purif. Technol. 2019, 219, 82–89. [Google Scholar] [CrossRef]
- Kang, S.; Asatekin, A.; Mayes, A.M.; Elimelech, M. Protein Antifouling Mechanisms of PAN UF Membranes Incorporating PAN-g-PEO Additive. J. Membr. Sci. 2007, 296, 42–50. [Google Scholar] [CrossRef]
- Lin, Y.C.; Tseng, H.H.; Wang, D.K. Uncovering the Effects of PEG Porogen Molecular Weight and Concentration on Ultrafiltration Membrane Properties and Protein Purification Performance. J. Membr. Sci. 2021, 618, 118729. [Google Scholar] [CrossRef]
- Zuo, D.Y.; Xu, Y.Y.; Xu, W.L.; Zou, H.T. The Influence of PEG Molecular Weight on Morphologies and Properties of PVDf Asymmetric Membranes. Chin. J. Polym. Sci. (Engl. Ed.) 2008, 26, 405–414. [Google Scholar] [CrossRef]
Code | Dope | Coagulation Bath |
---|---|---|
blank | Unmodified PAN | DI water |
M-0 | Unmodified PAN | 10% NaOH solution |
M-1 | hPAN3000 | 10% NaOH solution |
M-2 | hPAN5000 | 10% NaOH solution |
M-3 | hPAN7000 | 10% NaOH solution |
Membrane | Jw (L∙m−2∙h−1) | Cycle No. | Jp (L∙m−2∙h−1) | Jr (L∙m−2∙h−1) | RFD | RFR | R |
---|---|---|---|---|---|---|---|
Blank PAN | 134.9 | 1 | 57.5 | 87.6 | 57.4% | 65.0% | 82.1% |
2 | 54.9 | 79.1 | 59.3% | 58.6% | 85.6% | ||
3 | 52.6 | 69.5 | 61.0% | 53.2% | 86.9% | ||
M-0 | 93.2 | 1 | 67.8 | 82.4 | 27.3% | 88.4% | 91.6% |
2 | 64.1 | 81.2 | 31.3% | 87.1% | 93.6% | ||
3 | 62.9 | 78.0 | 32.6% | 83.7% | 92.1% | ||
M-3 | 80.2 | 1 | 63.9 | 78.0 | 20.3% | 97.2% | 96.3% |
2 | 64.7 | 76.9 | 19.4% | 95.8% | 96.1% | ||
3 | 63.4 | 76.3 | 21.0% | 95.2% | 96.8% |
Membrane | Water Flux (L∙m−2∙h−1) | BSA Flux (L∙m−2∙h−1) | BSA Rejection | RFD | RFR | Ref | ||
---|---|---|---|---|---|---|---|---|
High | Low | High | Low | |||||
Amicon PM30 | 640–1130 | 160–180 | 120–140 | 90–95% | 75–80% | 79–88% | - | [24] |
Modified Alfa Laval membrane | 175 | 150–160 | 110–120 | 95–100% | - | 47–31% | 55–60% | [25] |
Osmonics MW | 108 (constant flux filtration) | 80–92% | 20% | - | [26] | |||
PVDF (PEG600) | 62.5–100 | 37.5 | 25 | 99% | 86.6% | 60–62.5% | 48–58% | [27] |
PVDF (PEG200–20,000) | 64–143 | - | - | 92.6% | 80.4% | - | - | [28] |
PAN (M-3) | 80.2 | 64.7 | 63.4 | 96.8% | 96.1% | 19.4–21% | 95.2–97.2% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Pan, G.; Ge, Y.; Yang, X. Preparation of a Low-Protein-Fouling and High-Protein-Retention Membrane via Novel Pre-Hydrolysis Treatment of Polyacrylonitrile (PAN). Membranes 2023, 13, 310. https://doi.org/10.3390/membranes13030310
Xu D, Pan G, Ge Y, Yang X. Preparation of a Low-Protein-Fouling and High-Protein-Retention Membrane via Novel Pre-Hydrolysis Treatment of Polyacrylonitrile (PAN). Membranes. 2023; 13(3):310. https://doi.org/10.3390/membranes13030310
Chicago/Turabian StyleXu, Dong, Guangyao Pan, Yutong Ge, and Xuan Yang. 2023. "Preparation of a Low-Protein-Fouling and High-Protein-Retention Membrane via Novel Pre-Hydrolysis Treatment of Polyacrylonitrile (PAN)" Membranes 13, no. 3: 310. https://doi.org/10.3390/membranes13030310
APA StyleXu, D., Pan, G., Ge, Y., & Yang, X. (2023). Preparation of a Low-Protein-Fouling and High-Protein-Retention Membrane via Novel Pre-Hydrolysis Treatment of Polyacrylonitrile (PAN). Membranes, 13(3), 310. https://doi.org/10.3390/membranes13030310