Polydimethylsiloxane/Magnesium Oxide Nanosheet Mixed Matrix Membrane for CO2 Separation Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Fabrication
2.3. Synthesis of Magnesium Oxide Nanosheet
2.4. Mixed Matrix Membrane Fabrication
2.5. Membrane Characterization
2.6. Gas Separation Performance
3. Results and Discussions
3.1. Characterization of MgO Nanosheet Filler
3.2. Morphology of PDMS and PDMS/MgO Membrane
3.3. FTIR Analysis
3.4. Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)
3.5. Gas Separation Performance
3.5.1. Effect of MgO Nanosheet Loading
3.5.2. Effect of Variable Pressure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEA Global Energy Review. 2021. Available online: https://www.iea.org/reports/global-energy-review-2021 (accessed on 8 July 2022).
- Le Quéré, C.; Peters, G.P.; Friedlingstein, P.; Andrew, R.M.; Canadell, J.G.; Davis, S.J.; Jackson, R.B.; Jones, M.W. Fossil CO2 Emissions in the Post-COVID-19 Era. Nat. Clim. Chang. 2021, 11, 197–199. [Google Scholar] [CrossRef]
- Mustafa, J.; Farhan, M.; Hussain, M. CO2 Separation from Flue Gases Using Different Types of Membranes. J. Membr. Sci. Technol. 2016, 6, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Dharupaneedi, S.P.; Nataraj, S.K.; Nadagouda, M.; Reddy, K.R.; Shukla, S.S.; Aminabhavi, T.M. Membrane-Based Separation of Potential Emerging Pollutants. Sep. Purif. Technol. 2019, 210, 850–866. [Google Scholar] [CrossRef]
- Farnam, M.; Mukhtar, H.; Shariff, A.M. A Review on Glassy Polymeric Membranes for Gas Separation. Appl. Mech. Mater. 2014, 625, 701–703. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of Separation Factor versus Permeability for Polymeric Membranes. J. Memb. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
- Robeson, L.M. The Upper Bound Revisited. J. Memb. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Ghanem, B.S.; Hashem, M.; Harris, K.D.M.; Msayib, K.J.; Xu, M.; Budd, P.M.; Chaukura, N.; Book, D.; Tedds, S.; Walton, A.; et al. Triptycene-Based Polymers of Intrinsic Microporosity: Organic Materials That Can Be Tailored for Gas Adsorption. Macromolecules 2010, 43, 5287–5294. [Google Scholar] [CrossRef]
- AlQahtani, M.S.; Mezghani, K. Thermally Rearranged Polypyrrolone Membranes for High-Pressure Natural Gas Separation Applications. J. Nat. Gas Sci. Eng. 2018, 51, 262–270. [Google Scholar] [CrossRef]
- Lee, W.H.; Seong, J.G.; Hu, X.; Lee, Y.M. Recent Progress in Microporous Polymers from Thermally Rearranged Polymers and Polymers of Intrinsic Microporosity for Membrane Gas Separation: Pushing Performance Limits and Revisiting Trade-off Lines. J. Polym. Sci. 2020, 58, 2450–2466. [Google Scholar] [CrossRef]
- Yong, W.F.; Zhang, H. Recent Advances in Polymer Blend Membranes for Gas Separation and Pervaporation. Prog. Mater. Sci. 2021, 116, 100713. [Google Scholar] [CrossRef]
- Jusoh, N.; Yeong, Y.F.; Chew, T.L.; Lau, K.K.; Shariff, A.M. Current Development and Challenges of Mixed Matrix Membranes for CO2/CH4 Separation. Sep. Purif. Rev. 2016, 45, 321–344. [Google Scholar] [CrossRef]
- Liu, M.; Nothling, M.D.; Zhang, S.; Fu, Q.; Qiao, G.G. Thin Film Composite Membranes for Postcombustion Carbon Capture: Polymers and Beyond. Prog. Polym. Sci. 2022, 126, 101504. [Google Scholar] [CrossRef]
- Tantekin-Ersolmaz, Ş.B.; Atalay-Oral, Ç.; Tatlier, M.; Erdem-Şenatalar, A.; Schoeman, B.; Sterte, J. Effect of Zeolite Particle Size on the Performance of Polymer-Zeolite Mixed Matrix Membranes. J. Memb. Sci. 2000, 175, 285–288. [Google Scholar] [CrossRef]
- Madaeni, S.S.; Badieh, M.M.S.; Vatanpour, V.; Ghaemi, N. Effect of Titanium Dioxide Nanoparticles on Polydimethylsiloxane/Polyethersulfone Composite Membranes for Gas Separation. Polym. Eng. Sci. 2012, 52, 2664–2674. [Google Scholar] [CrossRef]
- Nour, M.; Berean, K.; Balendhran, S.; Ou, J.Z.; Plessis, J.D.; McSweeney, C.; Bhaskaran, M.; Sriram, S.; Kalantar-zadeh, K. CNT/PDMS Composite Membranes for H2 and CH4 Gas Separation. Int. J. Hydrog. Energy 2013, 38, 10494–10501. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ni, Y.; Dong, Z.; Zhao, Q. A Mechanically Enhanced Metal-Organic Framework/PDMS Membrane for CO2/N2 Separation. React. Funct. Polym. 2021, 160, 104825. [Google Scholar] [CrossRef]
- Feijani, E.A.; Tavassoli, A.; Mahdavi, H.; Molavi, H. Effective Gas Separation through Graphene Oxide Containing Mixed Matrix Membranes. J. Appl. Polym. Sci. 2018, 135, 1–11. [Google Scholar] [CrossRef]
- Wu, H.; Zamanian, M.; Kruczek, B.; Thibault, J. Gas Permeation Model of Mixed-Matrix Membranes with Embedded Impermeable Cuboid Nanoparticles. Membranes 2020, 10, 422. [Google Scholar] [CrossRef]
- Zainuddin, M.I.F.; Ahmad, A.L. Mixed Matrix Membrane Development Progress and Prospect of Using 2D Nanosheet Filler for CO2 Separation and Capture. J. CO2 Util. 2022, 62, 102094. [Google Scholar] [CrossRef]
- Zahri, K.; Wong, K.C.; Goh, P.S.; Ismail, A.F. Graphene Oxide/Polysulfone Hollow Fiber Mixed Matrix Membranes for Gas Separation. RSC Adv. 2016, 6, 89130–89139. [Google Scholar] [CrossRef]
- Yang, E.; Goh, K.; Chuah, C.Y.; Wang, R.; Bae, T.H. Asymmetric Mixed-Matrix Membranes Incorporated with Nitrogen-Doped Graphene Nanosheets for Highly Selective Gas Separation. J. Memb. Sci. 2020, 615, 118293. [Google Scholar] [CrossRef]
- Mohammed, S.A.; Nasir, A.M.; Aziz, F.; Kumar, G.; Sallehhudin, W.; Jaafar, J.; Lau, W.J.; Yusof, N.; Salleh, W.N.W.; Ismail, A.F. CO2/N2 Selectivity Enhancement of PEBAX MH 1657/Aminated Partially Reduced Graphene Oxide Mixed Matrix Composite Membrane. Sep. Purif. Technol. 2019, 223, 142–153. [Google Scholar] [CrossRef]
- Asim, M.; Khan, A.; Helal, A.; Alshitari, W.; Akbar, U.A.; Khan, M.Y. A 2D Graphitic-Polytriaminopyrimidine (G-PTAP)/Poly(Ether-block-amide) Mixed Matrix Membrane for CO2 Separation. Chem. An. Asian J. 2021, 16, 1839–1848. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Gurr, P.A.; Fu, Q.; Webley, P.A.; Qiao, G.G. Two-Dimensional Nanosheet-Based Gas Separation Membranes. J. Mater. Chem. A 2018, 6, 23169–23196. [Google Scholar] [CrossRef]
- Kamble, A.R.; Patel, C.M.; Murthy, Z.V.P. A Review on the Recent Advances in Mixed Matrix Membranes for Gas Separation Processes. Renew. Sustain. Energy Rev. 2021, 145, 111062. [Google Scholar] [CrossRef]
- Gou, Y.; Xiao, L.; Yang, Y.; Guo, X.; Zhang, F.; Zhu, W.; Xiao, Q. Incorporation of Open-Pore MFI Zeolite Nanosheets in Polydimethylsiloxane (PDMS) to Isomer-Selective Mixed Matrix Membranes. Microporous Mesoporous Mater. 2021, 315, 110930. [Google Scholar] [CrossRef]
- Shen, G.; Zhao, J.; Guan, K.; Shen, J.; Jin, W. Highly Efficient Recovery of Propane by Mixed-Matrix Membrane via Embedding Functionalized Graphene Oxide Nanosheets into Polydimethylsiloxane. AIChE J. 2017, 63, 3501–3510. [Google Scholar] [CrossRef]
- Jafari, A.; Mortaheb, H.R.; Gallucci, F. Performance of Octadecylamine-Functionalized Graphene Oxide Nanosheets in Polydimethylsiloxane Mixed Matrix Membranes for Removal of Toluene from Water by Pervaporation. J. Water Process Eng. 2022, 45, 102497. [Google Scholar] [CrossRef]
- Pacchioni, G. Physisorbed and Chemisorbed CO2 at Surface and Step Sites of the MgO(100) Surface. Surf. Sci. 1993, 281, 207–219. [Google Scholar] [CrossRef]
- Wan Isahak, W.N.R.; Ramli, Z.A.C.; Mohamed Hisham, M.W.; Yarmo, M.A. Magnesium Oxide Nanoparticles on Green Activated Carbon as Efficient CO2 Adsorbent. AIP Conf. Proc. 2013, 1571, 882–889. [Google Scholar] [CrossRef]
- Ruhaimi, A.H.; Aziz, M.A.A.; Jalil, A.A. Magnesium Oxide-Based Adsorbents for Carbon Dioxide Capture: Current Progress and Future Opportunities. J. CO2 Util. 2021, 43, 101357. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Li, Y.; Chung, T.S.; Liu, Y. Enhanced Gas Separation Performance of Nanocomposite Membranes Using MgO Nanoparticles. J. Memb. Sci. 2007, 302, 207–217. [Google Scholar] [CrossRef]
- Momeni, S.M.; Pakizeh, M. Preparation, Characterization and Gas Permeation Study of PSf/MgO Nanocomposite Membrane. Braz. J. Chem. Eng. 2013, 30, 589–597. [Google Scholar] [CrossRef]
- Li, P.; Chen, R.; Lin, Y.; Li, W. General Approach to Facile Synthesis of MgO-Based Porous Ultrathin Nanosheets Enabling High-Efficiency CO2 Capture. Chem. Eng. J. 2021, 404, 126459. [Google Scholar] [CrossRef]
- Heo, Y.J.; Park, S.J. Facile Synthesis of MgO-Modified Carbon Adsorbents with Microwave-Assisted Methods: Effect of MgO Particles and Porosities on CO2 Capture. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choe, J.H.; Kim, H.; Hong, C.S. MOF-74 Type Variants for CO2 capture. Mater. Chem. Front. 2021, 5, 5172–5185. [Google Scholar] [CrossRef]
- Roh, E.; Subiyanto, I.; Choi, W.; Park, Y.C.; Cho, C.H.; Kim, H. CO2/N2 and O2/N2 Separation Using Mixed-Matrix Membranes with MOF-74 Nanocrystals Synthesized Via Microwave Reactions. Bull. Korean Chem. Soc. 2021, 42, 459–462. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Otitoju, T.A.; Ooi, B.S. Hollow Fiber (HF) Membrane Fabrication: A Review on the Effects of Solution Spinning Conditions on Morphology and Performance. J. Ind. Eng. Chem. 2019, 70, 35–50. [Google Scholar] [CrossRef]
- Choi, S.-H.; Tasselli, F.; Jansen, J.C.; Barbieri, G.; Drioli, E. Effect of the Preparation Conditions on the Formation of Asymmetric Poly(Vinylidene Fluoride) Hollow Fibre Membranes with a Dense Skin. Eur. Polym. J. 2010, 46, 1713–1725. [Google Scholar] [CrossRef]
- Ismail, A.F.; Dunkin, I.R.; Gallivan, S.L.; Shilton, S.J. Production of Super Selective Polysulfone Hollow Fiber Membranes for Gas Separation. Polymer 1999, 40, 6499–6506. [Google Scholar] [CrossRef]
- Robeson, L.M.; Liu, Q.; Freeman, B.D.; Paul, D.R. Comparison of Transport Properties of Rubbery and Glassy Polymers and the Relevance to the Upper Bound Relationship. J. Memb. Sci. 2015, 476, 421–431. [Google Scholar] [CrossRef]
- Scholes, C.A.; Stevens, G.W.; Kentish, S.E. Membrane Gas Separation Applications in Natural Gas Processing. Fuel 2012, 96, 15–28. [Google Scholar] [CrossRef]
- Zainuddin, M.I.F.; Ahmad, A.L. Impact of Dope Extrusion Rate and Multilayer Polydimethylsiloxane Coating on Asymmetric Polyethersulfone Hollow Fiber Membrane for CO2/N2 and CO2/CH4 Separation. Asia-Pacific J. Chem. Eng. 2022, 17, e2829. [Google Scholar] [CrossRef]
- Kotal, M.; Bhowmick, A.K. Polymer Nanocomposites from Modified Clays: Recent Advances and Challenges. Prog. Polym. Sci. 2015, 51, 127–187. [Google Scholar] [CrossRef] [Green Version]
- Alavi, S.A.; Kargari, A.; Sanaeepur, H.; Karimi, M. Preparation and Characterization of PDMS/Zeolite 4A/PAN Mixed Matrix Thin Film Composite Membrane for CO2/N2 and CO2/CH4 Separations. Res. Chem. Intermed. 2017, 43, 2959–2984. [Google Scholar] [CrossRef]
- Henis, J.M.S.; Tripodi, M.K. Composite Hollow Fiber Membranes for Gas Separation: The Resistance Model Approach. J. Memb. Sci. 1981, 8, 233–246. [Google Scholar] [CrossRef]
- Da Silva, E.A.; Windmöller, D.; Silva, G.G.; De Souza Figueiredo, K.C. Polydimethylsiloxane Membranes Containing Multi-Walled Carbon Nanotubes for Gas Separation. Mater. Res. 2017, 20, 1454–1460. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, M.; Chetia, T.R.; Ansari, M.S.; Soni, S.S. Enhanced Photovoltaic Performance of Meso-Porous SnO2 Based Solar Cells Utilizing 2D MgO Nanosheets Sensitized by a Metal-Free Carbazole Derivative. J. Mater. Chem. A 2015, 3, 4291–4300. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, J.H.; Jung, J.P.; Kim, J.H. Mixed Matrix Membranes Based on Dual-Functional MgO Nanosheets for Olefin/Paraffin Separation. J. Memb. Sci. 2017, 533, 48–56. [Google Scholar] [CrossRef]
- Jin, S.; Bang, G.; Lee, C.H. Unusual Morphology Transformation and Basicity of Magnesium Oxide Controlled by Ageing Conditions and Its Carbon Dioxide Adsorption. J. CO2 Util. 2020, 41, 101273. [Google Scholar] [CrossRef]
- Ruben, B.; Elisa, M.; Leandro, L.; Victor, M.; Gloria, G.; Marina, S.; Mian, S.K.; Pandiyan, R.; Nadhira, L. Oxygen Plasma Treatments of Polydimethylsiloxane Surfaces: Effect of the Atomic Oxygen on Capillary Flow in the Microchannels. Micro Nano Lett. 2017, 12, 754–757. [Google Scholar] [CrossRef]
- Alzahid, Y.A.; Mostaghimi, P.; Gerami, A.; Singh, A.; Privat, K.; Amirian, T.; Armstrong, R.T. Functionalisation of Polydimethylsiloxane (PDMS)- Microfluidic Devices Coated with Rock Minerals. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, N.M.; Tuladhar, A.; Wang, Z.; De Yoreo, J.J.; Rosso, K.M. No Hydrogen Bonding between Water and Hydrophilic Single Crystal MgO Surfaces? J. Phys. Chem. C 2021, 125, 26132–26138. [Google Scholar] [CrossRef]
- Firpo, G.; Angeli, E.; Repetto, L.; Valbusa, U. Permeability Thickness Dependence of Polydimethylsiloxane (PDMS) Membranes. J. Memb. Sci. 2015, 481, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Firpo, G.; Angeli, E.; Guida, P.; Savio, R.L.; Repetto, L.; Valbusa, U. Gas Permeation through Rubbery Polymer Nano-Corrugated Membranes. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Deepa, B.; Rajendran, V. Investigation of Organic Solvents Assisted Nano Magnesium Oxide Nanoparticles and Their Structural, Morphological, Optical and Antimicrobial Performance. Mater. Res. Express 2018, 5, 015033. [Google Scholar] [CrossRef]
- Tong, Z.; Li, L.; Li, Y.; Wang, Q.; Cheng, X. The Effect of in Situ Synthesis of MgO Nanoparticles on the Thermal Properties of Ternary Nitrate. Materials 2021, 14, 5737. [Google Scholar] [CrossRef]
- Jusoh, N.; Yeong, Y.F.; Lau, K.K.; Shariff, A.M. Enhanced Gas Separation Performance Using Mixed Matrix Membranes Containing Zeolite T and 6FDA-Durene Polyimide. J. Memb. Sci. 2017, 525, 175–186. [Google Scholar] [CrossRef]
- Chang, Y.W.; Chang, B.K. Influence of Casting Solvents on Sedimentation and Performance in Metal–Organic Framework Mixed-Matrix Membranes. J. Taiwan Inst. Chem. Eng. 2018, 89, 224–233. [Google Scholar] [CrossRef]
- Shamsabadi, A.A.; Kargari, A.; Babaheidari, M.B.; Laki, S.; Ajami, H. Role of Critical Concentration of PEI in NMP Solutions on Gas Permeation Characteristics of PEI Gas Separation Membranes. J. Ind. Eng. Chem. 2013, 19, 677–685. [Google Scholar] [CrossRef]
- Idris, A.; Man, Z.; Maulud, A.; Khan, M. Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes. Membranes 2017, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.M.; Gao, L.; Shields, C.W.; Smith, M.; Efimenko, K.; Cushing, K.; Genzer, J.; López, G.P. Elastomeric Microparticles for Acoustic Mediated Bioseparations. J. Nanobiotechnology 2013, 11, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakrishnan, G.; Velavan, R.; Mujasam Batoo, K.; Raslan, E.H. Microstructure, Optical and Photocatalytic Properties of MgO Nanoparticles. Results Phys. 2020, 16, 103013. [Google Scholar] [CrossRef]
- El-Sayyad, G.S.; Mosallam, F.M.; El-Batal, A.I. One-Pot Green Synthesis of Magnesium Oxide Nanoparticles Using Penicillium Chrysogenum Melanin Pigment and Gamma Rays with Antimicrobial Activity against Multidrug-Resistant Microbes. Adv. Powder Technol. 2018, 29, 2616–2625. [Google Scholar] [CrossRef]
- Wong, C.W.; Chan, Y.S.; Jeevanandam, J.; Pal, K.; Bechelany, M.; Abd Elkodous, M.; El-Sayyad, G.S. Response Surface Methodology Optimization of Mono-Dispersed MgO Nanoparticles Fabricated by Ultrasonic-Assisted Sol–Gel Method for Outstanding Antimicrobial and Antibiofilm Activities. J. Clust. Sci. 2020, 31, 367–389. [Google Scholar] [CrossRef]
- Zahir, M.H.; Rahman, M.M.; Irshad, K.; Rahman, M.M. Shape-Stabilized Phase Change Materials for Solar Energy Storage: MgO and Mg(OH)2 Mixed with Polyethylene Glycol. Nanomaterials 2019, 9, 1773. [Google Scholar] [CrossRef] [Green Version]
- Glisenti, A.; Frasson, A.; Galenda, A.; Ferroni, M.; Concina, I.; Natilea, M.M. Synthesis and Characterization of Ag/CeO2 Nanocomposites. Mater. Res. Soc. Symp. Proc. 2010, 1257, 323–328. [Google Scholar] [CrossRef]
- Wetteland, C.L.; de Jesus Sanchez, J.; Silken, C.A.; Nguyen, N.Y.T.; Mahmood, O.; Liu, H. Dissociation of Magnesium Oxide and Magnesium Hydroxide Nanoparticles in Physiologically Relevant Fluids. J. Nanoparticle Res. 2018, 20, 1118–1126. [Google Scholar] [CrossRef]
- Gulková, D.; Šolcová, O.; Zdražil, M. Preparation of MgO Catalytic Support in Shaped Mesoporous High Surface Area Form. Microporous Mesoporous Mater. 2004, 76, 137–149. [Google Scholar] [CrossRef]
- Al-Harbi, L.M.; Darwish, M.S.A.; Khowdiary, M.M.; Stibor, I. Controlled Preparation of Thermally Stable Fe-Poly(Dimethylsiloxane) Composite by Magnetic Induction Heating. Polymers 2018, 10, 507. [Google Scholar] [CrossRef] [Green Version]
- Haider, B.; Dilshad, M.R.; Akram, M.S.; Islam, A.; Kaspereit, M. Novel Polydimethylsiloxane Membranes Impregnated with SAPO-34 Zeolite Particles for Gas Separation. Chem. Pap. 2021, 75, 6417–6431. [Google Scholar] [CrossRef]
- Suleman, M.S.; Lau, K.K.; Yeong, Y.F. Characterization and Performance Evaluation of PDMS/PSF Membrane for CO2/CH4 Separation under the Effect of Swelling. Procedia Eng. 2016, 148, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Zalewski, K.; Chyłek, Z.; Trzciński, W.A. A Review of Polysiloxanes in Terms of Their Application in Explosives. Polymers 2021, 13, 1080. [Google Scholar] [CrossRef]
- Selyanchyn, R.; Ariyoshi, M.; Fujikawa, S. Thickness Effect on CO2/N2 Separation in Double Layer Pebax-1657®/PDMS Membranes. Membranes 2018, 8, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, J.M.; Paul, D.R. Effect of Casting Solvent on the Permeability of Poly(4-Methyl-1-Pentene). Polymer 1991, 32, 1236–1243. [Google Scholar] [CrossRef]
- Kulak, H.; Thür, R.; Vankelecom, I.F.J. MOF/Polymer Mixed-Matrix Membranes Preparation: Effect of Main Synthesis Parameters on CO2/CH4 Separation Performance. Membranes 2022, 12, 425. [Google Scholar] [CrossRef]
- Chen, B.; Wan, C.; Kang, X.; Chen, M.; Zhang, C.; Bai, Y.; Dong, L. Enhanced CO2 Separation of Mixed Matrix Membranes with ZIF-8@GO Composites as Fillers: Effect of Reaction Time of ZIF-8@GO. Sep. Purif. Technol. 2019, 223, 113–122. [Google Scholar] [CrossRef]
- Aroon, M.A.; Ismail, A.F.; Matsuura, T.; Montazer-Rahmati, M.M. Performance Studies of Mixed Matrix Membranes for Gas Separation: A Review. Sep. Purif. Technol. 2010, 75, 229–242. [Google Scholar] [CrossRef]
- Zornoza, B.; Téllez, C.; Coronas, J. Mixed Matrix Membranes Comprising Glassy Polymers and Dispersed Mesoporous Silica Spheres for Gas Separation. J. Memb. Sci. 2011, 368, 100–109. [Google Scholar] [CrossRef]
- DeRocher, J.P.; Gettelfinger, B.T.; Wang, J.; Nuxoll, E.E.; Cussler, E.L. Barrier Membranes with Different Sizes of Aligned Flakes. J. Memb. Sci. 2005, 254, 21–30. [Google Scholar] [CrossRef]
- Kang, Z.; Peng, Y.; Hu, Z.; Qian, Y.; Chi, C.; Yeo, L.Y.; Tee, L.; Zhao, D. Mixed Matrix Membranes Composed of Two-Dimensional Metal–Organic Framework Nanosheets for Pre-Combustion CO2 Capture: A Relationship Study of Filler Morphology versus Membrane Performance. J. Mater. Chem. A 2015, 3, 20801–20810. [Google Scholar] [CrossRef]
- Ehsani, A.; Pakizeh, M. Synthesis, Characterization and Gas Permeation Study of ZIF-11/Pebax® 2533 Mixed Matrix Membranes. J. Taiwan Inst. Chem. Eng. 2016, 66, 414–423. [Google Scholar] [CrossRef]
- Li, T.; Pan, Y.; Peinemann, K.V.; Lai, Z. Carbon Dioxide Selective Mixed Matrix Composite Membrane Containing ZIF-7 Nano-Fillers. J. Memb. Sci. 2013, 425, 235–242. [Google Scholar] [CrossRef]
- Gunasakaran, A.; Jafa, J.; Saalah, S.; Sipaut, C.S.; Yusof, N.; Aziz, F.; Ismail, A.F.; Bilad, M.R.; Yahya, N.Y.; Ismail, N.M. Activated Carbon and Halloysite Nanotubes Membrane for CO2 and CH4 Separation. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Johor, Malaysia, 1–17 January 2021; Volume 1142, p. 012012. [Google Scholar] [CrossRef]
- Molki, B.; Aframehr, W.M.; Bagheri, R.; Salimi, J. Mixed Matrix Membranes of Polyurethane with Nickel Oxide Nanoparticles for CO2 Gas Separation. J. Memb. Sci. 2018, 549, 588–601. [Google Scholar] [CrossRef]
- Usman, M.; Khan, M.Y.; Anjum, T.; Khan, A.L.; Hoque, B.; Helal, A.; Hakeem, A.S.; Al-Maythalony, B.A. Controlled Covalent Functionalization of ZIF-90 for Selective CO2 Capture & Separation. Membranes 2022, 12, 1055. [Google Scholar] [CrossRef]
- Houben, M.; Kloos, J.; van Essen, M.; Nijmeijer, K.; Borneman, Z. Systematic Investigation of Methods to Suppress Membrane Plasticization during CO2 Permeation at Supercritical Conditions. J. Memb. Sci. 2022, 647, 120292. [Google Scholar] [CrossRef]
- Askari, M. CO2/CH4 Sorption Behavior of Glassy Polymeric Membranes Based on Dual Mode Sorption Model. Bull. Société R. Sci. Liège 2017, 139–156. [Google Scholar] [CrossRef]
- Jamil, A.; Zulfiqar, M.; Arshad, U.; Mahmood, S.; Iqbal, T.; Rafiq, S.; Iqbal, M.Z. Development and Performance Evaluation of Cellulose Acetate-Bentonite Mixed Matrix Membranes for CO2 Separation. Adv. Polym. Technol. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Li, N.; Liao, J.; Zhao, S.; Wang, J.; Wang, S. Relationship between Polymer-Filler Interfaces in Separation Layers and Gas Transport Properties of Mixed Matrix Composite Membranes. J. Memb. Sci. 2015, 495, 252–268. [Google Scholar] [CrossRef]
- Wang, D.; Ying, Y.; Zheng, Y.; Pu, Y.; Yang, Z.; Zhao, D. Induced Polymer Crystallinity in Mixed Matrix Membranes by Metal-Organic Framework Nanosheets for Gas Separation. J. Membr. Sci. Lett. 2022, 2, 100017. [Google Scholar] [CrossRef]
- Dilshad, M.R.; Islam, A.; Haider, B.; Sabir, A.; Ijaz, A.; Khan, R.U.; Durrani, A.K. Novel PVA/PEG Nano-Composite Membranes Tethered with Surface Engineered Multi-Walled Carbon Nanotubes for Carbon Dioxide Separation. Microporous Mesoporous Mater. 2020, 308, 110545. [Google Scholar] [CrossRef]
- Dilshad, M.R.; Islam, A.; Haider, B.; Sajid, M.; Ijaz, A.; Khan, R.U.; Khan, W.G. Effect of Silica Nanoparticles on Carbon Dioxide Separation Performances of PVA/PEG Cross-Linked Membranes. Chem. Pap. 2021, 75, 3131–3153. [Google Scholar] [CrossRef]
- Hussain, M.; König, A. Mixed-Matrix Membrane for Gas Separation: Polydimethylsiloxane Filled with Zeolite. Chem. Eng. Technol. 2012, 35, 561–569. [Google Scholar] [CrossRef]
- Rezakazemi, M.; Shahidi, K.; Mohammadi, T. Hydrogen Separation and Purification Using Crosslinkable PDMS/Zeolite A Nanoparticles Mixed Matrix Membranes. Int. J. Hydrog. Energy 2012, 37, 14576–14589. [Google Scholar] [CrossRef]
Membrane Sample | Elastomer to Curing Agent Ratio | Mass of PDMS (g) | Mass of Curing Agent (g) | Mass of n-Pentane (g) | Mass of MgO Nanosheet (PDMS Mass Basis) (g) |
---|---|---|---|---|---|
M1 | 10:1 | 2 | 0.2 | 19.8 | 0 |
M2 | 10:1 | 2 | 0.2 | 19.8 | 0.00501 |
M3 | 10:1 | 2 | 0.2 | 19.8 | 0.01005 |
M4 | 10:1 | 2 | 0.2 | 19.8 | 0.02020 |
M5 | 10:1 | 2 | 0.2 | 19.8 | 0.05128 |
M6 | 10:1 | 2 | 0.2 | 19.8 | 0.10526 |
Filler | Condition 1 | CO2 Permeability (Barrer) | Gas Pair Selectivity 2 | Reference | |
---|---|---|---|---|---|
CO2/N2 | CO2/CH4 | ||||
Mg-MOF-74 (0.46 mmol) | 4 bar 30 °C | 1608 | 17.6 | - | [38] |
Mn-MOF-74 (0.46 mmol) | 1466 | 18 | - | ||
Co-MOF-74 (0.46 mmol) | 1508 | 17.9 | - | ||
Ni-MOF-74 (0.46 mmol) | 1502 | 14.5 | - | ||
MWCNT (1 wt.%) | 14 psi | 1500 | 11.83 | 2.73 | [48] |
ZSM-5 (66 wt.%) | - | 11648 | 11.1 | 4.36 | [95] |
SAPO-34 | 20 bar | 5753 | 31 | 4.92 | [72] |
Zeolite 3A (40 wt.%) | 5 bar 35 °C | 3125 | - | 2.95 | [96] |
Zeolite 4A (40 wt.%) | 3208 | - | 3.09 | ||
Zeolite 5A (40 wt.%) | 3137 | - | 2.97 | ||
MgO nanosheet (1 wt.%) | 2 bar | 1929 | 12.7 | 3.4 | This work |
3 bar | 1822 | 12.6 | 3.6 | ||
4 bar | 1782 | 12.6 | 3.7 | ||
5 bar | 1722 | 12.5 | 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zainuddin, M.I.F.; Ahmad, A.L.; Shah Buddin, M.M.H. Polydimethylsiloxane/Magnesium Oxide Nanosheet Mixed Matrix Membrane for CO2 Separation Application. Membranes 2023, 13, 337. https://doi.org/10.3390/membranes13030337
Zainuddin MIF, Ahmad AL, Shah Buddin MMH. Polydimethylsiloxane/Magnesium Oxide Nanosheet Mixed Matrix Membrane for CO2 Separation Application. Membranes. 2023; 13(3):337. https://doi.org/10.3390/membranes13030337
Chicago/Turabian StyleZainuddin, Muhd Izzudin Fikry, Abdul Latif Ahmad, and Meor Muhammad Hafiz Shah Buddin. 2023. "Polydimethylsiloxane/Magnesium Oxide Nanosheet Mixed Matrix Membrane for CO2 Separation Application" Membranes 13, no. 3: 337. https://doi.org/10.3390/membranes13030337
APA StyleZainuddin, M. I. F., Ahmad, A. L., & Shah Buddin, M. M. H. (2023). Polydimethylsiloxane/Magnesium Oxide Nanosheet Mixed Matrix Membrane for CO2 Separation Application. Membranes, 13(3), 337. https://doi.org/10.3390/membranes13030337