Quantitative Assessment of Interfacial Interactions Governing Ultrafiltration Membrane Fouling by the Mixture of Silica Nanoparticles (SiO2 NPs) and Natural Organic Matter (NOM): Effects of Solution Chemistry
Abstract
:1. Introduction
2. Materials and Methods
2.1. UF Membrane
2.2. Preparation of Model Foulants
2.3. Membrane Fouling Experiments
2.4. Analytical Methods
2.5. The xDLVO Theory
2.5.1. Surface Tension Parameters
2.5.2. Adhesion Free Energy and Cohesion Free Energy
2.5.3. Interaction Energy
3. Results and Discussion
3.1. Effects of Solution Chemistry on UF Membrane Fouling by SiO2 NP–NOM Mixture
3.2. Effects of Solution Chemistry on Physicochemical Properties of UF Membrane and SiO2 NP–NOM Mixture
3.3. Effects of Solution Chemistry on Surface Tension Parameters and Free Energy of Cohesion of UF Membrane and SiO2 NP–NOM Mixture
3.4. Interaction Energies between UF Membrane and SiO2 NP–NOM Mixture
3.5. Correlation between Fouling Potential and Interaction Energy
4. Conclusions
- (1)
- The PES UF membrane fouling by the SiO2 NP–NOM mixture increased with decreasing pH, increasing ionic strength, and increasing calcium concentration, and the most severe membrane fouling was obtained at pH = 3.0, ionic strength = 100 mM, and calcium concentration = 1.0 mM.
- (2)
- Variations of the zeta potentials of both membrane and foulants with solution conditions showed the same trends, which was due to the similar deprotonation effect of functional groups and the electrostatic shielding effect.
- (3)
- Both the PES UF membrane and the SiO2 NPs–NOM mixture exhibited stronger hydrophobicity at lower pH, higher ionic strength, and higher calcium concentration.
- (4)
- At the minimum equilibrium cut-off distance (0.158 nm), the attractive AB interaction (negative value of AB interaction energy) between clean/fouled membrane and foulant was the major fouling mechanism in both the initial adhesion and later cohesion stages, while the attractive LW and repulsive EL interactions were of less importance to the total interaction energy.
- (5)
- The change of fouling potential with solution chemistry was found to be negatively correlated with the calculated total interaction energy, indicating that the PES UF membrane fouling behavior by the SiO2 NP–NOM mixture under different solution conditions can be effectively explained and predicted using the xDLVO theory.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
SiO2 NPs | Silica nanoparticles |
NOM | Natural organic matter |
UF | Ultrafiltration |
NF | Nanofiltration |
FO | Forward osmosis |
PES | Polyethersulfone |
LW | Lifshitz–van der Waals |
EL | Electrostatic |
AB | Acid–base |
xDLVO | Extended Derjaguin–Landau–Verwey–Overbeek |
HA | Humic acid |
BSA | Bovine serum albumin |
SA | Sodium alginate |
K | Fouling potential (mg−1) |
θ | Contact angle (°) |
γLW | Surface tension parameter of LW component (mJ/m2) |
γ+ | Surface tension parameter of electron-acceptor component (mJ/m2) |
γ− | Surface tension parameter of electron-donor component (mJ/m2) |
γTOT | Total surface tension (mJ/m2) |
ΔGsls | Cohesion free energy per unit area between two surfaces (mJ/m2) |
Total interaction energy between the membrane surface and the foulants (kT) | |
LW components of the interaction energies between the membrane surface and the foulants (kT) | |
AB components of the interaction energies between the membrane surface and the foulants (kT) | |
EL components of the interaction energies between the membrane surface and the foulants (kT) |
References
- Le, M.H.; Kim, K.-J.; Jeong, S.; Jang, A. Effect of charged nano-particles on ceramic microfiltration membrane fouling. J. Ind. Eng. Chem. 2018, 72, 125–132. [Google Scholar] [CrossRef]
- Hao, L.; Xueping, C.; Danqing, S.; Fan, W.; Roser, P.; Jianming, P. Functionalized silica nanoparticles: Classification, synthetic approaches and recent advances in adsorption applications. Nanoscale 2021, 13, 15998–16016. [Google Scholar] [CrossRef]
- Jeelani, P.G.; Mulay, P.; Venkat, R.; Ramalingam, C. Multifaceted Application of Silica Nanoparticles. A Review. Silicon 2019, 12, 1337–1354. [Google Scholar] [CrossRef]
- Ale, A.; Gutierrez, M.F.; Rossi, A.S.; Bacchetta, C.; Desimone, M.F.; Cazenave, J. Ecotoxicity of silica nanoparticles in aquatic organisms: An updated review. Environ. Toxicol. Pharmacol. 2021, 87, 103689. [Google Scholar] [CrossRef]
- Wei, X.; Jiang, W.; Yu, J.; Ding, L.; Hu, J.; Jiang, G. Effects of SiO2 nanoparticles on phospholipid membrane integrity and fluidity. J. Hazard. Mater. 2015, 287, 217–224. [Google Scholar] [CrossRef]
- Canesi, L.; Ciacci, C.; Vallotto, D.; Gallo, G.; Marcomini, A.; Pojana, G. In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat. Toxicol. 2009, 96, 151–158. [Google Scholar] [CrossRef]
- Philippe, A.; Schaumann, G.E. Interactions of Dissolved Organic Matter with Natural and Engineered Inorganic Colloids: A Review. Environ. Sci. Technol. 2014, 48, 8946–8962. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpaa, M. Removal of natural organic matter (NOM) and its constituents from water by adsorption—A review. Chemosphere 2017, 166, 497–510. [Google Scholar] [CrossRef]
- Chen, W.; Yu, H.-Q. Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. Water Res. 2021, 190, 116759. [Google Scholar] [CrossRef]
- Wei, X.; Qu, X.; Ding, L.; Hu, J.; Jiang, W. Role of bovine serum albumin and humic acid in the interaction between SiO2 nanoparticles and model cell membranes. Environ. Pollut. 2016, 219, 1–8. [Google Scholar] [CrossRef]
- Peters, C.D.; Rantissi, T.; Gitis, V.; Hankins, N.P. Retention of natural organic matter by ultrafiltration and the mitigation of membrane fouling through pre-treatment, membrane enhancement, and cleaning—A review. J. Water Process Eng. 2021, 44, 102374. [Google Scholar] [CrossRef]
- Qu, F.; Yang, Z.; Gao, S.; Yu, H.; He, J.; Rong, H.; Tian, J. Impacts of Natural Organic Matter Adhesion on Irreversible Membrane Fouling during Surface Water Treatment Using Ultrafiltration. Membranes 2020, 10, 238. [Google Scholar] [CrossRef]
- Springer, F.; Laborie, S.; Guigui, C. Removal of SiO2 nanoparticles from industry wastewaters and subsurface waters by ultrafiltration: Investigation of process efficiency, deposit properties and fouling mechanism. Sep. Purif. Technol. 2013, 108, 6–14. [Google Scholar] [CrossRef]
- Tian, J.-Y.; Ernst, M.; Cui, F.; Jekel, M. Effect of particle size and concentration on the synergistic UF membrane fouling by particles and NOM fractions. J. Membr. Sci. 2013, 446, 1–9. [Google Scholar] [CrossRef]
- Schulz, M.; Soltani, A.; Zheng, X.; Ernst, M. Effect of inorganic colloidal water constituents on combined low-pressure membrane fouling with natural organic matter (NOM). J. Membr. Sci. 2016, 507, 154–164. [Google Scholar] [CrossRef]
- Wang, L.-F.; He, D.-Q.; Chen, W.; Yu, H.-Q. Probing the roles of Ca2+ and Mg2+ in humic acids-induced ultrafitltration membrane fouling using an integrated approach. Water Res. 2015, 81, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Cho, J.W.; Elimelech, M. Combined influence of natural organic matter (NOM) and colloidal particles on nanofiltration membrane fouling. J. Membr. Sci. 2005, 262, 27–41. [Google Scholar] [CrossRef]
- Arkhangelsky, E.; Wicaksana, F.; Tang, C.; Al-Rabiah, A.A.; Al-Zahrani, S.M.; Wang, R. Combined organic-inorganic fouling of forward osmosis hollow fiber membranes. Water Res. 2012, 46, 6329–6338. [Google Scholar] [CrossRef]
- Dong, B.Z.; Chen, Y.; Gao, N.Y.; Fan, J.C. Effect of pH on UF membrane fouling. Desalination 2006, 195, 201–208. [Google Scholar] [CrossRef]
- Singh, G.; Song, L. Experimental correlations of pH and ionic strength effects on the colloidal fouling potential of silica nanoparticles in crossflow ultrafiltration. J. Membr. Sci. 2007, 303, 112–118. [Google Scholar] [CrossRef]
- Brant, J.A.; Childress, A.E. Assessing short-range membrane–colloid interactions using surface energetics. J. Membr. Sci. 2002, 203, 257–273. [Google Scholar] [CrossRef]
- Wang, S.C.; Li, L.; Yu, S.L.; Dong, B.Z.; Gao, N.Y.; Wang, X.Y. A review of advances in EDCs and PhACs removal by nanofiltration: Mechanisms, impact factors and the influence of organic matter. Chem. Eng. J. 2021, 406, 126722. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, H.L.; Huang, D.M.; Gao, X.; Zhang, B.; Shen, Y.; Shi, W.X. Effect of pH on anionic polyacrylamide adhesion: New insights into membrane fouling based on XDLVO analysis. J. Mol. Liq. 2020, 320, 114463. [Google Scholar] [CrossRef]
- Lin, T.; Lu, Z.J.; Chen, W. Interaction mechanisms of humic acid combined with calcium ions on membrane fouling at different conditions in an ultrafiltration system. Desalination 2015, 357, 26–35. [Google Scholar] [CrossRef]
- Tian, J.Y.; Ernst, M.; Cui, F.; Jekel, M. Correlations of relevant membrane foulants with UF membrane fouling in different waters. Water Res. 2013, 47, 1218–1228. [Google Scholar] [CrossRef]
- Chang, H.Q.; Qu, F.S.; Liu, B.C.; Yu, H.R.; Li, K.; Shao, S.L.; Li, G.B.; Liang, H. Hydraulic irreversibility of ultrafiltration membrane fouling by humic acid: Effects of membrane properties and backwash water composition. J. Membr. Sci. 2015, 493, 723–733. [Google Scholar] [CrossRef]
- Chunyi, S.; Na, Z.; Fazhan, L.; Guoyi, K.; Lianfa, S.; Xiaoqian, L.; Shuang, L. Quantitative Analysis of Membrane Fouling Mechanisms Involved in Microfiltration of Humic Acid–Protein Mixtures at Different Solution Conditions. Water 2018, 10, 1036. [Google Scholar] [CrossRef]
- Prihandana, G.S.; Ito, H.; Nishinaka, Y.; Kanno, Y.; Miki, N. Polyethersulfone Membrane Coated With Nanoporous Parylene for Ultrafiltration. J. Microelectromech. S 2012, 21, 1288–1290. [Google Scholar] [CrossRef]
- Kim, S.; Park, N.; Lee, S.; Cho, J. Membrane characterizations for mitigation of organic fouling during desalination and wastewater reclamation. Desalination 2008, 238, 70–77. [Google Scholar] [CrossRef]
- Mahlangu, O.T.; Mamba, B.B.; Verliefde, A.R.D. Effect of multivalent cations on membrane-foulant and foulant-foulant interactions controlling fouling of nanofiltration membranes. Polym. Advan. Technol. 2020, 31, 2588–2600. [Google Scholar] [CrossRef]
- Oss, C. Acid-base interfacial interactions in aqueous media. Colloids Surf. A Physicochem. Eng. Asp 1993, 78, 1–49. [Google Scholar] [CrossRef]
- Gourley, L.; Britten, M.; Gauthier, S.F.; Pouliot, Y. Characterization of adsorptive fouling on ultrafiltration membranes by peptides mixtures using contact angle measurements. J. Membr. Sci. 1994, 97, 283–289. [Google Scholar] [CrossRef]
- Wu, H.H.; Shen, F.; Wang, J.F.; Wan, Y.H. Membrane fouling in vacuum membrane distillation for ionic liquid recycling: Interaction energy analysis with the XDLVO approach. J. Membr. Sci. 2018, 550, 436–447. [Google Scholar] [CrossRef]
- Xia, S.J.; Wan, Y.K.; Li, N.N.; Zhao, Y. Investigation of combined fouling behavior in nano-filtration process under various feed conditions. Sep. Sci. Technol. 2016, 51, 681–691. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Zhu, C.; Mei, X.; Wu, Z. Assessment of SMP fouling by foulant–membrane interaction energy analysis. J. Membr. Sci. 2013, 446, 154–163. [Google Scholar] [CrossRef]
- Sæther, H.V.; Holme, H.K.; Maurstad, G.; Smidsrød, O.; Stokke, B.T. Polyelectrolyte complex formation using alginate and chitosan. Carbohydr. Polym. 2008, 74, 813–821. [Google Scholar] [CrossRef]
- Bharti, S.; Kumar, S.M. Synergetic effects of organic and inorganic additives on improvement in hydrophilicity and performance of PVDF antifouling ultrafiltration membrane for removal of natural organic material from water. J. Appl. Polym. Sci. 2021, 138, 50568. [Google Scholar] [CrossRef]
- Kim, Y.; Elimelech, M.; Shon, H.K.; Hong, S. Combined organic and colloidal fouling in forward osmosis: Fouling reversibility and the role of applied pressure. J. Membr. Sci. 2014, 460, 206–212. [Google Scholar] [CrossRef]
- Seidel, A.; Elimelech, M. Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes: Implications for fouling control. J. Membr. Sci. 2002, 203, 245–255. [Google Scholar] [CrossRef]
- Mo, H.; Tay, K.G.; Ng, H.Y. Fouling of reverse osmosis membrane by protein (BSA): Effects of pH, calcium, magnesium, ionic strength and temperature. J. Membr. Sci. 2008, 315, 28–35. [Google Scholar] [CrossRef]
- Esfahani, A.R.; Zhang, Z.; Sip, Y.Y.L.; Zhai, L.; Sadmani, A.H.M.A. Removal of heavy metals from water using electrospun polyelectrolyte complex fiber mats. JWPE 2020, 37, 101438. [Google Scholar] [CrossRef]
- Hiroshi, Y.; Katsuki, K.; Takaharu, O.; Hiroshi, T.; Yoshimasa, W. Affinity of functional groups for membrane surfaces: Implications for physically irreversible fouling. Environ. Sci. Technol. 2008, 42, 5310–5315. [Google Scholar] [CrossRef]
- Motsa, M.M.; Mamba, B.B.; D’Haese, A.; Hoek, E.M.V.; Verliefde, A.R.D. Organic fouling in forward osmosis membranes: The role of feed solution chemistry and membrane structural properties. J. Membr. Sci. 2014, 460, 99–109. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.; Yu, Y.; Kuk, J.; Hong, S.; Lee, S.; Min, K. Role of Foulant-Membrane Interactions in Organic Fouling of RO Membranes with Respect to Membrane Properties. Sep. Sci. Technol. 2010, 45, 948–955. [Google Scholar] [CrossRef]
- Boo, C.; Lee, S.; Elimelech, M.; Meng, Z.; Hong, S. Colloidal fouling in forward osmosis: Role of reverse salt diffusion. J. Membr. Sci. 2011, 390, 277–284. [Google Scholar] [CrossRef]
- Song, Y.F.; Li, X.F.; Li, C.; Li, J.M.; Dong, Z.Q.; Zhang, M.N.; Qi, P.F.; Bai, X.S.; Jiang, K. Exploring and comparing the roles of Ca2+ and Mg2+ in small-sized natural organics-induced charged nanofiltration membrane fouling. Sep. Purif. Technol. 2020, 251, 117415. [Google Scholar] [CrossRef]
- Mahlangu, T.O.; Thwala, J.M.; Mamba, B.B.; D’Haese, A.; Verliefde, A.R.D. Factors governing combined fouling by organic and colloidal foulants in cross-flow nanofiltration. J. Membr. Sci. 2015, 491, 53–62. [Google Scholar] [CrossRef]
- Kim, J.; Park, M.J.; Park, M.; Shon, H.K.; Kim, S.H.; Kim, J.H. Influence of colloidal fouling on pressure retarded osmosis. Desalination 2016, 389, 207–214. [Google Scholar] [CrossRef]
- Taheri, A.H.; Sim, L.N.; Haur, C.T.; Akhondi, E.; Fane, A.G. The fouling potential of colloidal silica and humic acid and their mixtures. J. Membr. Sci. 2013, 433, 112–120. [Google Scholar] [CrossRef]
- Carneiro-da-Cunha, M.G.; Cerqueira, M.A.; Souza, B.W.S.; Teixeira, J.A.; Vicente, A.A. Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydr. Polym. 2011, 85, 522–528. [Google Scholar] [CrossRef]
- Enfrin, M.; Wang, J.; Merenda, A.; Dumée, L.F.; Lee, J. Mitigation of membrane fouling by nano/microplastics via surface chemistry control. J. Membr. Sci. 2021, 633, 119379. [Google Scholar] [CrossRef]
- Kühnl, W.; Piry, A.; Kaufmann, V.; Grein, T.; Ripperger, S.; Kulozik, U. Impact of colloidal interactions on the flux in cross-flow microfiltration of milk at different pH values: A surface energy approach. J. Membr. Sci. 2010, 352, 107–115. [Google Scholar] [CrossRef]
- Meng, X.R.; Tang, W.T.; Wang, L.; Wang, X.D.; Huang, D.X.; Chen, H.N.; Zhang, N. Mechanism analysis of membrane fouling behavior by humic acid using atomic force microscopy: Effect of solution pH and hydrophilicity of PVDF ultrafiltration membrane interface. J. Membr. Sci. 2015, 487, 180–188. [Google Scholar] [CrossRef]
- Tanudjaja, H.J.; Chew, J.W. Assessment of oil fouling by oil-membrane interaction energy analysis. J. Membr. Sci. 2018, 560, 21–29. [Google Scholar] [CrossRef]
- Lu, D.W.; Jia, B.H.; Xu, S.; Wang, P.P.; Song, D.; Lin, R.; Sun, Y.; Ma, J. Role of pre-coagulation in ultralow pressure membrane system for Microcystis aeruginosa-laden water treatment: Membrane fouling potential and mechanism. Sci. Total Environ. 2020, 710, 136340. [Google Scholar] [CrossRef]
- Bower, M.J.D.; Bank, T.L.; Giese, R.F.; van Oss, C.J. Nanoscale forces of interaction between glass in aqueous and non-aqueous media: A theoretical and empirical study. Colloids Surf. A 2010, 362, 90–96. [Google Scholar] [CrossRef]
- Subramani, A.; Hoek, E.M.V. Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes. J. Membr. Sci. 2008, 319, 111–125. [Google Scholar] [CrossRef]
- Redman, J.A.; Walker, S.L.; Elimelech, M. Bacterial adhesion and transport in porous media: Role of the secondary energy minimum. Environ. Sci. Technol. 2004, 38, 1777–1785. [Google Scholar] [CrossRef]
- Boerlage, S.F.E.; Kennedy, M.D.; Aniye, M.P.; Abogrean, E.; Tarawneh, Z.S.; Schippers, J.C. The MFI-UF as a water quality test and monitor. J. Membr. Sci. 2003, 211, 271–289. [Google Scholar] [CrossRef]
- Lei, W.; Rui, M.; Xudong, W.; Yongtao, L.; Xiaorong, M.; Yongzhe, Y.; Danxi, H.; Ling, F.; Ziwen, L.; Kai, J. Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes: Characterization from microforces. Environ. Sci. Technol. 2013, 47, 3708–3714. [Google Scholar] [CrossRef]
- Ma, B.; Wu, G.; Li, W.; Miao, R.; Li, X.; Wang, P. Roles of membrane—Foulant and inter/intrafoulant species interaction forces in combined fouling of an ultrafiltration membrane. Sci. Total Environ. 2019, 652, 19–26. [Google Scholar] [CrossRef] [PubMed]
Solution Chemistry | PES UF Membrane | SiO2 NP–NOM | ||||
---|---|---|---|---|---|---|
θW(°) | θG(°) | θD(°) | θW(°) | θG(°) | θD(°) | |
pH = 3 | 64.5 ± 2.1 | 67.1 ± 2.1 | 21.5 ± 1.3 | 69.8 ± 2.5 | 67.6 ± 2.6 | 13.8 ± 0.9 |
pH = 5 | 59.5 ± 1.3 | 61.8 ± 2.2 | 23.5 ± 1.8 | 64.4 ± 1.0 | 63.7 ± 1.8 | 11.7 ± 1.1 |
pH = 7 | 54.3 ± 1.4 | 55.4 ± 2.0 | 22.9 ± 2.2 | 59.5 ± 1.2 | 58.6 ± 1.5 | 10.9 ± 0.9 |
pH = 9 | 53.5 ± 2.6 | 54.3 ± 1.4 | 23.9 ± 1.6 | 53.1 ± 2.0 | 49.8 ± 1.4 | 11.5 ± 1.0 |
IS = 10 mM | 54.3 ± 1.4 | 55.4 ± 2.0 | 22.9 ± 2.2 | 59.5 ± 1.2 | 58.6 ± 1.5 | 10.9 ± 0.9 |
IS = 30 mM | 57.3 ± 1.8 | 56.5 ± 1.9 | 23.7 ± 1.6 | 62.6 ± 2.5 | 60.1 ± 1.5 | 12.5 ± 1.6 |
IS = 60 mM | 61.1 ± 1.2 | 62.2 ± 1.1 | 20.6 ± 1.9 | 73.9 ± 1.5 | 68.5 ± 2.6 | 17.9 ± 2.0 |
IS = 100 mM | 64.8 ± 1.8 | 65.8 ± 1.7 | 23.8 ± 2.2 | 78.3 ± 2.1 | 72.7 ± 1.8 | 16.4 ± 1.7 |
c(Ca2+) = 0 mM | 54.3 ± 1.4 | 55.4 ± 2.0 | 22.9 ± 2.2 | 59.5 ± 1.2 | 58.6 ± 1.5 | 10.9 ± 0.9 |
c(Ca2+) = 0.3 mM | 57.9 ± 1.5 | 60.1 ± 2.1 | 22.1 ± 1.9 | 63.4 ± 2.1 | 63.3 ± 1.7 | 14.4 ± 1.1 |
c(Ca2+) = 0.6 mM | 65.4 ± 1.3 | 64.3 ± 1.1 | 25.2 ± 2.1 | 70.8 ± 2.4 | 69.2 ± 1.9 | 18.1 ± 1.7 |
c(Ca2+) = 1.0 mM | 67.1 ± 1.7 | 66.3 ± 1.7 | 24.8 ± 1.9 | 76.8 ± 2.0 | 75.3 ± 1.9 | 16.4 ± 1.8 |
Solution Chemistry | PES UF Membrane | SiO2 NP–NOM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
γLW | γ− | γ+ | γAB | γTOT | ΔGsls | γLW | γ− | γ+ | γAB | γTOT | ΔGsls | |
pH = 3 | 40.53 | 19.11 | 0.18 | 3.73 | 44.26 | −18.31 | 49.34 | 14.09 | 0.30 | 4.14 | 53.48 | −34.43 |
pH = 5 | 40.02 | 21.27 | 0.03 | 1.48 | 41.50 | −14.03 | 49.75 | 17.98 | 0.19 | 3.72 | 53.47 | −26.31 |
pH = 7 | 40.18 | 22.80 | 0.02 | 1.22 | 41.40 | −10.97 | 49.89 | 20.50 | 0.04 | 1.73 | 51.62 | −21.59 |
pH = 9 | 39.92 | 23.01 | 0.04 | 1.86 | 41.78 | −10.35 | 49.79 | 22.32 | 0.08 | 2.72 | 52.51 | −17.60 |
IS = 10 mM | 40.18 | 22.80 | 0.02 | 1.22 | 41.40 | −10.97 | 49.89 | 20.50 | 0.04 | 1.73 | 51.62 | −21.59 |
IS = 30 mM | 39.97 | 20.24 | 0.02 | 1.40 | 41.37 | −16.28 | 49.60 | 17.64 | 0.03 | 1.56 | 51.16 | −27.84 |
IS = 60 mM | 40.75 | 19.62 | 0.03 | 1.58 | 42.33 | −17.98 | 48.37 | 10.17 | 0.17 | 2.62 | 50.99 | −44.97 |
IS = 100 mM | 39.94 | 17.99 | 0.08 | 2.40 | 42.34 | −20.86 | 48.75 | 8.13 | 0.41 | 3.64 | 52.39 | −49.48 |
c(Ca2+) = 0 mM | 40.18 | 22.80 | 0.02 | 1.22 | 41.40 | −10.97 | 49.89 | 20.50 | 0.04 | 1.73 | 51.62 | −21.59 |
c(Ca2+) = 0.3 mM | 40.38 | 21.87 | 0.01 | 1.00 | 41.38 | −21.57 | 49.21 | 19.05 | 0.17 | 3.63 | 52.84 | −23.72 |
c(Ca2+) = 0.6 mM | 39.56 | 16.44 | 0.02 | 1.02 | 40.58 | −24.79 | 48.32 | 14.12 | 0.37 | 4.55 | 52.87 | −33.37 |
c(Ca2+) = 1.0 mM | 39.67 | 15.86 | 0.05 | 1.81 | 41.48 | −25.91 | 48.75 | 11.22 | 0.91 | 6.38 | 55.13 | −38.55 |
Solution Chemistry | Membrane–Foulant | Foulant–Foulant | ||||||
---|---|---|---|---|---|---|---|---|
pH = 3 | −235.723 | −2026.298 | 100.940 | −2161.082 | −163.542 | −1306.611 | 12.182 | −1457.971 |
pH = 5 | −177.211 | −1016.404 | 123.374 | −1070.242 | −127.486 | −636.100 | 13.916 | −749.669 |
pH = 7 | −152.850 | −565.573 | 137.097 | −581.326 | −109.582 | −367.599 | 15.107 | −462.075 |
pH = 9 | −146.663 | −393.764 | 182.169 | −358.258 | −106.142 | −219.402 | 19.182 | −306.362 |
IS = 10 mM | −152.850 | −565.573 | 137.097 | −581.326 | −109.582 | −367.599 | 15.107 | −462.075 |
IS = 30 mM | −138.491 | −919.045 | 62.940 | −994.596 | −99.423 | −555.363 | 7.335 | −647.451 |
IS = 60 mM | −134.475 | −1557.187 | 35.696 | −1655.966 | −89.637 | −1124.330 | 4.157 | −1209.810 |
IS = 100 mM | −125.403 | −1751.537 | 20.601 | −1856.339 | −87.854 | −1208.955 | 2.752 | −1294.057 |
c(Ca2+) = 0 mM | −152.852 | −565.573 | 137.097 | −581.326 | −109.582 | −367.599 | 15.107 | −462.075 |
c(Ca2+) = 0.3 mM | −239.561 | −1636.386 | 119.298 | −1756.650 | −166.711 | −730.978 | 13.693 | −883.995 |
c(Ca2+) = 0.6 mM | −255.633 | −2824.642 | 90.672 | −2989.602 | −179.987 | −1506.191 | 10.002 | −1676.176 |
c(Ca2+) = 1.0 mM | −277.113 | −3511.627 | 71.365 | −3717.375 | −196.689 | −1944.243 | 8.571 | −2132.360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhang, R.; Sun, C.; Liu, Z.; Zhang, J.; Liang, S.; Wang, X. Quantitative Assessment of Interfacial Interactions Governing Ultrafiltration Membrane Fouling by the Mixture of Silica Nanoparticles (SiO2 NPs) and Natural Organic Matter (NOM): Effects of Solution Chemistry. Membranes 2023, 13, 449. https://doi.org/10.3390/membranes13040449
Sun Y, Zhang R, Sun C, Liu Z, Zhang J, Liang S, Wang X. Quantitative Assessment of Interfacial Interactions Governing Ultrafiltration Membrane Fouling by the Mixture of Silica Nanoparticles (SiO2 NPs) and Natural Organic Matter (NOM): Effects of Solution Chemistry. Membranes. 2023; 13(4):449. https://doi.org/10.3390/membranes13040449
Chicago/Turabian StyleSun, Yuqi, Runze Zhang, Chunyi Sun, Zhipeng Liu, Jian Zhang, Shuang Liang, and Xia Wang. 2023. "Quantitative Assessment of Interfacial Interactions Governing Ultrafiltration Membrane Fouling by the Mixture of Silica Nanoparticles (SiO2 NPs) and Natural Organic Matter (NOM): Effects of Solution Chemistry" Membranes 13, no. 4: 449. https://doi.org/10.3390/membranes13040449
APA StyleSun, Y., Zhang, R., Sun, C., Liu, Z., Zhang, J., Liang, S., & Wang, X. (2023). Quantitative Assessment of Interfacial Interactions Governing Ultrafiltration Membrane Fouling by the Mixture of Silica Nanoparticles (SiO2 NPs) and Natural Organic Matter (NOM): Effects of Solution Chemistry. Membranes, 13(4), 449. https://doi.org/10.3390/membranes13040449