Modified Electrospun Membranes Using Different Nanomaterials for Membrane Distillation
Abstract
:1. Introduction
2. Conventional MD Configurations
3. New Developments in Nanofiber-Based Membranes
4. Modification of ENMs with Functional Molecules and Their Effect on the MD Process
4.1. Effect of MOFs and Zeolites on ENMs and the MD Process
4.1.1. Aluminum Fumarate (AlFu) Addition
4.1.2. Zeolitic Imidazolate Frameworks (ZIFs) Addition
4.2. Effect of SiO2, TiO2, and Zinc Oxide (ZnO) on ENMs and the MD Process
4.2.1. SiO2 Addition
4.2.2. TiO2 Addition
4.2.3. ZnO Addition
ENMs | Optimized Nanomaterial Concentration | Water Flux | WCA | Pore Size (μm) | LEP (kPa) | Salt Rejection | Reference |
---|---|---|---|---|---|---|---|
PVDF-SiO2 | 1% | 19.4 L m−2 h−1 | 109° | 1.48 | 64 | 99.99% | [96] |
PVDF-SiO2 | 8% | 25.7 Kg m−2 h−1 | 164 | 99.99% | [111] | ||
PVDF-HFP/PS/SiO2 | 6% | 28.1 L m−2 h−1 | 100% | [112] | |||
PVDF-HFP/TiO2 | 2.8% | 38.7 L m−2 h−1 | 155° | 0.7 | 99.99% | [31] | |
PVDF-HFP/ZnO | 25% | 22.7 L m−2 h−1 | 161 | 99.99% | [110] |
4.3. Effect of CNT, GO, and AC on the MD Membranes and the MD Process
4.3.1. CNT Addition
4.3.2. GO Addition
4.3.3. AC Addition
ENMs | Guest Material | Optimized Concentration | Water Flux | WCA | Porosity (%) | Strength (Mpa) | LEP (kPa) | Salt Rejection | Reference |
---|---|---|---|---|---|---|---|---|---|
PVDF-HFP | Carbon nanotubes | 0.5% | 19.2 L m−2 h−1 | 140.7 ± 2.2° | 87 ± 2.5 | 52.09 ± 0.75 | 50 ± 2.0 | 99.99% | [114] |
PVDF-HFP | ODA-rGO | 0.1% | 21.1 kg m−2 h−1 | 158° ± 1° | 70.5 ± 0.3 | 20.94 ± 5.60 | 127.6 ± 1.2 | 99.99% | [119] |
PVDF-HFP | Activated carbon | 1.5% | 45.6 L m−2 h−1 | 142.7 ± 0.6° | 90.5 ± 1.7 | 17.8 | 136 ± 4 | 99.99% | [64] |
5. Wetting, Fouling, and Scaling Behavior of Modified Electrospun MD Membranes
6. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chiavazzo, E. Critical Aspects to Enable Viable Solar-Driven Evaporative Technologies for Water Treatment. Nat. Commun. 2022, 13, 5183. [Google Scholar] [CrossRef] [PubMed]
- Abdulhamid, M.A.; Muzamil, K. Recent Progress on Electrospun Nanofibrous Polymer Membranes for Water and Air Purification: A Review. Chemosphere 2023, 310, 136886. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yagi, S.; Ashour, S.; Du, L.; Hoque, M.E.; Tan, L. A Review on Current Nanofiber Technologies: Electrospinning, Centrifugal Spinning, and Electro-Centrifugal Spinning. Macromol. Mater. Eng. 2022, 2022, 2200502. [Google Scholar] [CrossRef]
- El-Aswar, E.I.; Ramadan, H.; Elkik, H.; Taha, A.G. A Comprehensive Review on Preparation, Functionalization and Recent Applications of Nanofiber Membranes in Wastewater Treatment. J. Environ. Manag. 2022, 301, 113908. [Google Scholar] [CrossRef]
- Santoro, S.; Avci, A.H.; Politano, A.; Curcio, E. The Advent of Thermoplasmonic Membrane Distillation. Chem. Soc. Rev. 2022, 51, 6087–6125. [Google Scholar] [CrossRef]
- Tawalbeh, M.; al Mojjly, A.; Al-Othman, A.; Hilal, N. Membrane Separation as a Pre-Treatment Process for Oily Saline Water. Desalination 2018, 447, 182–202. [Google Scholar] [CrossRef] [Green Version]
- Francis, L.; Ahmed, F.E.; Hilal, N. Electrospun Membranes for Membrane Distillation: The State of Play and Recent Advances. Desalination 2022, 526, 115511. [Google Scholar] [CrossRef]
- Luo, Q.; Liu, P.; Fu, L.; Hu, Y.; Yang, L.; Wu, W.; Kong, X.Y.; Jiang, L.; Wen, L. Engineered Cellulose Nanofiber Membranes with Ultrathin Low-Dimensional Carbon Material Layers for Photothermal-Enhanced Osmotic Energy Conversion. ACS Appl. Mater. Interfaces 2022, 14, 13223–13230. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, Y.; Liu, D.; Zhu, Z.; Wang, W. Recent Advances in Membrane Distillation Using Electrospun Membranes: Advantages, Challenges, and Outlook. Environ. Sci. 2021, 7, 1002–1019. [Google Scholar] [CrossRef]
- Lee, W.J.; Ng, Z.C.; Hubadillah, S.K.; Goh, P.S.; Lau, W.J.; Othman, M.H.D.; Ismail, A.F.; Hilal, N. Fouling Mitigation in Forward Osmosis and Membrane Distillation for Desalination. Desalination 2020, 480, 114338. [Google Scholar] [CrossRef]
- Kim, S.; Heath, D.E.; Kentish, S.E. Robust and Superhydrophobic PTFE Membranes with Crosshatched Nanofibers for Membrane Distillation and Carbon Dioxide Stripping. Adv. Mater. Interfaces 2022, 9, 2200786. [Google Scholar] [CrossRef]
- Hashaikeh, R.; Lalia, B.S.; Kochkodan, V.; Hilal, N. A Novel in Situ Membrane Cleaning Method Using Periodic Electrolysis. J. Memb. Sci. 2014, 471, 149–154. [Google Scholar] [CrossRef]
- Alpatova, A.; Verbych, S.; Bryk, M.; Nigmatullin, R.; Hilal, N. Ultrafiltration of Water Containing Natural Organic Matter: Heavy Metal Removing in the Hybrid Complexation–Ultrafiltration Process. Sep. Purif. Technol. 2004, 40, 155–162. [Google Scholar] [CrossRef]
- Hilal, N.; Ismail, A.F.; Wright, C.J. Membrane Fabrication; Routledge: London, UK, 2015; ISBN 9781138894099. [Google Scholar]
- Ismail, A.F.; Hilal, N.; Jaafar, J.; Wright, C.J. Nanofiber Membranes for Medical, Environmental, and Energy Applications; Routledge: London, UK, 2019; ISBN 9781032239859. [Google Scholar]
- Tan, G.; Xu, D.; Zhu, Z.; Zhang, X.; Li, J. Tailoring Pore Size and Interface of Superhydrophobic Nanofibrous Membrane for Robust Scaling Resistance and Flux Enhancement in Membrane Distillation. J. Memb. Sci. 2022, 658, 120751. [Google Scholar] [CrossRef]
- Meng, L.; Mansouri, J.; Li, X.; Liang, J.; Huang, M.; Lv, Y.; Wang, Z.; Chen, V. Omniphobic Membrane via Bioinspired Silicification for the Treatment of RO Concentrate by Membrane Distillation. J. Memb. Sci. 2022, 647, 120267. [Google Scholar] [CrossRef]
- Yadav, P.; Farnood, R.; Kumar, V. Superhydrophobic Modification of Electrospun Nanofibrous Si@PVDF Membranes for Desalination Application in Vacuum Membrane Distillation. Chemosphere 2022, 287, 132092. [Google Scholar] [CrossRef]
- Sanaeepur, H.; Ebadi Amooghin, A.; Shirazi, M.M.A.; Pishnamazi, M.; Shirazian, S. Water Desalination and Ion Removal Using Mixed Matrix Electrospun Nanofibrous Membranes: A Critical Review. Desalination 2022, 521, 115350. [Google Scholar] [CrossRef]
- Yu, J.; Yue, D.; Sun, D.; Li, B.; Ge, Y.; Lin, Y. Micron Flower-like CuO Light Trapping Grown on the Copper Foam Skeleton Combined with PVDF Membrane for Solar-Driven Vacuum Membrane Distillation. Sep. Purif. Technol. 2022, 301, 121989. [Google Scholar] [CrossRef]
- Emadzadeh, D.; Lau, W.J.; Matsuura, T.; Hilal, N.; Ismail, A.F. The Potential of Thin Film Nanocomposite Membrane in Reducing Organic Fouling in Forward Osmosis Process. Desalination 2014, 348, 82–88. [Google Scholar] [CrossRef]
- Qureshi, U.A.; Khatri, Z.; Ahmed, F.; Ibupoto, A.S.; Khatri, M.; Mahar, F.K.; Brohi, R.Z.; Kim, I.S. Highly Efficient and Robust Electrospun Nanofibers for Selective Removal of Acid Dye. J. Mol. Liq. 2017, 244, 478–488. [Google Scholar] [CrossRef]
- Qureshi, U.A.; Khatri, Z.; Ahmed, F.; Khatri, M.; Kim, I.S. Electrospun Zein Nanofiber as a Green and Recyclable Adsorbent for the Removal of Reactive Black 5 from the Aqueous Phase. ACS Sustain. Chem. Eng. 2017, 5, 4340–4351. [Google Scholar] [CrossRef]
- Khatri, M.; Khatri, Z.; El-Ghazali, S.; Hussain, N.; Qureshi, U.A.; Kobayashi, S.; Ahmed, F.; Kim, I.S. Zein Nanofibers via Deep Eutectic Solvent Electrospinning: Tunable Morphology with Super Hydrophilic Properties. Sci. Rep. 2020, 10, 15307. [Google Scholar] [CrossRef] [PubMed]
- Ibupoto, A.S.; Qureshi, U.A.; Ahmed, F.; Khatri, Z.; Khatri, M.; Maqsood, M.; Brohi, R.Z.; Kim, I.S. Reusable Carbon Nanofibers for Efficient Removal of Methylene Blue from Aqueous Solution. Chem. Eng. Res. Des. 2018, 136, 744–752. [Google Scholar] [CrossRef]
- Hou, D.; Christie, K.S.S.; Wang, K.; Tang, M.; Wang, D.; Wang, J. Biomimetic Superhydrophobic Membrane for Membrane Distillation with Robust Wetting and Fouling Resistance. J. Memb. Sci. 2020, 599, 117708. [Google Scholar] [CrossRef]
- Hu, X.; Chen, X.; Giagnorio, M.; Wu, C.; Luo, Y.; Hélix-Nielsen, C.; Yu, P.; Zhang, W. Beaded Electrospun Polyvinylidene Fluoride (PVDF) Membranes for Membrane Distillation (MD). J. Memb. Sci. 2022, 661, 120850. [Google Scholar] [CrossRef]
- Hou, C.; Pang, Z.; Xie, S.; Hing Wong, N.; Sunarso, J.; Peng, Y. Enhanced Permeability and Stability of PVDF Hollow Fiber Membrane in DCMD via Heat-Stretching Treatment. Sep. Purif. Technol. 2023, 304, 122325. [Google Scholar] [CrossRef]
- Al Aani, S.; Wright, C.J.; Atieh, M.A.; Hilal, N. Engineering Nanocomposite Membranes: Addressing Current Challenges and Future Opportunities. Desalination 2017, 401, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Francis, L.; Ghaffour, N.; Al-Saadi, A.S.; Amy, G. Performance of Different Hollow Fiber Membranes for Seawater Desalination Using Membrane Distillation. Desalination Water Treat. 2015, 55, 2786–2791. [Google Scholar] [CrossRef] [Green Version]
- Seyed Shahabadi, S.M.; Rabiee, H.; Seyedi, S.M.; Mokhtare, A.; Brant, J.A. Superhydrophobic Dual Layer Functionalized Titanium Dioxide/Polyvinylidene Fluoride-Co-Hexafluoropropylene (TiO2/PH) Nanofibrous Membrane for High Flux Membrane Distillation. J. Memb. Sci. 2017, 537, 140–150. [Google Scholar] [CrossRef]
- Chiao, Y.H.; Cao, Y.; Ang, M.B.M.Y.; Sengupta, A.; Wickramasinghe, S.R. Application of Superomniphobic Electrospun Membrane for Treatment of Real Produced Water through Membrane Distillation. Desalination 2022, 528, 115602. [Google Scholar] [CrossRef]
- Khayet, M.; García-Payo, C.; Matsuura, T. Superhydrophobic Nanofibers Electrospun by Surface Segregating Fluorinated Amphiphilic Additive for Membrane Distillation. J. Memb. Sci. 2019, 588, 117215. [Google Scholar] [CrossRef]
- Subramanian, S.; Seeram, R. New directions in nanofiltration applications—are nanofibers the right materials as membranes in desalination? Desalination 2013, 308, 198–208. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Hilal, N. Air Gap Membrane Distillation: A Detailed Study of High Saline Solution. Desalination 2017, 403, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Francis, L.; Ahmed, F.E.; Hilal, N. Advances in Membrane Distillation Module Configurations. Membranes 2022, 12, 81. [Google Scholar] [CrossRef]
- Francis, L.; Ghaffour, N.; Al-Saadi, A.S.; Amy, G.L. Submerged Membrane Distillation for Seawater Desalination. Desalination Water Treat 2015, 55, 2741–2746. [Google Scholar] [CrossRef]
- Lawal, D.U. Performance Enhancement of Permeate Gap Membrane Distillation System Augmented with Impeller. Sustain. Energy Technol. Assess. 2022, 54, 102792. [Google Scholar] [CrossRef]
- Francis, L.; Ghaffour, N.; Alsaadi, A.A.; Amy, G.L. Material Gap Membrane Distillation: A New Design for Water Vapor Flux Enhancement. J. Memb. Sci. 2013, 448, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Yalcinkaya, F. A Review on Advanced Nanofiber Technology for Membrane Distillation. J. Eng. Fiber. Fabr. 2019, 14, 1558925018824901. [Google Scholar] [CrossRef]
- El-Ghazali, S.; Khatri, M.; Kobayashi, S.; Kim, I.S. An Overview of Medical Textile Materials. Med. Text. Nat. Resour. 2022, 2022, 3–42. [Google Scholar] [CrossRef]
- Xie, X.Q.; Liu, J.; Gu, C.; Li, J.; Zhao, Y.; Liu, C.-S. Hierarchical Structured CoP Nanosheets/Carbon Nanofibers Bifunctional Eletrocatalyst for High-Efficient Overall Water Splitting. J. Energy Chem. 2022, 64, 503–510. [Google Scholar] [CrossRef]
- Khatri, M.; Qureshi, U.A.; Ahmed, F.; Khatri, Z.; Kim, I.S. Dyeing of Electrospun Nanofibers. In Handbook of Nanofibers; Springer: Cham, Switzerland, 2019; pp. 373–388. [Google Scholar] [CrossRef]
- Ahmed, F.; Ayoub Arbab, A.; Jatoi, A.W.; Khatri, M.; Memon, N.; Khatri, Z.; Kim, I.S. Ultrasonic-Assisted Deacetylation of Cellulose Acetate Nanofibers: A Rapid Method to Produce Cellulose Nanofibers. Ultrason. Sonochem. 2017, 36, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Zhi, C.; Shi, S.; Si, Y.; Fei, B.; Huang, H.; Hu, J. Recent Progress of Wearable Piezoelectric Pressure Sensors Based on Nanofibers, Yarns, and Their Fabrics via Electrospinning. Adv. Mater. Technol. 2022, 2022, 2201161. [Google Scholar] [CrossRef]
- Meftahi, A.; Samyn, P.; Geravand, S.A.; Khajavi, R.; Alibkhshi, S.; Bechelany, M.; Barhoum, A. Nanocelluloses as Skin Biocompatible Materials for Skincare, Cosmetics, and Healthcare: Formulations, Regulations, and Emerging Applications. Carbohydr. Polym. 2022, 278, 118956. [Google Scholar] [CrossRef] [PubMed]
- Behera, A.; Mallick, P. Application of Nanofibers in Aerospace Industry. In Fiber-Reinforced Nanocomposites: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 449–457. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, N.; Jensen, M.; Li, X. Low-Temperature Welded PAN/TPU Composite Nanofiber Membranes for Water Filtration. J. Water Process Eng. 2022, 47, 102806. [Google Scholar] [CrossRef]
- Attia, H.; Alexander, S.; Wright, C.J.; Hilal, N. Superhydrophobic Electrospun Membrane for Heavy Metals Removal by Air Gap Membrane Distillation (AGMD). Desalination 2017, 420, 318–329. [Google Scholar] [CrossRef] [Green Version]
- Hosseini Ravandi, S.A.; Sadrjahani, M.; Valipouri, A.; Dabirian, F.; Ko, F.K. Recently Developed Electrospinning Methods: A Review. Text. Res. J. 2022, 92, 5130–5145. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Qin, Z.; Li, H.; Wang, J.; Zeng, G.; Liu, C.; Long, J.; Zhao, Y.; Li, Y.; et al. Airflow Synergistic Needleless Electrospinning of Instant Noodle-like Curly Nanofibrous Membranes for High-Efficiency Air Filtration. Small 2022, 18, 2107250. [Google Scholar] [CrossRef]
- SalehHudin, H.S.; Mohamad, E.N.; Mahadi, W.N.L.; Afifi, M.A. Simulation and Experimental Study of Parameters in Multiple-Nozzle Electrospinning: Effects of Nozzle Arrangement on Jet Paths and Fiber Formation. J. Manuf. Process 2021, 62, 440–449. [Google Scholar] [CrossRef]
- Nazemi, M.M.; Khodabandeh, A.; Hadjizadeh, A. Near-Field Electrospinning: Crucial Parameters, Challenges, and Applications. ACS Appl. Bio Mater. 2022, 5, 394–412. [Google Scholar] [CrossRef]
- Navaneethan, B.; Chou, C.F. Self-Searching Writing of Human-Organ-Scale Three-Dimensional Topographic Scaffolds with Shape Memory by Silkworm-like Electrospun Autopilot Jet. ACS Appl. Mater. Interfaces 2022, 14, 42841–42851. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, J.; Huang, Q.; Hu, P.; Xiao, C. PVDF Fiber Membrane with Ordered Porous Structure via 3D Printing near Field Electrospinning. J. Memb. Sci. 2021, 618, 118709. [Google Scholar] [CrossRef]
- An, X.; Bai, Y.; Xu, G.; Xie, B.; Hu, Y. Fabrication of Interweaving Hierarchical Fibrous Composite (IHFC) Membranes for High-Flux and Robust Direct Contact Membrane Distillation. Desalination 2020, 477, 114264. [Google Scholar] [CrossRef]
- Xu, G.R.; An, X.C.; Das, R.; Xu, K.; Xing, Y.L.; Hu, Y.X. Application of Electrospun Nanofibrous Amphiphobic Membrane Using Low-Cost Poly (Ethylene Terephthalate) for Robust Membrane Distillation. J. Water Process Eng. 2020, 36, 101351. [Google Scholar] [CrossRef]
- Efome, J.E.; Rana, D.; Matsuura, T.; Yang, F.; Cong, Y.; Lan, C.Q. Triple-Layered Nanofibrous Metal-Organic Framework-Based Membranes for Desalination by Direct Contact Membrane Distillation. ACS Sustain. Chem. Eng. 2020, 8, 6601–6610. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, R.; Tian, M.; Qiu, C.; Fane, A.G. Fabrication of Polyvinylidene Fluoride (PVDF) Nanofiber Membranes by Electro-Spinning for Direct Contact Membrane Distillation. J. Memb. Sci. 2013, 425–426, 30–39. [Google Scholar] [CrossRef]
- Gao, T.; Guan, G.; Wang, X.; Lou, T. Electrospun Molecularly Imprinted Sodium Alginate/Polyethylene Oxide Nanofibrous Membranes for Selective Adsorption of Methylene Blue. Int. J. Biol. Macromol. 2022, 207, 62–71. [Google Scholar] [CrossRef]
- Khumalo, N.; Nthunya, L.; Derese, S.; Motsa, M.; Verliefde, A.; Kuvarega, A.; Mamba, B.B.; Mhlanga, S.; Dlamini, D.S. Water Recovery from Hydrolysed Human Urine Samples via Direct Contact Membrane Distillation Using PVDF/PTFE Membrane. Sep. Purif. Technol. 2019, 211, 610–617. [Google Scholar] [CrossRef]
- Wu, C.; Dai, X.; Sun, X.; Zhang, J. Preparation and Characterization of Fluoroalkyl Activated Carbons/PVDF Composite Membranes for Water and Resources Recovery by Membrane Distillation. Sep. Purif. Technol. 2023, 305, 122519. [Google Scholar] [CrossRef]
- Jia, W.; Kharraz, J.A.; Guo, J.; An, A.K. Superhydrophobic (Polyvinylidene Fluoride-Co-Hexafluoropropylene)/ (Polystyrene) Composite Membrane via a Novel Hybrid Electrospin-Electrospray Process. J. Memb. Sci. 2020, 611, 118360. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, C.; Lu, X.; Ng, D.; Truong, Y.B.; Xie, Z. Activated Carbon Enhanced Hydrophobic/Hydrophilic Dual-Layer Nanofiber Composite Membranes for High-Performance Direct Contact Membrane Distillation. Desalination 2018, 446, 59–69. [Google Scholar] [CrossRef]
- Shepa, I.; Mudra, E.; Dusza, J. Electrospinning through the Prism of Time. Mater. Today Chem. 2021, 21, 100543. [Google Scholar] [CrossRef]
- Shi, C.; Xi, S.; Han, Y.; Zhang, H.; Liu, J.; Li, Y. Structure, Rheology and Electrospinning of Zein and Poly(Ethylene Oxide) in Aqueous Ethanol Solutions. Chin. Chem. Lett. 2019, 30, 305–310. [Google Scholar] [CrossRef]
- Gu, J.; Lv, Z.; Wu, Y.; Guo, Y.; Tian, L.; Qiu, H.; Li, W.; Zhang, Q. Dielectric Thermally Conductive Boron Nitride/Polyimide Composites with Outstanding Thermal Stabilities via in-Situ Polymerization-Electrospinning-Hot Press Method. Compos. Part A Appl. Sci. Manuf. 2017, 94, 209–216. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J.; Cheng, H.; Li, G.; Cho, H.; Jiang, M.; Gao, Q.; Zhang, X.; Li, Y.; Zhu, J.; et al. Developments of Advanced Electrospinning Techniques: A Critical Review. Adv. Mater. Technol. 2021, 6, 2100410. [Google Scholar] [CrossRef]
- Satilmis, B. Electrospinning Polymers of Intrinsic Microporosity (PIMs) Ultrafine Fibers; Preparations, Applications and Future Perspectives. Curr. Opin. Chem. Eng. 2022, 36, 100793. [Google Scholar] [CrossRef]
- Mailley, D.; Hébraud, A.; Schlatter, G. A Review on the Impact of Humidity during Electrospinning: From the Nanofiber Structure Engineering to the Applications. Macromol. Mater. Eng. 2021, 306, 2100115. [Google Scholar] [CrossRef]
- Zhou, C.; Han, W.; Yang, X.; Fan, H.; Li, C.; Dong, L.; Meng, H. Electrospun Polyetherimide/Zeolitic Imidazolate Framework Nanofibrous Membranes for Enhanced Air Filtration Performance under High Temperature and High Humidity Conditions. Chem. Eng. J. 2022, 433, 134069. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Membrane Modification: Technology and Applications—Google Books. Available online: https://books.google.com/books?hl=en&lr=&id=vgEyZ3yOZGcC&oi=fnd&pg=PP1&dq=info:BH3yGGrTMIgJ:scholar.google.com&ots=Ebn55OxxE_&sig=Z_wYgjc5W4TjzKk1rFZPElbFktQ#v=onepage&q&f=false (accessed on 30 November 2022).
- Schneider, R.; Facure, M.H.M.; Chagas, P.A.M.; Andre, R.S.; dos Santos, D.M.; Correa, D.S. Tailoring the Surface Properties of Micro/Nanofibers Using 0D, 1D, 2D, and 3D Nanostructures: A Review on Post-Modification Methods. Adv. Mater. Interfaces 2021, 8, 2100430. [Google Scholar] [CrossRef]
- Prince, J.A.; Singh, G.; Rana, D.; Matsuura, T.; Anbharasi, V.; Shanmugasundaram, T.S. Preparation and Characterization of Highly Hydrophobic Poly(Vinylidene Fluoride)—Clay Nanocomposite Nanofiber Membranes (PVDF–Clay NNMs) for Desalination Using Direct Contact Membrane Distillation. J. Memb. Sci. 2012, 397–398, 80–86. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, R.; Fane, A.G. Engineering Superhydrophobic Surface on Poly(Vinylidene Fluoride) Nanofiber Membranes for Direct Contact Membrane Distillation. J. Memb. Sci. 2013, 440, 77–87. [Google Scholar] [CrossRef]
- Abu Seman, M.N.; Khayet, M.; Hilal, N. Development of Antifouling Properties and Performance of Nanofiltration Membranes Modified by Interfacial Polymerisation. Desalination 2011, 273, 36–47. [Google Scholar] [CrossRef]
- Cao, Y.; Taghvaie Nakhjiri, A.; Ghadiri, M. Membrane Desalination for Water Treatment: Recent Developments, Techno-Economic Evaluation and Innovative Approaches toward Water Sustainability. Eur. Phys. J. Plus 2022, 137, 763. [Google Scholar] [CrossRef]
- Peng, R.; Zhang, S.; Yao, Y.; Wang, J.; Zhu, X.; Jiang, R.; Zhang, J.; Zhang, W.; Wang, C. MOFs Meet Electrospinning: New Opportunities for Water Treatment. Chem. Eng. J. 2023, 453, 139669. [Google Scholar] [CrossRef]
- Wu, X.Q.; Mirza, N.R.; Huang, Z.; Zhang, J.; Zheng, Y.M.; Xiang, J.; Xie, Z. Enhanced Desalination Performance of Aluminium Fumarate MOF-Incorporated Electrospun Nanofiber Membrane with Bead-on-String Structure for Membrane Distillation. Desalination 2021, 520, 115338. [Google Scholar] [CrossRef]
- Yan, K.K.; Jiao, L.; Lin, S.; Ji, X.; Lu, Y.; Zhang, L. Superhydrophobic Electrospun Nanofiber Membrane Coated by Carbon Nanotubes Network for Membrane Distillation. Desalination 2018, 437, 26–33. [Google Scholar] [CrossRef]
- You, Y.; Sahajwalla, V.; Yoshimura, M.; Joshi, R.K. Graphene and Graphene Oxide for Desalination. Nanoscale 2015, 8, 117–119. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Gómez-Serrano, V.; Álvarez, P.M.; Alvim-Ferraz, M.C.M.; Dias, J.M. Activated Carbon Modifications to Enhance Its Water Treatment Applications. An Overview. J. Hazard. Mater. 2011, 187, 1–23. [Google Scholar] [CrossRef]
- Yang, F.; Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C. Metal-Organic Frameworks Supported on Nanofiber for Desalination by Direct Contact Membrane Distillation. ACS Appl. Mater. Interfaces 2018, 10, 11251–11260. [Google Scholar] [CrossRef]
- Cheng, D.; Zhao, L.; Li, N.; Smith, S.J.D.; Wu, D.; Zhang, J.; Ng, D.; Wu, C.; Martinez, M.R.; Batten, M.P.; et al. Aluminum Fumarate MOF/PVDF Hollow Fiber Membrane for Enhancement of Water Flux and Thermal Efficiency in Direct Contact Membrane Distillation. J. Memb. Sci. 2019, 588, 117204. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, J.; Lu, X.; Jiang, H.; Wang, P.; He, M.; Ma, J. Epitaxially grown MOF membranes with photocatalytic bactericidal activity for biofouling mitigation in desalination. J. Membr. Sci. 2021, 630, 119327. [Google Scholar] [CrossRef]
- Ruan, X.; Zhang, X.; Liao, X.; Jiang, X.; Dai, Y.; Yan, X.; He, G. Enhancing Mechanical Stability and Uniformity of 2-D Continuous ZIF-8 Membranes by Zn(II)-Doped Polydopamine Modification. J. Memb. Sci. 2017, 541, 101–107. [Google Scholar] [CrossRef]
- Wu, R.; Tan, Y.; Meng, F.; Zhang, Y.; Huang, Y.X. PVDF/MAF-4 Composite Membrane for High Flux and Scaling-Resistant Membrane Distillation. Desalination 2022, 540, 116013. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Shi, Q.; Xu, H.; Dong, J.-X. The Synthesis and Tribological Properties of Small-and Large-Sized Crystals of Zeolitic Imidazolate Framework-71. RSC Adv. 2016, 6, 18052–18059. [Google Scholar] [CrossRef]
- Xu, S.; Ren, L.F.; Zhou, Q.; Bai, H.; Li, J.; Shao, J. Facile ZIF-8 Functionalized Hierarchical Micronanofiber Membrane for High-Efficiency Separation of Water-in-Oil Emulsions. J. Appl. Polym. Sci. 2018, 135, 46462. [Google Scholar] [CrossRef]
- Huang, M.; Song, J.; Deng, Q.; Mu, T.; Li, J. Novel Electrospun ZIF/PcH Nanofibrous Membranes for Enhanced Performance of Membrane Distillation for Salty and Dyeing Wastewater Treatment. Desalination 2022, 527, 115563. [Google Scholar] [CrossRef]
- Huang, K.; Li, Q.; Liu, G.; Shen, J.; Guan, K.; Jin, W. A ZIF-71 Hollow Fiber Membrane Fabricated by Contra-Diffusion. ACS Appl. Mater. Interfaces 2015, 7, 16157–16160. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Fei, X.; Sun, M.; Zhang, C.; Li, Y.; Yang, Q.; Hong, X. Preparation of a Durable Superhydrophobic Membrane by Electrospinning Poly (Vinylidene Fluoride) (PVDF) Mixed with Epoxy–Siloxane Modified SiO2 Nanoparticles: A Possible Route to Superhydrophobic Surfaces with Low Water Sliding Angle and High Water Contact Angle. J. Colloid Interface Sci. 2011, 359, 380–388. [Google Scholar] [CrossRef]
- Kang, D.H.; Kang, H.W. Surface Energy Characteristics of Zeolite Embedded PVDF Nanofiber Films with Electrospinning Process. Appl. Surf. Sci. 2016, 387, 82–88. [Google Scholar] [CrossRef]
- Ren, L.F.; Xia, F.; Chen, V.; Shao, J.; Chen, R.; He, Y. TiO2-FTCS Modified Superhydrophobic PVDF Electrospun Nanofibrous Membrane for Desalination by Direct Contact Membrane Distillation. Desalination 2017, 423, 3–11. [Google Scholar] [CrossRef]
- Nthunya, L.N.; Gutierrez, L.; Verliefde, A.R.; Mhlanga, S.D. Enhanced Flux in Direct Contact Membrane Distillation Using Superhydrophobic PVDF Nanofibre Membranes Embedded with Organically Modified SiO2 Nanoparticles. J. Chem. Technol. Biotechnol. 2019, 94, 2826–2837. [Google Scholar] [CrossRef]
- Nthunya, L.N.; Gutierrez, L.; Derese, S.; Nxumalo, E.N.; Verliefde, A.R.; Mamba, B.B.; Mhlanga, S.D. A Review of Nanoparticle-Enhanced Membrane Distillation Membranes: Membrane Synthesis and Applications in Water Treatment. J. Chem. Technol. Biotechnol. 2019, 94, 2757–2771. [Google Scholar] [CrossRef]
- Kanduč, M.; Netz, R.R. From Hydration Repulsion to Dry Adhesion between Asymmetric Hydrophilic and Hydrophobic Surfaces. Proc. Natl. Acad. Sci. USA 2015, 112, 12338–12343. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.-Q.; Ma, X.-H.; Xu, Z.-L.; Gu, Z.-Y. Superhydrophobic Modification of PVDF–SiO2 Electrospun Nanofiber Membranes for Vacuum Membrane Distillation. RSC Adv. 2015, 5, 67962–67970. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, S.; Wang, L.; Zheng, Y. Lotus Effect in Wetting and Self-Cleaning. Biotribology 2016, 5, 31–43. [Google Scholar] [CrossRef]
- Bonyadi, S.; Chung, T.S. Flux Enhancement in Membrane Distillation by Fabrication of Dual Layer Hydrophilic–Hydrophobic Hollow Fiber Membranes. J. Memb. Sci. 2007, 306, 134–146. [Google Scholar] [CrossRef]
- Kyoungjin An, A.; Lee, E.-J.; Guo, J.; Jeong, S.; Lee, J.-G.; Ghaffour, N. Enhanced Vapor Transport in Membrane Distillation via Functionalized Carbon Nanotubes Anchored into Electrospun Nanofibres OPEN; Nature Publishing Group: Berlin, Germany, 2017. [Google Scholar] [CrossRef] [Green Version]
- Iwasa, J.; Kumazawa, K.; Aoyama, K.; Suzuki, H.; Norimoto, S.; Shimoaka, T.; Hasegawa, T. In Situ Observation of a Self-Assembled Monolayer Formation of Octadecyltrimethoxysilane on a Silicon Oxide Surface Using a High-Speed Atomic Force Microscope. J. Phys. Chem. C 2016, 120, 2807–2813. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lieberman, M. Growth of Ultrasmooth Octadecyltrichlorosilane Self-Assembled Monolayers on SiO2. Langmuir 2003, 19, 1159–1167. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane Distillation: A Comprehensive Review. Desalination 2012, 287, 2–18. [Google Scholar] [CrossRef]
- Eykens, L.; de Sitter, K.; Dotremont, C.; Pinoy, L.; van der Bruggen, B. Membrane Synthesis for Membrane Distillation: A Review. Sep. Purif. Technol. 2017, 182, 36–51. [Google Scholar] [CrossRef]
- Razmjou, A.; Arifin, E.; Dong, G.; Mansouri, J.; Chen, V. Superhydrophobic Modification of TiO2 Nanocomposite PVDF Membranes for Applications in Membrane Distillation. J. Memb. Sci. 2012, 415–416, 850–863. [Google Scholar] [CrossRef]
- HMTShirazi, R.; Mohammadi, T.; Asadi, A.A.; Tofighy, M.A. Electrospun Nanofiber Affinity Membranes for Water Treatment Applications: A Review. J. Water Process Eng. 2022, 47, 102795. [Google Scholar] [CrossRef]
- Milanesi, F.; Cappelletti, G.; Annunziata, R.; Bianchi, C.L.; Meroni, D.; Ardizzone, S. Siloxane-TiO2 Hybrid Nanocomposites. the Structure of the Hydrophobic Layer. J. Phys. Chem. C 2010, 114, 8287–8293. [Google Scholar] [CrossRef]
- Deka, B.J.; Guo, J.; An, A.K. Robust Dual-Layered Omniphobic Electrospun Membrane with Anti-Wetting and Anti-Scaling Functionalised for Membrane Distillation Application. J. Memb. Sci. 2021, 624, 119089. [Google Scholar] [CrossRef]
- Su, C.; Chang, J.; Tang, K.; Gao, F.; Li, Y.; Cao, H. Novel Three-Dimensional Superhydrophobic and Strength-Enhanced Electrospun Membranes for Long-Term Membrane Distillation. Sep. Purif. Technol. 2017, 178, 279–287. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, Z.; Zhong, L.; Song, C.; Shi, W.; Cui, F.; Wang, W. Breathable and Asymmetrically Superwettable Janus Membrane with Robust Oil-Fouling Resistance for Durable Membrane Distillation. J. Memb. Sci. 2018, 563, 602–609. [Google Scholar] [CrossRef]
- Leaper, S.; Abdel-Karim, A.; Gorgojo, P. The Use of Carbon Nanomaterials in Membrane Distillation Membranes: A Review. Front. Chem. Sci. Eng. 2021, 15, 755–774. [Google Scholar] [CrossRef]
- Song, J.; Deng, Q.; Huang, M.; Kong, Z. Carbon Nanotube Enhanced Membrane Distillation for Salty and Dyeing Wastewater Treatment by Electrospinning Technology. Environ. Res. 2022, 204, 111892. [Google Scholar] [CrossRef]
- Ma, W.; Yang, L.; Chen, T.; Ye, Z.; Tufenkji, N.; Rahaman, M.S. Engineering Polymer Forest on Membranes: Tuning Density, Thickness, and Architecture for Biofouling Control. ACS Appl. Polym. Mater. 2020, 2, 4592–4603. [Google Scholar] [CrossRef]
- Pandey, R.P.; Kallem, P.; Hegab, H.M.; Rasheed, P.A.; Banat, F.; Hasan, S.W. Cross-Linked Laminar Graphene Oxide Membranes for Wastewater Treatment and Desalination: A Review. J. Environ. Manag. 2022, 317, 115367. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, Y.; Wong, C.P. Facile Fabrication of Superhydrophobic Octadecylamine-Functionalized Graphite Oxide Film. Langmuir 2010, 26, 16110–16114. [Google Scholar] [CrossRef]
- Bae, J.; Baek, I.; Choi, H. Mechanically Enhanced PES Electrospun Nanofiber Membranes (ENMs) for Microfiltration: The Effects of ENM Properties on Membrane Performance. Water Res. 2016, 105, 406–412. [Google Scholar] [CrossRef]
- Fouladivanda, M.; Karimi-Sabet, J.; Abbasi, F.; Moosavian, M.A. Step-by-Step Improvement of Mixed-Matrix Nanofiber Membrane with Functionalized Graphene Oxide for Desalination via Air-Gap Membrane Distillation. Sep. Purif. Technol. 2021, 256, 117809. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Yang, Y.; Wang, X.; Zhu, M.; Hsiao, B.S. Dual-Biomimetic Superhydrophobic Electrospun Polystyrene Nanofibrous Membranes for Membrane Distillation. ACS Appl. Mater. Interfaces 2014, 6, 2423–2430. [Google Scholar] [CrossRef]
- Liao, Y.; Loh, C.H.; Wang, R.; Fane, A.G. Electrospun Superhydrophobic Membranes with Unique Structures for Membrane Distillation. ACS Appl. Mater. Interfaces 2014, 6, 16035–16048. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, R.; Fane, A.G. Fabrication of Bioinspired Composite Nanofiber Membranes with Robust Superhydrophobicity for Direct Contact Membrane Distillation. Environ. Sci. Technol. 2014, 48, 6335–6341. [Google Scholar] [CrossRef]
- Li, X.; Deng, L.; Yu, X.; Wang, M.; Wang, X.; García-Payo, C.; Khayet, M. A Novel Profiled Core–Shell Nanofibrous Membrane for Wastewater Treatment by Direct Contact Membrane Distillation. J. Mater. Chem. A Mater. 2016, 4, 14453–14463. [Google Scholar] [CrossRef]
- Ahmad, A.; Azam, T. Bottled and Packaged Water; Water Purification Technologies: Woodridge, IL, USA, 2019; pp. 83–120. [Google Scholar] [CrossRef]
- Shiraishi, S. Activated Carbons. In Encyclopedia of Applied Electrochemistry; Springer: New York, NY, USA, 2014; pp. 1–7. [Google Scholar] [CrossRef]
- Priyadarsini, S.; Mohanty, S.; Mukherjee, S.; Basu, S.; Mishra, M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostructure Chem. 2018, 8, 123–137. [Google Scholar] [CrossRef] [Green Version]
- Horseman, T.; Yin, Y.; Christie, K.S.; Wang, Z.; Tong, T.; Lin, S. Wetting, Scaling, and Fouling in Membrane Distillation: State-of-the-Art Insights on Fundamental Mechanisms and Mitigation Strategies. ACS EST Eng. 2021, 1, 117–140. [Google Scholar] [CrossRef]
- Koo, J.W.; Ho, J.S.; Tan, Y.Z.; Tan, W.S.; An, J.; Zhang, Y.; Chua, C.K.; Chong, T.H. Fouling Mitigation in Reverse Osmosis Processes with 3D Printed Sinusoidal Spacers. Water Res. 2021, 207, 117818. [Google Scholar] [CrossRef]
- Kim, Y.-B.; Lee, H.-S.; Francis, L.; Kim, Y.-D. Innovative Swirling Flow-Type Microbubble Generator for Multi-Stage DCMD Desalination System: Focus on the Two-Phase Flow Pattern, Bubble Size Distribution, and Its Effect on MD Performance. J. Memb. Sci. 2019, 588, 117197. [Google Scholar] [CrossRef]
- Kim, Y.-D.; Francis, L.; Lee, J.-G.; Ham, M.-G.; Ghaffour, N. Effect of Non-Woven Net Spacer on a Direct Contact Membrane Distillation Performance: Experimental and Theoretical Studies. J. Memb. Sci. 2018, 564, 193–203. [Google Scholar] [CrossRef]
- Alsaadi, A.S.; Alpatova, A.; Lee, J.-G.; Francis, L.; Ghaffour, N. Flashed-Feed VMD Configuration as a Novel Method for Eliminating Temperature Polarization Effect and Enhancing Water Vapor Flux. J. Memb. Sci. 2018, 563, 175–182. [Google Scholar] [CrossRef]
- Ngo, M.T.T.; Bui, X.T.; Vo, T.K.Q.; Doan, P.V.M.; Nguyen, H.N.M.; Nguyen, T.H.; Nguyen, H.V.; Vo, T.D.H. Mitigation of Thermal Energy in Membrane Distillation for Environmental Sustainability. Curr. Pollut. Rep. 2023, 1–19. [Google Scholar] [CrossRef]
- Francis, L.; Ghaffour, N.; Alsaadi, A. Submerged Membrane Distillation for Desalination of Water. U.S. Patent US20160310900A1, 27 October 2016. pp. 1–16. [Google Scholar]
- Barambu, N.U.; Bilad, M.R.; Wibisono, Y.; Jaafar, J.; Mahlia, T.M.I.; Khan, A.L. Membrane Surface Patterning as a Fouling Mitigation Strategy in Liquid Filtration: A Review. Polymers 2019, 11, 1687. [Google Scholar] [CrossRef] [Green Version]
- Criscuoli, A.; Carnevale, M.C. Localized Heating to Improve the Thermal Efficiency of Membrane Distillation Systems. Energies 2022, 15, 5990. [Google Scholar] [CrossRef]
- Zhang, H.; Lamb, R.; Lewis, J. Engineering Nanoscale Roughness on Hydrophobic Surface—Preliminary Assessment of Fouling Behaviour. Sci. Technol. Adv. Mater. 2005, 6, 236–239. [Google Scholar] [CrossRef]
- Abid, H.S.; Johnson, D.J.; Hashaikeh, R.; Hilal, N. A Review of Efforts to Reduce Membrane Fouling by Control of Feed Spacer Characteristics. Desalination 2017, 420, 384–402. [Google Scholar] [CrossRef] [Green Version]
- Gong, B.; Yang, H.; Wu, S.; Xiong, G.; Yan, J.; Cen, K.; Bo, Z.; Ostrikov, K. Graphene Array-Based Anti-Fouling Solar Vapour Gap Membrane Distillation with High Energy Efficiency. Nanomicro Lett. 2019, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hou, D.; Ding, C.; Li, K.; Lin, D.; Wang, D.; Wang, J. A Novel Dual-Layer Composite Membrane with Underwater-Superoleophobic/Hydrophobic Asymmetric Wettability for Robust Oil-Fouling Resistance in Membrane Distillation Desalination. Desalination 2018, 428, 240–249. [Google Scholar] [CrossRef]
- Francis, L.; Ghaffour, N.; Amy, G. Fabrication and Characterization of Functionally Graded Poly(Vinylidine Fluoride)-Silver Nanocomposite Hollow Fibers for Sustainable Water Recovery. Sci. Adv. Mater. 2014, 6, 2659–2665. [Google Scholar] [CrossRef]
- Liao, Y.; Zheng, G.; Huang, J.J.; Tian, M.; Wang, R. Development of Robust and Superhydrophobic Membranes to Mitigate Membrane Scaling and Fouling in Membrane Distillation. J. Memb. Sci. 2020, 601, 117962. [Google Scholar] [CrossRef]
- Hammami, M.A.; Croissant, J.G.; Francis, L.; Alsaiari, S.K.; Anjum, D.H.; Ghaffour, N.; Khashab, N.M. Engineering Hydrophobic Organosilica Nanoparticle-Doped Nanofibers for Enhanced and Fouling Resistant Membrane Distillation. ACS Appl. Mater. Interfaces 2017, 9, 1737–1745. [Google Scholar] [CrossRef] [Green Version]
- Hammami, M.A.; Francis, L.; Croissant, J.; Ghaffour, N.; Alsaiari, S.; Niveen, M. KHASHAB Periodic Mesoporous Organosilica-Doped Nanocomposite Membranes and Systems Including Same. U.S. Patent US11,266,867B2, 8 March 2022. pp. 1–33. [Google Scholar]
- Chiao, Y.-H.; Yap Ang, M.B.M.; Huang, Y.-X.; DePaz, S.S.; Chang, Y.; Almodovar, J.; Wickramasinghe, S.R. A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation. Membranes 2020, 10, 402. [Google Scholar] [CrossRef]
- Nthunya, L.N.; Gutierrez, L.; Lapeire, L.; Verbeken, K.; Zaouri, N.; Nxumalo, E.N.; Mamba, B.B.; Verliefde, A.R.; Mhlanga, S.D. Fouling-Resistant PVDF Nanofibre Membranes for the Desalination of Brackish Water in Membrane Distillation. Sep. Purif. Technol. 2019, 228, 115793. [Google Scholar] [CrossRef]
- Essalhi, M.; Khayet, M.; Tesfalidet, S.; Alsultan, M.; Tavajohi, N. Desalination by Direct Contact Membrane Distillation Using Mixed Matrix Electrospun Nanofibrous Membranes with Carbon-Based Nanofillers: A Strategic Improvement. Chem. Eng. J. 2021, 426, 131316. [Google Scholar] [CrossRef]
- Francis, L.; Hilal, N. Electrosprayed CNTs on Electrospun PVDF-Co-HFP Membrane for Robust Membrane Distillation. Nanomaterials 2022, 12, 4331. [Google Scholar] [CrossRef]
- Kebria, M.R.S.; Rahimpour, A.; Salestan, S.K.; Seyedpour, S.F.; Jafari, A.; Banisheykholeslami, F.; Tavajohi Hassan Kiadeh, N. Hyper-Branched Dendritic Structure Modified PVDF Electrospun Membranes for Air Gap Membrane Distillation. Desalination 2020, 479, 114307. [Google Scholar] [CrossRef]
- Leaper, S.; Avendaño Cáceres, E.O.; Luque-Alled, J.M.; Cartmell, S.H.; Gorgojo, P. POSS-Functionalized Graphene Oxide/PVDF Electrospun Membranes for Complete Arsenic Removal Using Membrane Distillation. ACS Appl. Polym. Mater. 2021, 3, 1854–1865. [Google Scholar] [CrossRef]
- Lu, C.; Su, C.; Cao, H.; Horseman, T.; Duan, F.; Li, Y. Nanoparticle-Free and Self-Healing Amphiphobic Membrane for Anti-Surfactant-Wetting Membrane Distillation. J. Environ. Sci. 2021, 100, 298–305. [Google Scholar] [CrossRef]
- Duong, H.C.; Chuai, D.; Woo, Y.C.; Shon, H.K.; Nghiem, L.D.; Sencadas, V. A Novel Electrospun, Hydrophobic, and Elastomeric Styrene-Butadiene-Styrene Membrane for Membrane Distillation Applications. J. Memb. Sci. 2018, 549, 420–427. [Google Scholar] [CrossRef]
- An, X.; Liu, Z.; Hu, Y. Amphiphobic Surface Modification of Electrospun Nanofibrous Membranes for Anti-Wetting Performance in Membrane Distillation. Desalination 2018, 432, 23–31. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Q.; Li, Z.; Li, J.; He, R.; Xue, K.; Liu, S. Preparation and Modification of PVDF Membrane and Study on Its Anti-Fouling and Anti-Wetting Properties. Water 2022, 14, 1704. [Google Scholar] [CrossRef]
- Francis, L.; Balakrishnan, A.; Sanosh, K.P.; Marsano, E. Characterization and Tensile Strength of HPC-PEO Composite Fibers Produced by Electrospinning. Mater. Lett. 2010, 64, 1806–1808. [Google Scholar] [CrossRef]
- Nunes, S.P.; Maab, H.; Francis, L. Polyazole Membrane for Water Purification. EP 2626127A3, 14 August 2013. [Google Scholar]
- Maab, H.; Francis, L.; Al-saadi, A.; Aubry, C.; Ghaffour, N.; Amy, G.; Nunes, S.P. Synthesis and Fabrication of Nanostructured Hydrophobic Polyazole Membranes for Low-Energy Water Recovery. J. Memb. Sci. 2012, 423–424, 11–19. [Google Scholar] [CrossRef]
- Castillo, E.H.C.; Thomas, N.; Al-Ketan, O.; Rowshan, R.; Abu Al-Rub, R.K.; Nghiem, L.D.; Vigneswaran, S.; Arafat, H.A.; Naidu, G. 3D Printed Spacers for Organic Fouling Mitigation in Membrane Distillation. J. Memb. Sci. 2019, 581, 331–343. [Google Scholar] [CrossRef]
- Khalil, A.; Francis, L.; Hashaikeh, R.; Hilal, N. 3D Printed Membrane-integrated Spacers for Enhanced Antifouling in Ultrafiltration. J. Appl. Polym. Sci. 2022, 139, e53019. [Google Scholar] [CrossRef]
- Contreras-Martínez, J.; García-Payo, C.; Khayet, M. Electrospun Nanostructured Membrane Engineering Using Reverse Osmosis Recycled Modules: Membrane Distillation Application. Nanomaterials 2021, 11, 1601. [Google Scholar] [CrossRef]
- Francis, L.; Hilal, N. Electrohydrodynamic Atomization of CNT on PTFE Membrane for Scaling Resistant Membranes in Membrane Distillation. NPJ Clean Water 2023, 6, 15. [Google Scholar] [CrossRef]
Electrospinning Parameter | Effects on the Electrospinning Process | Remarks | Reference |
---|---|---|---|
Polymer Type/Solvent | Suitable polymers and solvents are selected for respective polymeric solutions used for electrospinning. Optimization of viscosity, concentration, conductivity, and surface tension are required to form bead-free or beaded nanofibers as per required membrane characteristics. | The chemical and physical properties of resultant ENMs can roughly be predicted by considering the properties of the polymer solution which is intended to be utilized for electrospinning. | [65] |
Molecular Weight of Polymer | The molecular weight of the polymer affects the resultant electrospinning polymer solution properties which can be optimized by the addition of acid/salt/suitable guest molecules to obtain the desired morphology of resultant nanofibers. | The rheology of electrospinning polymer solution is directly attributed to the molecular weight, which is advantageous for electrospinning optimization with regard to the surface properties of membranes. | [66] |
Polymer Concentration | Polymer concentration is the key factor to set viscosity and conductivity for a smooth electrospinning process, where synchronization between the voltage supply and polymer concentration is very important. | Concentration may result in the formation of fibers with small to large average diameters. The pore size of the ENMs can be optimized by tuning the fiber diameter and membrane thickness. | [23,24] |
Conductivity | The conductivity of the electrospinning polymer solution affects the formation of the Taylor cone. Increased conductivity may form finer fibers at low voltage supply or cause tip blockage due to charge accumulation. | The dope solution with higher conductivity needs only a low-voltage supply. Comparatively finer fibers can be formed when a solution with higher conductivity is utilized for electrospinning. | [24,67] |
Surface Tension | Surface tension affects the proper fabrication of beaded or bead-free nanofibers. | Depending on the end-use, smooth fibers or fibers with beads can be prepared by varying surface tension. Beaded or beadless surface morphology has an impact on their hydrophobicity or hydrophilicity. | [53] |
Viscosity | Increased polymeric concentration will increase the viscosity, and maximum/minimum viscosity needs to be optimized. | Maximum viscosity of solution regardless of bead formation will be beneficial. | [68] |
Voltage Supply | The voltage supply normally used for electrospinning is about 10–30 kV, which sets the speed of fibers coming out of the tip during electrospinning. | The greater the voltage supplied, the higher will be the concentration of electrons pushing the polymer solution toward the collector frequently. Optimized voltage will be helpful to reduce the cost of resultant ENMs and reduce the chances of tip blockage and formation of polymer waste. | [66,69] |
Tip to collector distance | Increased tip-collector distance plays an important role in stretching the nanofiber and making nanofibers finer. | Depending on the end-use, the tip-to-collector distance can be increased/decreased to get fibers with the desired average diameter | [69] |
Humidity | Increased humidity may form a circular porous network in fine electrospun nanofibers and may lead to saturated porosity; thus, optimization is needed depending on the end-use. It also resists the solidification of polymer solutions and controls the consistency of the electrospinning process. | Optimum humidity offers smooth electrospinning. This will resist tip blockage while electrospinning and may offer frequency of fiber diameters in a smaller range with a uniform morphology. | [68,70] |
Temperature | The rate of solvent evaporation is directly proportional to an increased temperature during electrospinning, which may affect the average thickness of fibers produced. | For less volatile or non-volatile solvents, temperature plays a key role in running a smooth electrospinning process. In addition, the thickness of nanofibers can be tuned by varying the temperature to get ENMs with desired characteristics. | [71] |
Feed rate | Feed rate optimization is important to achieve smooth electrospinning with beads or bead-free electrospun fibers. In most cases, the optimum feed rate is 0.5–2.0 mL per hour. | Feed rate is an important parameter which to resist tip blockage during the electrospinning process. Optimized feed rate may offer uniform beaded/bead-free fiber morphology and fibers with desired diameter. | [65,72] |
Membrane | Modification | Remarks | Configuration | Reference |
---|---|---|---|---|
Polyimide | Organo-silica mesoporous POSS | Fouling-resistant MD membrane with enhanced flux | DCMD | [142,143] |
PVDF | Electrospraying of PVDF/PDMS/Silica | Robust and superhydrophobic membranes with anti-fouling and anti-scaling properties | DCMD | [141] |
PVDF | Zwitterionic bilayer membrane | Produced water treatment with anti-wetting, and anti-fouling characteristics | DCMD | [144] |
PVDF | Silica + AgNP + carbon nanotubes | Membrane with superhydrophobic, anti-fouling, and anti-wetting properties | DCMD VMD | [99,145] |
PVDF | Mixed matrix with carbon-based fillers | Dual- and triple-layer superhydrophobic membranes with anti-wetting properties | DCMD | [146] |
PVDF-HFP | Electrospraying of carbon nanotubes | Membranes with anti-scaling properties and enhanced TPC | DCMD | [147] |
PVDF | Hyperbranched dendritic structure with nitrilotriacetic acid | Stable flux and anti-fouling characteristics | AGMD | [148] |
PVDF | POSS functionalized graphene oxide | Anti-fouling membranes for arsenic removal | AGMD | [149] |
PVDF-HFP | Functionalized POSS | Amphiphobic, anti-surfactant-wetting membrane | DCMD | [150] |
Styrene–Butadiene–Styrene | Not applicable | Elastomeric membrane with anti-scaling and anti-fouling properties | DCMD | [151,152] |
PVDF | Silane—chemical treatment | Anti-fouling and anti-wetting MD membranes | DCMD | [153] |
PVDF | Silica NP | Three-dimensional superhydrophobic wetting-resistance ENMs with improved flux | DCMD | [111] |
PVDF-HFP | ZnO NP | Dual-layered robust membranes with anti-wetting and anti-scaling characteristics | DCMD | [110] |
PVDF | Silica NP | Robust oil-fouling resistant and anti-wetting ENMs | DCMD | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatri, M.; Francis, L.; Hilal, N. Modified Electrospun Membranes Using Different Nanomaterials for Membrane Distillation. Membranes 2023, 13, 338. https://doi.org/10.3390/membranes13030338
Khatri M, Francis L, Hilal N. Modified Electrospun Membranes Using Different Nanomaterials for Membrane Distillation. Membranes. 2023; 13(3):338. https://doi.org/10.3390/membranes13030338
Chicago/Turabian StyleKhatri, Muzamil, Lijo Francis, and Nidal Hilal. 2023. "Modified Electrospun Membranes Using Different Nanomaterials for Membrane Distillation" Membranes 13, no. 3: 338. https://doi.org/10.3390/membranes13030338
APA StyleKhatri, M., Francis, L., & Hilal, N. (2023). Modified Electrospun Membranes Using Different Nanomaterials for Membrane Distillation. Membranes, 13(3), 338. https://doi.org/10.3390/membranes13030338