3-Amino-Substituted Analogues of Fusidic Acid as Membrane-Active Antibacterial Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Synthesis of Amino Derivatives (3, 4, 11–22)
2.3. General Procedures for the Preparation of Amino Derivatives (5–10)
2.4. Antimicrobial Study
2.4.1. Antibacterial Assay
2.4.2. Antifungal Assay
2.5. Cytotoxicity Assay
2.6. Hemolysis Assay
2.7. Preparation and Quality Control of Antibiotic, Cytotoxic, and Hemolytic Standards
2.8. Membrane Assay
2.9. Molecular Docking Studies
3. Results
3.1. Chemistry
3.2. Biological Evaluation
3.2.1. In Vitro Antibacterial and Antifungal Activity
3.2.2. Membrane Activity Assay
3.3. Docking Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/Antimicrob.ial-resistance (accessed on 31 October 2021).
- Iskandar, K.; Murugaiyan, J.; Hammoudi Halat, D.; Hage, S.E.; Chibabhai, V.; Adukkadukkam, S.; Roques, C.; Molinier, L.; Salameh, P.; Van Dongen, M. Antibiotic Discovery and Resistance: The Chase and the Race. Antibiotics 2022, 11, 182. [Google Scholar] [CrossRef]
- Murugaiyan, J.; Kumar, P.A.; Rao, G.S.; Iskandar, K.; Hawser, S.; Hays, J.P.; Mohsen, Y.; Adukkadukkam, S.; Awuah, W.A.; Jose, R.A.M.; et al. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics 2022, 11, 200. [Google Scholar] [CrossRef]
- Mohan, S.; Ajay Krishna, M.S.; Chandramouli, M.; Keri, R.S.; Patil, S.A.; Ningaiah, S.; Somappa, S.B. Antibacterial natural products from microbial and fungal sources: A decade of advances. Mol. Divers. 2023, 27, 517–541. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Sarethy, I.P.; Jeevanandam, J.; Danquah, M. Emerging strategies for microbial screening of novel chemotherapeutics. J. Mol. Struct. 2022, 1255, 132419. [Google Scholar] [CrossRef]
- Douafer, H.; Andrieu, V.; Phanstiel, O.; Brunel, J.M. Antibiotic Adjuvants: Make Antibiotics Great Again! J. Med. Chem. 2019, 62, 8665–8681. [Google Scholar] [CrossRef]
- Fatima, H.; Goel, N.; Sinha, R.; Khare, S.K. Recent strategies for inhibiting multidrug-resistant and β-lactamase producing bacteria: A review. Colloids Surf. B. Biointerfaces 2021, 205, 111901. [Google Scholar] [CrossRef]
- Bakheit, A.H.H.; Al-Hadiya, B.M.H.; Abd-Elgalil, A.A. Azithromycin. Profiles Drug Subst. Excip. Relat. Methodol. 2014, 39, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Brunel, J.M.; Rodriguez-Villalobos, H.; Bolla, J.M.; Van Bambeke, F. The polyamino-isoprenyl potentiator NV716 revives disused antibiotics against Gram-negative bacteria in broth, infected monocytes, or biofilms, by disturbing the barrier effect of their outer membrane. Eur. J. Med. Chem. 2022, 238, 114496. [Google Scholar] [CrossRef] [PubMed]
- Curbete, M.M.; Nunes Salgado, H.R. A critical review of the properties of fusidic acid and analytical methods for its determination. Crit. Rev. Anal. Chem. 2016, 46, 352–360. [Google Scholar] [CrossRef]
- Chen, H.J.; Hung, W.C.; Tseng, S.P.; Tsai, J.C.; Hsueh, P.R.; Teng, L.J. Fusidic acid resistance determinants in Staphylococcus aureus clinical isolates. Antimicrob. Agents Chemother. 2010, 54, 4985–4991. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P. Fusidic Acid: A Bacterial Elongation Factor Inhibitor for the Oral Treatment of Acute and Chronic Staphylococcal Infections. Cold Spring Harb. Perspect. Med. 2016, 6, a025437. [Google Scholar] [CrossRef]
- Rodnina, M.V.; Peske, F.; Peng, B.-Z.; Belardinelli, R.; Wintermeyer, W. Converting GTP hydrolysis into motion: Versatile translational elongation factor G. Biol. Chem. 2019, 401, 131–142. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziwornu, G.A.; Kamunya, S.; Ntsabo, T.; Chibale, K. Novel antimycobacterial C-21 amide derivatives of the antibiotic fusidic acid: Synthesis, pharmacological evaluation and rationalization of media-dependent activity using molecular docking studies in the binding site of human serum albumin. Med. Chem. Comm. 2019, 10, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Ren, Q.; Wang, B.; Ji, W.; Ni, J.; Feng, Y.; Bi, Y.; Tian, J.; Wang, H. Discovery and synthesis of 3- and 21-substituted fusidic acid derivatives as reversal agents of P-glycoprotein-mediated multidrug resistance. Eur. J. Med. Chem. 2019, 182, 111668. [Google Scholar] [CrossRef]
- Ni, J.; Guo, M.; Cao, Y.; Lei, L.; Liu, K.; Wang, B.; Lu, F.; Zhai, R.; Gao, X.; Yan, C.; et al. Discovery, synthesis of novel fusidic acid derivatives possessed amino-terminal groups at the 3-hydroxyl position with anticancer activity. Eur. J. Med. Chem. 2019, 162, 122–131. [Google Scholar] [CrossRef]
- Espinoza-Moraga, M.; Singh, K.; Njoroge, M.; Kaur, G.; Okombo, J.; De Kock, C.; Smith, P.J.; Wittlin, S.; Chibale, K. Synthesis and biological characterisation of ester and amide derivatives of fusidic acid as antiplasmodial agents. Bioorg. Med. Chem. Lett. 2017, 27, 658–661. [Google Scholar] [CrossRef] [Green Version]
- Salimova, E.V.; Mamaev, A.G.; Tret’yakova, E.V.; Kukovinets, O.S.; Mavzyutov, A.R.; Shvets, K.Y.; Parfenova, L.V. Synthesis and biological activity of cyanoethyl derivatives of fusidic acid. Russ. J. Org. Chem. 2018, 54, 1411–1418. [Google Scholar] [CrossRef]
- Salimova, E.V.; Tretyakova, E.V.; Parfenova, L.V. Synthesis and cytotoxic activity of 3-aminosubstituted fusidane triterpenoids. Med. Chem. Res. 2019, 28, 2171–2183. [Google Scholar] [CrossRef]
- Salimova, E.V.; Magafurova, A.A.; Tretyakova, E.V.; Kukovinets, O.S.; Parfenova, L.V. Indole derivatives of fusidane triterpenoids: Synthesis and the antibacterial activity. Chem. Heterocycl. Comp. 2020, 56, 800–804. [Google Scholar] [CrossRef]
- Salimova, E.V.; Parfenova, L.V. Synthesis and Biological Activity of Oximes, Amines, and Lactams of Fusidane Triterpenoids. Chem. Sel. 2021, 6, 8848–8854. [Google Scholar] [CrossRef]
- Salimova, E.V.; Mamaev, A.G.; Tretyakova, E.V.; Kukovinets, O.S.; Parfenova, L.V. Reductive amination of fusidane triterpenoid ketones. Mediterr. J. Chem. 2018, 7, 198–203. [Google Scholar] [CrossRef]
- Blaskovich, M.A.; Zuegg, J.; Elliott, A.G.; Cooper, M.A. Helping Chemists Discover New Antibiotics. ACS Infect. Dis. 2015, 1, 285–287. [Google Scholar] [CrossRef]
- Montal, M.; Muller, P. Formation of bimolecular membranes from lipid monolayers and study of their electrical properties. Proc. Nat. Acad. Sci. USA 1972, 65, 3561–3566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, O.S.; Finkelstein, A.; Katz, I.; Cass, A. Effect of phloretin on the permeability of thin lipid membranes. J. Gen. Physiol. 1976, 67, 749–771. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Gao, Y.-G.; Selmer, M.; Dunham, C.M.; Weixlbaumer, A.; Kelley, A.C.; Ramakrishnan, V. The Structure of the Ribosome with Elongation Factor G Trapped in the Posttranslocational State. Science 2009, 326, 694–698. [Google Scholar] [CrossRef] [Green Version]
- The Cambridge Crystallographic Data Centre. Available online: https://www.ccdc.cam.ac.uk (accessed on 6 June 2022).
- Hendlich, M.; Rippmann, F.; Barnickel, G. LIGSITE: Automatic and efficient detection of potential small molecule-binding sites in proteins. J. Mol. Graph. Model. 1997, 15, 359–363. [Google Scholar] [CrossRef]
- Henrich, S.; Salo-Ahen, O.M.H.; Huang, B.; Rippmann, F.F.; Cruciani, G.; Wade, R.C. Computational approaches to identifying and characterizing protein binding sites for ligand design. J. Mol. Recognit. 2010, 23, 209–219. [Google Scholar] [CrossRef]
- Korb, O.; Stutzle, T.; Exner, T.E. Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS. J. Chem. Inf. Model. 2009, 49, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Loncle, C.; Salmi, C.; Letourneux, Y.; Brunel, J.M. Synthesis of new 7-aminosterol squalamine analogues with high antimicrobial activities through a stereoselective titanium reductive amination reaction. Tetrahedron 2007, 63, 12968–12974. [Google Scholar] [CrossRef]
- Cao, Y.; Ni, J.; Ji, W.; Shang, K.; Liang, K.; Lu, J.; Bi, Y.; Luo, X. Synthesis, antifungal activity and potential mechanism of fusidic acid derivatives possessing amino-terminal groups. Future Med. Chem. 2020, 12, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Rawat, D.S.; Upreti, H.B.; Das, S.K. Lipid composition of Cryptococcus neoformans. Microbiologica 1984, 7, 299–307. [Google Scholar] [PubMed]
- Oliveira, D.L.; Nimrichter, L.; Miranda, K.; Frases, S.; Faull, K.F.; Casadevall, A.; Rodrigues, M.L. Cryptococcus neoformans cryoultramicrotomy and vesicle fractionation reveals an intimate association between membrane lipids and glucuronoxylomannan. Fungal Genet. Biol. 2009, 46, 956–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longo, L.V.G.; Nakayasu, E.S.; Pires, J.H.S.; Gazos-Lopes, F.; Vallejo, M.C.; Sobreira, T.J.P.; Almeida, I.C.; Puccia, R. Characterization of Lipids and Proteins Associated to the Cell Wall of the Acapsular Mutant Cryptococcus neoformans Cap 67. J. Eukaryot. Microbiol. 2015, 62, 591–604. [Google Scholar] [CrossRef] [Green Version]
- Sohlenkamp, C.; Geiger, O. Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiol. Rev. 2016, 40, 133–159. [Google Scholar] [CrossRef] [Green Version]
- Parsons, J.B.; Rock, C.O. Bacterial Lipids: Metabolism and Membrane Homeostasis. Prog. Lipid. Res. 2013, 52, 249–276. [Google Scholar] [CrossRef] [Green Version]
- Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018, 19, 281–296. [Google Scholar] [CrossRef]
- Wallace, H.M.; Fraser, A.V.; Hughes, A. A perspective of polyamine metabolism. Biochem. J. 2003, 376, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kusano, T.; Berberich, T.; Tateda, C.; Takahashi, Y. Polyamines: Essential factors for growth and survival. Planta 2008, 228, 367–381. [Google Scholar] [CrossRef]
- Medina, M.Á.; Urdiales, J.L.; Rodríguez-Caso, C.; Ramírez, F.J.; Sánchez-Jiménez, F. Biogenic amines and polyamines: Similar biochemistry for different physiological missions and biomedical applications. Crit. Rev. Biochem. Mol. Biol. 2003, 38, 23–59. [Google Scholar] [CrossRef]
- Gawrisch, K.; Ruston, D.; Zimmerberg, J.; Parsegian, V.A.; Rand, R.P.; Fuller, N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys. J. 1992, 61, 1213–1223. [Google Scholar] [CrossRef] [Green Version]
- Ermakov, Y.A.; Nesterenko, A.M. Boundary potential of lipid bilayers: Methods and interpretations. J. Phys. Conf. Ser. 2017, 780, 012002. [Google Scholar] [CrossRef] [Green Version]
- Hansson, S.; Singh, R.; Gudkov, A.T.; Liljas, A.; Logan, D.T. Structural Insights into Fusidic Acid Resistance and Sensitivity in EF-G. J. Mol. Biol. 2005, 348, 939–949. [Google Scholar] [CrossRef]
- Collignon, P.; Turnidge, J. Fusidic acid in vitro activity. Int. J. Antimicrob. Agents 1999, 12, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Turnidge, J. Fusidic acid pharmacology, pharmacokinetics and pharmacodynamics. Int. J. Antimicrob. Agents 1999, 12, 23–34. [Google Scholar] [CrossRef]
- Petrosillo, N.; Granata, G.; Cataldo, M.A. Novel antimicrobials for the treatment of clostridium difficile infection. Front. Med. 2018, 5, 96. [Google Scholar] [CrossRef]
- Lawrence, S.A. Amines: Synthesis, Properties and Applications; Cambridge University Press: Cambridge, UK, 2004; p. 371. ISBN 0-521-78284-8. [Google Scholar]
- Duvold, T. Blanched Polyamine Steroid Derivatives. U.S. Patent 20050256093A1, 10 October 2005. [Google Scholar]
- Duvold, T. Novel Fusidic Acid Derivatives. Patent WO 02/077007A2, 20 March 2002. [Google Scholar]
- Afanasyev, O.I.; Kuchuk, E.; Usanov, D.L.; Chusov, D. Reductive Amination in the Synthesis of Pharmaceuticals. Chem. Rev. 2019, 119, 11857–11911. [Google Scholar] [CrossRef]
- Miriyala, B.; Bhattacharyya, S.; Williamson, J.S. Chemoselective reductive alkylation of ammonia with carbonyl compounds: Synthesis of primary and symmetrical secondary amines. Tetrahedron 2004, 60, 1463–1471. [Google Scholar] [CrossRef]
- Tanaka, N.; Kinoshita, T.; Masukawa, H. Mechanism of protein synthesis inhibition by fusidic acid and related antibiotics. Biochem. Bio. Res. Commun. 1968, 30, 278–283. [Google Scholar] [CrossRef]
- Bodley, J.W.; Zieve, F.J.; Lin, L.; Zieve, S.T. Formation of the ribosome-G factor-GDP complex in the presence of fusidic acid. Biochem. Bio. Res. Commun. 1969, 37, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Tu, B.; Zhang, Z.; Li, J.; Yan, Z.; Su, K.; Deng, D.; Sun, Y.; Wang, X.; Zhang, B.; et al. Ligand and structure-based approaches for the exploration of structure–activity relationships of fusidic acid derivatives as antibacterial agents. Front. Chem. 2023, 10, 1094841. [Google Scholar] [CrossRef]
- Lu, J.; Ni, J.; Wang, J.; Liu, Z.; Shang, K.; Bi, Y. Integration of multiscale molecular modeling approaches with the design and discovery of fusidic acid derivatives. Future Med. Chem. 2019, 11, 1427–1442. [Google Scholar] [CrossRef]
- Zhang, N.; Ma, S. Recent Development of Membrane-active Molecules as Antibacterial Agents. Eur. J. Med. Chem. 2019, 184, 111743–111755. [Google Scholar] [CrossRef]
- Blanchet, M.; Borselli, D.; Brunel, J.M. Polyamine derivatives: A revival of an old neglected scaffold to fight resistant Gram-negative bacteria? Future Med. Chem. 2016, 8, 963–973. [Google Scholar] [CrossRef]
- Kwon, D.H.; Lu, C.D. Polyamines Increase Antibiotic Susceptibility in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2006, 50, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Lavigne, J.P.; Brunel, J.M.; Chevalier, J.; Pagès, J.M. Squalamine, an original chemosensitizer to combat antibioticresistant Gram-negative bacteria. J. Antimicrob. Chemother. 2010, 65, 799–807. [Google Scholar] [CrossRef]
- Borselli, D.; Blanchet, M.; Bolla, J.M.; Muth, A.; Skruber, K.; Phanstiel, O., IV; Brunel, J.M. Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gram-Negative Bacteria. Chem. Bio. Chem. 2017, 18, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Pieri, C.; Borselli, D.; Di Giorgio, C.; De Meo, M.; Bolla, J.M.; Vidal, N.; Combes, S.; Brunel, J.M. New Ianthelliformisamine Derivatives as Antibiotic Enhancers against Resistant Gram-Negative Bacteria. J. Med. Chem. 2014, 57, 4263–4272. [Google Scholar] [CrossRef] [PubMed]
- Cadelis, M.M.; Pike, E.I.W.; Kang, W.; Wu, Z.; Bourguet-Kondracki, M.L.; Blanchet, M.; Vidal, N.; Brunel, J.M.; Copp, B.R. Exploration of the antibiotic potentiating activity of indolglyoxylpolyamines. Eur. J. Med. Chem. 2019, 183, 111708. [Google Scholar] [CrossRef] [PubMed]
- Lieutaud, C.A.; Pieri, C.; Bolla, J.M.; Brunel, J.M. New Polyaminoisoprenyl Antibiotics Enhancers against Two Multidrug-Resistant Gram-Negative Bacteria from Enterobacter and Salmonella Species. J. Med. Chem. 2020, 63, 10496–10508. [Google Scholar] [CrossRef] [PubMed]
- Troudi, A.; Fethi, M.; El Asli, M.S.; Bolla, J.M.; Klibi, N.; Brunel, J.M. Efficiency of a Tetracycline-Adjuvant Combination. Against Multidrug Resistant Pseudomonas aeruginosa Tunisian Clinical Isolates. Antibiotics 2020, 9, 919. [Google Scholar] [CrossRef] [PubMed]
- Troïa, T.; Siad, J.; Di Giorgio, C.; Brunel, J.M. Design and synthesis of new polyamine quinoline antibiotic enhancers to fight resistant gram-negative P. aeruginosa bacteria. Eur. J. Med. Chem. Rep. 2022, 5, 100054. [Google Scholar] [CrossRef]
Compound | Antibacterial Activity | Cytotoxic Activity | Hemolytic Activity | |||
---|---|---|---|---|---|---|
Staphylococcus aureus | HEK293 | |||||
MIC *, µg/mL | Dmax **, % | CC50 ***, µg/mL | Dmax, % | HC50 *4, µg/mL | Dmax, % | |
1 | 8.0 8.0 | 98.9 99.0 | >32 >32 | 26.9 38.8 | >32 >32 | 7.3 10.6 |
3 | ≤0.25 ≤0.25 | 99.0 99.7 | >32 >32 | 42.1 27.9 | >32 >32 | 2.2 1.4 |
4 | ≤0.25 ≤0.25 | 100.5 98.6 | 24 >32 | 94.8 96.8 | >32 >32 | 3.9 3.9 |
7 | 8.0 8.0 | 97.6 105.7 | >32 >32 | 32.9 58.5 | >32 >32 | 2.3 2.6 |
9 | 8.0 8.0 | 101.1 99.5 | >32 >32 | 20.9 19.3 | >32 >32 | 3.7 2.3 |
14 | 32 32 | 95.4 98.1 | 26.0 23.8 | 89.4 88.0 | >32 >32 | 3.4 3.6 |
Fusidic acid | ≤0.25 ≤0.25 | 97.7 99.2 | >32 >32 | 25.1 41.1 | >32 >32 | 10.0 9.7 |
Vancomycin | 1 | 100 | - | - | - | - |
Tamoxifen | - | - | 9 | 50 | - | - |
Melittin | - | - | - | - | 8.5 | 50 |
Compound | Antibacterial Activity | Antifungal Activity | Cytotoxic Activity | Hemolytic Activity | ||||
---|---|---|---|---|---|---|---|---|
Staphylococcus aureus | Cryptococcus neoformans | HEK293 | ||||||
MIC, µg/ml | Dmax, % | MIC, µg/ml | Dmax, % | CC50, µg/ml | Dmax, % | HC50, µg/ml | Dmax, % | |
12 | 32 32 | 87.6 92.2 | 16 16 | 110.0 113.5 | 7.77 13.2 | 98.6 98.2 | >32 >32 | 34.8 27.8 |
18 | 16 16 | 100.3 98.1 | 32 32 | 73.4 73.6 | 17.8 17.5 | 94.6 96.5 | >32 >32 | 17.0 8.1 |
Fusidic acid | ≤0.25 ≤0.25 | 97.7 99.2 | >32 >32 | −6.3 −12.0 | >32 >32 | 25.1 41.1 | >32 >32 | 10.0 9.7 |
Vancomycin | 1 | 100 | - | - | - | - | ||
Fluconazole | - | - | 8 | 100 | - | - | - | - |
Tamoxifen | - | - | - | - | 9 | 50 | - | - |
Melittin | - | - | - | - | - | - | 8.5 | 50 |
Comp. | Antibacterial Activity | Antifungal Activity | Cytotoxic Activity | Hemolytic Activity | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S. aureus | E. coli | P. aeruginosa | A. baumannii | C. albicans | C. neoformans | HEK293 | ||||||||||
MIC, µg/mL | Dmax, % | MIC, µg/mL | Dmax, % | MIC, µg/mL | Dmax, % | MIC, µg/mL | Dmax, % | MIC, µg/mL | Dmax, % | MIC, µg/mL | Dmax, % | CC50, µg/mL | Dmax, % | HC50, µg/mL | Dmax, % | |
19 | 32 32 | 104.8 104.5 | >32 >32 | 8.4 14.2 | >32 >32 | 26.7 35.8 | >32 >32 | 26.4 25.6 | >32 >32 | 6.5 11.8 | 8.0 8.0 | 110.5 109.3 | >32 >32 | 29.9 16.7 | >32 >32 | 5.5 5.3 |
20 | 4.0 8.0 | 102.5 99.2 | 32 32 | 95.2 95.3 | >32 >32 | 4.1 8.9 | 32 32 | 97.7 88.3 | 32 32 | 100.2 100.9 | 2.0 2.0 | 84.0 85.7 | 15.4 14.9 | 100.4 99.6 | 27.1 27.8 | 61.8 60.5 |
21 | 4.0 4.0 | 101.7 98.6 | 32 32 | 97.2 97.5 | 32 32 | 97.0 98.0 | 32 32 | 100.2 98.9 | 32 32 | 100.6 101.0 | 2.0 2.0 | 81.0 84.3 | 24.2 >32 | 80.2 95.9 | >32 >32 | 8.7 6.4 |
22 | 2.0 2.0 | 102.9 98.6 | 32 32 | 95.1 96.1 | 32 32 | 97.2 97.3 | 32 32 | 100.3 99.6 | 32 32 | 100.8 101.5 | 1.0 2.0 | 86.8 87.4 | 18.8 18.1 | 98.6 99.2 | >32 >32 | 15.1 11.3 |
Fusidic acid | ≤0.25 ≤0.25 | 97.7 99.2 | >32 >32 | 10.71 15.8 | >32 >32 | 24.0 24.6 | >32 >32 | 26.8 35.6 | >32 >32 | 2.5 6.1 | >32 >32 | −6.3 −12.0 | >32 >32 | 25.1 41.1 | >32 >32 | 10.0 9.7 |
Vancomycin | 1 | 100 | ||||||||||||||
Colistin | - | - | 0.125 | 100 | 0.25 | 100 | 0.25 | 100 | - | - | - | - | - | - | - | - |
Fluconazole | - | - | - | - | - | - | - | - | 0.125 | 100 | 8 | 100 | - | - | - | - |
Tamoxifen | - | - | - | - | - | - | - | - | - | - | - | - | 9 | 50 | - | - |
Melittin | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 8.5 | 50 |
DPhPC | DPhPG | DOPC | DOPG | |||||
---|---|---|---|---|---|---|---|---|
Comp. * | Cbr, μg/mL | −Δφb(max), mV | Cbr, μg/mL | −Δφb(max), mV | IFmax, % | τ, min | IFmax, % | τ, min |
4 | 225 ± 15 | 49 ± 7 | 163 ± 11 | 21 ± 5 | 7 ± 3 | – | 3 ± 2 | – |
20 | 275 ± 25 | 29 ± 7 | 190 ± 13 | 11 ± 4 | 88 ± 3 | 0.5 ± 0.2 | 87 ± 4 | 1.0 ± 0.1 |
22 | 250 ± 11 | 40 ± 8 | 135 ± 10 | 23 ± 8 | 95 ± 2 | 0.7 ± 0.2 | 83 ± 3 | 9.8 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salimova, E.V.; Mozgovoj, O.S.; Efimova, S.S.; Ostroumova, O.S.; Parfenova, L.V. 3-Amino-Substituted Analogues of Fusidic Acid as Membrane-Active Antibacterial Compounds. Membranes 2023, 13, 309. https://doi.org/10.3390/membranes13030309
Salimova EV, Mozgovoj OS, Efimova SS, Ostroumova OS, Parfenova LV. 3-Amino-Substituted Analogues of Fusidic Acid as Membrane-Active Antibacterial Compounds. Membranes. 2023; 13(3):309. https://doi.org/10.3390/membranes13030309
Chicago/Turabian StyleSalimova, Elena V., Oleg S. Mozgovoj, Svetlana S. Efimova, Olga S. Ostroumova, and Lyudmila V. Parfenova. 2023. "3-Amino-Substituted Analogues of Fusidic Acid as Membrane-Active Antibacterial Compounds" Membranes 13, no. 3: 309. https://doi.org/10.3390/membranes13030309
APA StyleSalimova, E. V., Mozgovoj, O. S., Efimova, S. S., Ostroumova, O. S., & Parfenova, L. V. (2023). 3-Amino-Substituted Analogues of Fusidic Acid as Membrane-Active Antibacterial Compounds. Membranes, 13(3), 309. https://doi.org/10.3390/membranes13030309