Perfluorosulfonic Acid Membranes Modified with Polyaniline and Hydrothermally Treated for Potentiometric Sensor Arrays for the Analysis of Combination Drugs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Membrane Preparation
2.3. Preparation of Model Solutions and Pharmaceutical Solutions
2.4. Experiment and Data-Processing Procedures
3. Results and Discussion
3.1. Properties of Membranes
3.2. Cross-Sensitivity of the DP-Sensors
3.3. Characteristics of the Multisensory Systems
3.4. Application in Pharmaceutical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowen, A.C.; Carapetis, J.R.; Currie, B.J.; Fowler, V.; Chambers, H.F.; Tong, S.Y.C. Sulfamethoxazole-Trimethoprim (Cotrimoxazole) for Skin and Soft Tissue Infections Including Impetigo, Cellulitis, and Abscess. Open Forum Infect. Dis. 2017, 4, ofx232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welte, R.; Beyer, R.; Hotter, J.; Broeker, A.; Wicha, S.G.; Gasperetti, T.; Ranke, P.; Zaruba, M.-M.; Lorenz, I.; Eschertzhuber, S.; et al. Pharmacokinetics of Trimethoprim/Sulfametrole in Critically Ill Patients on Continuous Renal Replacement Therapy. J. Antimicrob. Chemother. 2020, 75, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Hirai, T.; Yamaga, R.; Ishikawa, Y.; Hanada, K.; Iwamoto, T.; Itoh, T. Effect of High-Dose Sulfamethoxazole/Trimethoprim and Glucocorticoid Use on Hyperkalemic Event: A Retrospective Observational Study. J. Infect. Chemother. 2021, 27, 1607–1613. [Google Scholar] [CrossRef] [PubMed]
- Elkady, E.F.; Tammam, M.H.; Elmaaty, A.A. HPLC-UV vs. UPLC-DAD for Estimation of Tinidazole, Benzyl Alcohol and Hydrocortisone Acetate Simultaneously with Tioconazole and Its Related Impurities in Bulk and Pharmaceutical Formulations. Anal. Chem. Lett. 2017, 7, 153–169. [Google Scholar] [CrossRef]
- Logoyda, L. Efficient Validated Method of HPLC to Determine Enalapril in Combinated Dosage Form Containing Enalapril and Bisoprolol and In Vitro Dissolution Studies. Int. J. App. Pharm. 2019, 11, 19–24. [Google Scholar] [CrossRef]
- Piponski, M.; Stoimenova, T.B.; Serafimovska, G.T.; Stefova, M. Development and Validation of Fast, Simple, Cost-Effective and Robust RP-HPLC Method for Simultaneous Determination of Lisinopril and Amlodipine in Tablets. Anal. Chem. Lett. 2019, 9, 385–402. [Google Scholar] [CrossRef]
- Mai, X.-L.; Pham, T.-V.; Han, G.-H.; Kum, S.-J.; Woo, S.-H.; Kang, J.-S.; Woo, M.H.; Na, D.-H.; Chun, I.-K.; Kim, K.H. Simultaneous Determination of Ampicillin Sodium and Sulbactam Sodium in Powder for Injection by HPLC. Anal. Sci. Technol. 2019, 32, 147–154. [Google Scholar] [CrossRef]
- Babu, N.L.A.A.; Srinivas, B.; Sreeram, V.; Rao, K.P. Development and Validation for Simultaneous Estimation of Perindopril and Indapamide by UPLC-UV in Tablet Dosage Form. Res. J. Pharm. Technol. 2020, 13, 287. [Google Scholar] [CrossRef]
- Hammouda, M.E.A.; Abu El-Enin, M.A.; El-Sherbiny, D.T.; El-Wasseef, D.R.; El-Ashry, S.M. Simultaneous Determination of Enalapril and Hydrochlorothiazide in Pharmaceutical Preparations Using Microemulsion Liquid Chromatography. J. Chromatogr. Sci. 2015, 53, 90–96. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, F.-Q.; Ge, L.; Hu, Y.-J.; Xia, Z.-N. Recent Applications of Hydrophilic Interaction Liquid Chromatography in Pharmaceutical Analysis: Liquid Chromatography. J. Sep. Sci. 2017, 40, 49–80. [Google Scholar] [CrossRef]
- Hancu, G.; Neacşu, A.; Papp, L.A.; Ciurba, A. Simultaneous Determination of Amoxicillin and Clavulanic Acid in Pharmaceutical Preparations by Capillary Zone Electrophoresis. Braz. J. Pharm. Sci. 2016, 52, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Marra, M.C.; Cunha, R.R.; Muñoz, R.A.A.; Batista, A.D.; Richter, E.M. Single-Run Capillary Electrophoresis Method for the Fast Simultaneous Determination of Amoxicillin, Clavulanate, and Potassium. J. Sep. Sci. 2017, 40, 3557–3562. [Google Scholar] [CrossRef]
- Dawood, A.G.; Habeeb, N.N.; Omer, L.S. H-Point Standard Addition Method for the Simultaneous Spectrophotometric Determination of Captopril and Hydrochlorothiazide in Pharmaceutical Formulations. Jordan J. Chem. 2021, 16, 77–85. [Google Scholar] [CrossRef]
- Eticha, T.; Kahsay, G.; Asefa, F.; Hailu, T.; Gebretsadik, H.; Gebretsadikan, T.; Thangabalan, B. Chemometric-Assisted Spectrophotometric Method for the Simultaneous Determination of Ciprofloxacin and Doxycycline Hyclate in Pharmaceutical Formulations. J. Anal. Methods Chem. 2018, 2018, 9538435. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, S.V.; Waghmare, A.D.; Nadwani, Y.S.; Mutha, A.S. Chemometrics-Assisted UV Spectrophotometric Method for Determination of Ciprofloxacin and Ornidazole in Pharmaceutical Formulation. ARC J. Pharm. Sci. 2017, 3, 19–25. [Google Scholar] [CrossRef]
- Kamal, A.H.; El-Malla, S.F. Factor Space Analysis and Dual Wavelength Spectrophotometric Methods for Simultaneous Determination of Norfloxacin and Tinidazole in Tablet. Anal. Chem. Lett. 2018, 8, 393–404. [Google Scholar] [CrossRef]
- Salamanca-Neto, C.A.R.; Hatumura, P.H.; Tarley, C.R.T.; Sartori, E.R. Electrochemical Evaluation and Simultaneous Determination of Binary Mixture of Antihypertensives Hydrochlorothiazide and Enalapril in Combined Dosage Forms Using Carbon Nanotubes Paste Electrode. Ionics 2015, 21, 1615–1622. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Khodadadian, M. Simultaneous Voltammetric Determination of Captopril and Hydrochlorothiazide on a Graphene/Ferrocene Composite Carbon Paste Electrode. Electroanalysis 2013, 25, 1263–1270. [Google Scholar] [CrossRef]
- Absalan, G.; Akhond, M.; Karimi, R.; Ramezani, A.M. Simultaneous Determination of Captopril and Hydrochlorothiazide by Using a Carbon Ionic Liquid Electrode Modified with Copper Hydroxide Nanoparticles. Microchim. Acta 2018, 185, 97. [Google Scholar] [CrossRef]
- Meenakshi, S.; Pandian, K.; Gopinath, S.C.B. Quantitative Simultaneous Determination of Pentoxifylline and Paracetamol in Drug and Biological Samples at Graphene Nanoflakes Modified Electrode. J. Taiwan Inst. Chem. Eng. 2020, 107, 15–23. [Google Scholar] [CrossRef]
- Calaça, G.N.; Pessoa, C.A.; Wohnrath, K.; Nagata, N. Simultaneous Determination of Sulfamethoxazole and Trimethoprim in Pharmaceutical Formulations by Square Wave Voltammetry. Int. J. Pharm. Pharm. Sci. 2014, 6, 438–442. [Google Scholar]
- Santos Andrade, L.; Cardozo Rocha-Filho, R.; Bezerra Cass, Q.; Fatibello-Filho, O. A Novel Multicommutation Stopped-Flow System for the Simultaneous Determination of Sulfamethoxazole and Trimethoprim by Differential Pulse Voltammetry on a Boron-Doped Diamond Electrode. Anal. Methods 2010, 2, 402. [Google Scholar] [CrossRef]
- Isildak, Ö.; Özbek, O. Application of Potentiometric Sensors in Real Samples. Crit. Rev. Anal. Chem. 2021, 51, 218–231. [Google Scholar] [CrossRef]
- Sakur, A.A.; Dabbeet, H.A.; Noureldin, I. Novel Drug Selective Sensors for Simultaneous Potentiometric Determination of Both Ciprofloxacin and Metronidazole in Pure Form and Pharmaceutical Formulations. Res. J. Pharm. Technol. 2019, 12, 3377. [Google Scholar] [CrossRef]
- Sakur, A.A.; Dabbeet, H.A.; Noureldin, I. Novel Drug Selective Polystyrene Membrane for Simultaneous Potentiometric Determination of Ciprofloxacin and Tinidazole in Pure Form and Pharmaceutical Formulations. Res. J. Pharm. Technol. 2020, 13, 5963–5971. [Google Scholar] [CrossRef]
- Nashed, D.; Noureldin, I.; Sakur, A.A. New Pencil Graphite Electrodes for Potentiometric Determination of Fexofenadine Hydrochloride and Montelukast Sodium in Their Pure, Synthetic Mixtures, and Combined Dosage Form. BMC Chem. 2020, 14, 60. [Google Scholar] [CrossRef]
- Wadie, M.; Marzouk, H.M.; Rezk, M.R.; Abdel-Moety, E.M.; Tantawy, M.A. A Sensing Platform of Molecular Imprinted Polymer-Based Polyaniline/Carbon Paste Electrodes for Simultaneous Potentiometric Determination of Alfuzosin and Solifenacin in Binary Co-Formulation and Spiked Plasma. Anal. Chim. Acta 2022, 1200, 339599. [Google Scholar] [CrossRef]
- Özbek, O.; Isildak, Ö. Potentiometric PVC Membrane Sensor for the Determination of Anti-Epileptic Drug Levetiracetam in Pharmaceutical Formulations. ChemistrySelect 2022, 7, e202103988. [Google Scholar] [CrossRef]
- Tantawy, M.A.; Elshabasy, D.A.; Youssef, N.F.; Amer, S.M. Stability Indicating Potentiometric Method for the Determination of Palonosetron HCl Using Two Different Sensors. Sci. Rep. 2022, 12, 12966. [Google Scholar] [CrossRef]
- Mikhelson, K.N.; Peshkova, M.A. Advances and Trends in Ionophore-Based Chemical Sensors. Russ. Chem. Rev. 2015, 84, 555–578. [Google Scholar] [CrossRef]
- Wang, J.; Liang, R.; Qin, W. Molecularly Imprinted Polymer-Based Potentiometric Sensors. TrAC Trends Anal. Chem. 2020, 130, 115980. [Google Scholar] [CrossRef]
- Parshina, A.; Yelnikova, A.; Titova, T.; Kolganova, T.; Yurova, P.; Stenina, I.; Bobreshova, O.; Yaroslavtsev, A. Multisensory Systems Based on Perfluorosulfonic Acid Membranes Modified with Polyaniline and PEDOT for Multicomponent Analysis of Sulfacetamide Pharmaceuticals. Polymers 2022, 14, 2545. [Google Scholar] [CrossRef] [PubMed]
- Parshina, A.; Yelnikova, A.; Safronova, E.; Kolganova, T.; Kuleshova, V.; Bobreshova, O.; Yaroslavtsev, A. Multisensory Systems Based on Perfluorosulfonic Acid Membranes Modified with Functionalized CNTs for Determination of Sulfamethoxazole and Trimethoprim in Pharmaceuticals. Membranes 2022, 12, 1091. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, R.; Blondeau, P.; Andrade, F.J. IonSens: A Wearable Potentiometric Sensor Patch for Monitoring Total Ion Content in Sweat. Electroanalysis 2018, 30, 1536–1544. [Google Scholar] [CrossRef]
- Liu, J.; Cao, Y. An Electrochemical Sensor Based on an Anti-Fouling Membrane for the Determination of Histamine in Fish Samples. Anal. Methods 2021, 13, 685–694. [Google Scholar] [CrossRef]
- Cánovas, R.; Blondeau, P.; Andrade, F.J. Modulating the Mixed Potential for Developing Biosensors: Direct Potentiometric Determination of Glucose in Whole, Undiluted Blood. Biosens. Bioelectron. 2020, 163, 112302. [Google Scholar] [CrossRef]
- Parrilla, M.; Cánovas, R.; Andrade, F.J. Enhanced Potentiometric Detection of Hydrogen Peroxide Using a Platinum Electrode Coated with Nafion. Electroanalysis 2017, 29, 223–230. [Google Scholar] [CrossRef]
- Stenina, I.A.; Yaroslavtsev, A.B. Ionic Mobility in Ion-Exchange Membranes. Membranes 2021, 11, 198. [Google Scholar] [CrossRef]
- Safronova, E.; Safronov, D.; Lysova, A.; Parshina, A.; Bobreshova, O.; Pourcelly, G.; Yaroslavtsev, A. Sensitivity of Potentiometric Sensors Based on Nafion®-Type Membranes and Effect of the Membranes Mechanical, Thermal, and Hydrothermal Treatments on the on Their Properties. Sens. Actuators B Chem. 2017, 240, 1016–1023. [Google Scholar] [CrossRef]
- Xiao, R.; Guo, J.; Nguyen, T.D. Modeling the Multiple Shape Memory Effect and Temperature Memory Effect in Amorphous Polymers. RSC Adv. 2015, 5, 416–423. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Z.; Liu, Y.; Leng, J. Shape Memory Properties of Electrospun Nafion Nanofibers. Fibers Polym. 2014, 15, 534–539. [Google Scholar] [CrossRef]
- Wang, H.; Lin, J.; Shen, Z.X. Polyaniline (PANi) Based Electrode Materials for Energy Storage and Conversion. J. Sci. Adv. Mater. Devices 2016, 1, 225–255. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.; Tao, Y.; Xu, Y.; Pan, J.; Shen, J.; Gao, C. Enhanced Monovalent Selectivity of Cation Exchange Membranes via Adjustable Charge Density on Functional Layers. J. Membr. Sci. 2020, 595, 117544. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Usefi, M.M.B.; Habibi, M.; Parvizian, F.; Van der Bruggen, B.; Ahmadi, A.; Nemati, M. Fabrication of Mixed Matrix Anion Exchange Membrane Decorated with Polyaniline Nanoparticles to Chloride and Sulfate Ions Removal from Water. Ionics 2019, 25, 6135–6145. [Google Scholar] [CrossRef]
- Loza, N.V.; Falina, I.V.; Kononenko, N.A.; Kudashova, D.S. Some Aspects of Polyaniline Template Synthesis within and on the Surface of Perfluorinated Cation Exchange Membrane. Synth. Met. 2020, 261, 116292. [Google Scholar] [CrossRef]
- Farrokhzad, H.; Darvishmanesh, S.; Genduso, G.; Van Gerven, T.; Van der Bruggen, B. Development of Bivalent Cation Selective Ion Exchange Membranes by Varying Molecular Weight of Polyaniline. Electrochim. Acta 2015, 158, 64–72. [Google Scholar] [CrossRef]
- Ben Jadi, S.; El Guerraf, A.; Kiss, A.; El Azrak, A.; Bazzaoui, E.A.; Wang, R.; Martins, J.I.; Bazzaoui, M. Analyses of Scanning Electrochemical Microscopy and Electrochemical Impedance Spectroscopy in Direct Methanol Fuel Cells: Permeability Resistance and Proton Conductivity of Polyaniline Modified Membrane. J. Solid State Electrochem. 2020, 24, 1551–1565. [Google Scholar] [CrossRef]
- Kumar, A.; Ibraheem, S.; Ali, S.; Maiyalagan, T.; Javed, M.S.; Gupta, R.K.; Saad, A.; Yasin, G. Polypyrrole and Polyaniline-Based Membranes for Fuel Cell Devices: A Review. Surf. Interfaces 2022, 29, 101738. [Google Scholar] [CrossRef]
- Stenina, I.A.; Yurova, P.A.; Titova, T.S.; Polovkova, M.A.; Korchagin, O.V.; Bogdanovskaya, V.A.; Yaroslavtsev, A.B. The Influence of Poly(3,4-ethylenedioxythiophene) Modification on the Transport Properties and Fuel Cell Performance of Nafion-117 Membranes. J. Appl. Polym. Sci. 2021, 138, 50644. [Google Scholar] [CrossRef]
- Stenina, I.A.; Il’ina, A.A.; Pinus, I.Y.; Sergeev, V.G.; Yaroslavtsev, A.B. Cation Mobility in Systems Based on High-Molecular-Weight Sulfonic Acids and Polyaniline. Russ. Chem. Bull. 2008, 57, 2261–2264. [Google Scholar] [CrossRef]
- Falina, I.; Loza, N.; Loza, S.; Titskaya, E.; Romanyuk, N. Permselectivity of Cation Exchange Membranes Modified by Polyaniline. Membranes 2021, 11, 227. [Google Scholar] [CrossRef] [PubMed]
- Abdo, N.; Easton, E.B. Nafion/Polyaniline Composite Membranes for Hydrogen Production in the Cu–Cl Thermochemical Cycle. Int. J. Hydrog. Energy 2016, 41, 7892–7903. [Google Scholar] [CrossRef]
- Do, J.-S.; Chang, Y.-H.; Tsai, M.-L. Highly Sensitive Amperometric Creatinine Biosensor Based on Creatinine Deiminase/Nafion®-Nanostructured Polyaniline Composite Sensing Film Prepared with Cyclic Voltammetry. Mater. Chem. Phys. 2018, 219, 1–12. [Google Scholar] [CrossRef]
- Yuan, Y.; Xia, J.; Zhang, F.; Wang, Z.; Liu, Q. Nafion/Polyaniline/Zeolitic Imidazolate Framework-8 Nanocomposite Sensor for the Electrochemical Determination of Dopamine. J. Electroanal. Chem. 2018, 824, 147–152. [Google Scholar] [CrossRef]
- Atta, N.F.; Ahmed, Y.M.; Galal, A. Layered-Designed Composite Sensor Based on Crown Ether/Nafion®/Polymer/Carbon Nanotubes for Determination of Norepinephrine, Paracetamol, Tyrosine and Ascorbic Acid in Biological Fluids. J. Electroanal. Chem. 2018, 828, 11–23. [Google Scholar] [CrossRef]
- Safronova, E.Y.; Stenina, I.A.; Yaroslavtsev, A.B. The Possibility of Changing the Transport Properties of Ion-Exchange Membranes by Their Treatment. Pet. Chem. 2017, 57, 299–305. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Hawkes, S. Effects of Membrane Fouling on the Nanofiltration of Pharmaceutically Active Compounds (PhACs): Mechanisms and Role of Membrane Pore Size. Sep. Purif. Technol. 2007, 57, 176–184. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Wu, H.; Guo, Z.; Cheng, C.; Zhang, C. Effect on Physical and Chemical Characteristics of Activated Carbon on Adsorption of Trimethoprim: Mechanisms Study. RSC Adv. 2015, 5, 85187–85195. [Google Scholar] [CrossRef]
- Chen, K.-L.; Liu, L.-C.; Chen, W.-R. Adsorption of Sulfamethoxazole and Sulfapyridine Antibiotics in High Organic Content Soils. Environ. Pollut. 2017, 231, 1163–1171. [Google Scholar] [CrossRef]
- Hyland, K.C.; Blaine, A.C.; Dickenson, E.R.V.; Higgins, C.P. Accumulation of Contaminants of Emerging Concern in Food Crops-Part 1: Edible Strawberries and Lettuce Grown in Reclaimed Water: Accumulation of Contaminants of Emerging Concern in Food Crops. Environ. Toxicol. Chem. 2015, 34, 2213–2221. [Google Scholar] [CrossRef]
- Parshina, A.; Kolganova, T.; Safronova, E.; Osipov, A.; Lapshina, E.; Yelnikova, A.; Bobreshova, O.; Yaroslavtsev, A. Perfluorosulfonic Acid Membranes Thermally Treated and Modified by Dopants with Proton-Acceptor Properties for Asparaginate and Potassium Ions Determination in Pharmaceuticals. Membranes 2019, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Safronova, E.; Parshina, A.; Kolganova, T.; Yelnikova, A.; Bobreshova, O.; Pourcelly, G.; Yaroslavtsev, A. Potentiometric Multisensory System Based on Perfluorosulfonic Acid Membranes and Carbon Nanotubes for Sulfacetamide Determination in Pharmaceuticals. J. Electroanal. Chem. 2020, 873, 114435. [Google Scholar] [CrossRef]
Characteristics | SMX | TMP |
---|---|---|
Chemical structure | ||
Size *, nm | 0.526/0.587/1.031 [57] | 0.703/0.750/1.228 [58] |
Dissociation constant | pKa1 = 1.7, pKa2 = 5.6 [59] | pKa = 7.12 [60] |
Log P | 0.89 [60] | 0.91 [60] |
Log DpH=7 | 0.11 [60] | 0.03 [60] |
Mole fractions at pH = 7 | 0.96 SMX− 0.04 SMX | 0.57 TMP+ 0.43 TMP |
Ingredient | m, mg (1 Tablet) | c, M (1 Tablet/1 L Solution) |
---|---|---|
Active ingredients (soluble in water) | ||
Sulfamethoxazole | 100.0 | 3.948 × 10−4 |
Trimethoprim | 20.0 | 6.889 × 10−5 |
Excipients (insoluble in water) | ||
Potato starch | 44.25 | – |
Talc powder | 3.75 | – |
Magnesium stearate | 1.25 | – |
Excipients (soluble in water) | ||
Poly(vinyl alcohol) | 0.75 | (1.5–37.5) × 10−7 |
cANI·HCl, M Preparation Method | IEC, mmol/g | Water Uptake, % in the H+ Form | Water Uptake, % in the K+ Form | |||
---|---|---|---|---|---|---|
Without Treatment | HT Treatment, 120 °C | Without Treatment | HT Treatment, 120 °C | Without Treatment | HT Treatment, 120 °C | |
- | 0.77 | 0.76 | 16.0 | 17.9 | 12.7 | 17.4 |
0.002, N1 | 0.72 | 0.73 | 20.6 | 25.1 | 14.4 | 19.6 |
0.005, N1 | 0.71 | 0.71 | 19.1 | 18.0 | 14.0 | 16.2 |
0.010, N1 | 0.63 | 0.64 | 18.2 | 17.5 | 13.2 | 16.0 |
0.005, N2 | 0.69 | 0.70 | 20.7 | 22.0 | 13.7 | 21.4 |
0.010, N2 | 0.60 | 0.63 | 19.2 | 18.2 | 13.4 | 17.4 |
Characteristic | Membrane Composition | ||
---|---|---|---|
PFSA/PANI (0.005 M, N2) | PFSA/PANI (0.005 M, N2, HT) | ||
b0 ± Δb0, mV | −75 ± 9 | −140 ± 5 | |
b1 ± Δb1, mV/pTMP | 4.4 ± 0.5 | 9.0 ± 0.3 | |
b2 ± Δb2, mV/pH | −15.6 ± 0.3 | −2.06 ± 0.14 | |
b3 ± Δb3, mV/pSMX | −16.3 ± 0.6 | −22.9 ± 0.3 | |
ε, mV | 3 | 1.5 | |
D, mV2 | 30 | 17 | |
Response time, min | <1 | ||
Working pH range | 4.59–7.15 | ||
Concentration range, M | 1.0 × 10−5–1.0 × 10−3 | ||
Stability, month | ≥12 | ||
LOD, M | SMX−/SMX | 1.4 × 10−6 | |
TMP+/TMP | 8.5 × 10−8 | ||
RSD, % (n = 4, p = 0.95) | SMX−/SMX | 8–13 | |
TMP+/TMP | 9–16 | ||
Relative error, % | SMX−/SMX | 2–11 | |
TMP+/TMP | 0.5–4 |
Membrane Composition | b0, mV | b1, mV/pSMX | b2, mV/pTMP | b3, mV/pH | t-Test, f = 8, p = 0.95 | F-Test, f1 = 5, f2 = 3, p = 0.95 | ||||
---|---|---|---|---|---|---|---|---|---|---|
t | F | t | F | t | F | t | F | |||
PFSA/PANI (0.005 M, N2) | 0.54 | 1.42 | 1.89 | 1.21 | 0.60 | 1.40 | 0.64 | 1.31 | 2.31 | 8.91 |
PFSA/PANI (0.005 M, N2, HT) | 0.74 | 1.03 | 0.45 | 1.24 | 0.81 | 1.14 | 0.34 | 1.08 |
Membrane Composition | c, M (Pharmaceutical Solution *) | c, mg (Preparation) | RSD, % (n = 5, p = 0.95) | Relative Error **, % | ||||
---|---|---|---|---|---|---|---|---|
SMX− /SMX | TMP+ /TMP | SMX | TMP | SMX | TMP | SMX | TMP | |
PFSA/PANI (0.005 M, N2) | (3.8 ± 0.2)·10−4 | (6.6 ± 0.4) × 10−5 | 96 ± 5 | 19.0 ± 1.2 | 5 | 6 | 4 | 5 |
PFSA/PANI (0.005 M, N2, HT) |
c, M (Pharmaceutical Solution *) | c, mg (Preparation) | RSD, % (n = 6, p = 0.95) | Relative Error **, % | ||||
---|---|---|---|---|---|---|---|
SMX− | TMP | SMX | TMP | SMX | TMP | SMX | TMP |
(3.87 ± 0.07)·10−5 | (6.71 ± 0.12) × 10−6 | 98.1 ± 1.7 | 19.5 ± 0.3 | 2 | 2 | 1.9 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parshina, A.; Yelnikova, A.; Kolganova, T.; Titova, T.; Yurova, P.; Stenina, I.; Bobreshova, O.; Yaroslavtsev, A. Perfluorosulfonic Acid Membranes Modified with Polyaniline and Hydrothermally Treated for Potentiometric Sensor Arrays for the Analysis of Combination Drugs. Membranes 2023, 13, 311. https://doi.org/10.3390/membranes13030311
Parshina A, Yelnikova A, Kolganova T, Titova T, Yurova P, Stenina I, Bobreshova O, Yaroslavtsev A. Perfluorosulfonic Acid Membranes Modified with Polyaniline and Hydrothermally Treated for Potentiometric Sensor Arrays for the Analysis of Combination Drugs. Membranes. 2023; 13(3):311. https://doi.org/10.3390/membranes13030311
Chicago/Turabian StyleParshina, Anna, Anastasia Yelnikova, Tatyana Kolganova, Tatyana Titova, Polina Yurova, Irina Stenina, Olga Bobreshova, and Andrey Yaroslavtsev. 2023. "Perfluorosulfonic Acid Membranes Modified with Polyaniline and Hydrothermally Treated for Potentiometric Sensor Arrays for the Analysis of Combination Drugs" Membranes 13, no. 3: 311. https://doi.org/10.3390/membranes13030311
APA StyleParshina, A., Yelnikova, A., Kolganova, T., Titova, T., Yurova, P., Stenina, I., Bobreshova, O., & Yaroslavtsev, A. (2023). Perfluorosulfonic Acid Membranes Modified with Polyaniline and Hydrothermally Treated for Potentiometric Sensor Arrays for the Analysis of Combination Drugs. Membranes, 13(3), 311. https://doi.org/10.3390/membranes13030311