Comparison of Energy Efficiency between Atmospheric Batch Pressure-Retarded Osmosis and Single-Stage Pressure-Retarded Osmosis
Abstract
:1. Introduction
2. Methods
2.1. Configuration and Operation
2.2. Derivation of Energy Production
2.2.1. Specific Gibbs Free Energy
2.2.2. Energy Production Performance of SS-PRO
2.2.3. Energy Production Performance of AB-PRO
3. Results and Discussions
3.1. Ideal Energy Production Performance
3.2. Impact of Inefficiencies
3.2.1. Overall Impact of Inefficiencies
3.2.2. Impact of Pump Efficiency
3.2.3. Impact of Energy Recovery Device Efficiency
3.2.4. Impact of Pressure Loss
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
PRO | Pressure-retarded osmosis |
RED | Reverse electrodialysis |
DS | Draw solution |
FS | Feed solution |
SS-PRO | Single-stage pressure-retarded osmosis |
BPRO | Batch pressure-retarded osmosis |
AB-PRO | Atmospheric batch pressure-retarded osmosis |
SEP | Specific energy production |
EPE | Energy production efficiency |
ERD | Energy recovery device |
PX | Pressure exchanger |
HT | Hydro-turbine |
UP | Under-pressurization |
Nomenclature
Symbol | Meaning | Unit |
Thermodynamic maximum specific energy production | kWh·m−3 | |
Specific energy production of single-stage PRO | kWh·m−3 | |
Specific energy production of atmospheric batch PRO | kWh·m−3 | |
Ideal specific energy production of single-stage PRO | kWh·m−3 | |
Ideal specific energy production of atmospheric batch PRO | kWh·m−3 | |
Gibbs free energy of mixing | kWh·m−3 | |
Ideal gas constant | J·K−1·mol−1 | |
Number of ionic species | - | |
Absolute temperature | K | |
Volumetric fraction of feed solution | - | |
Optimal volumetric fraction of feed solution | - | |
Water recovery | - | |
Per-cycle water recovery | - | |
Initial volume of draw solution | m3 | |
Initial volume of feed solution | m3 | |
Total water permeation volume | m3 | |
Circulation rate of draw solution | m3·s−1 | |
Circulation rate of feed solution | m3·s−1 | |
Flow rate of permeate | m3/s | |
Osmotic pressure | bar | |
Initial osmotic pressure of draw solution | bar | |
Initial osmotic pressure of feed solution | bar | |
Osmotic pressure difference | bar | |
Pump efficiency | - | |
Pressure exchanger efficiency | - | |
Energy recovery device efficiency | - | |
Constant hydraulic pressure | bar | |
Constant hydraulic pressure in co-current flow mode | bar | |
Constant hydraulic pressure in counter-current flow mode | bar | |
Hydraulic pressure at time t | bar | |
Pressure loss | bar | |
Pressure loss in draw solution side | bar | |
Pressure loss in feed solution side | bar | |
Ratio of to to | - | |
Ratio of to | ||
Energy consumption by pumping | kWh | |
Energy recovered by pressure exchanger | kWh | |
Energy consumption by compensating pressure loss | kWh | |
Energy production/recovery by energy recovery device | kWh |
Appendix A. The Optimal Volumetric Fraction
Appendix B. Derivations of Specific Energy Production
Appendix B.1. SS-PRO
- (1)
- Energy consumption by pumping ()
- (2)
- Energy recovered by the pressure exchanger ()
- (3)
- Energy consumption by compensating pressure loss ()
- (4)
- Energy production by an energy recovery device ()
Appendix B.2. AB-PRO
- (1)
- Energy consumption by pumping ()
- (2)
- Energy recovered by pressure exchanger ()
- (3)
- Energy consumption by compensating pressure loss ()
- (4)
- Energy production by energy recovery device ()
Appendix C. Specific Energy Production Normalized by the Initial Volume of Draw Solution
References
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Solomon, S.; Daniel, J.S.; Sanford, T.J.; Murphy, D.M.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Persistence of climate changes due to a range of greenhouse gases. Proc. Natl. Acad. Sci. USA 2010, 107, 18354–18359. [Google Scholar] [CrossRef] [Green Version]
- Wick, G.L. Power from salinity gradients. Energy 1978, 3, 95–100. [Google Scholar] [CrossRef]
- Yip, N.Y.; Brogioli, D.; Hamelers, H.V.; Nijmeijer, K. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects. Environ. Sci. Technol. 2016, 50, 12072–12094. [Google Scholar] [CrossRef]
- Alvarez-Silva, O.A.; Osorio, A.F.; Winter, C. Practical global salinity gradient energy potential. Renew. Sustain. Energy Rev. 2016, 60, 1387–1395. [Google Scholar] [CrossRef]
- Liu, S.; Song, W.; Meng, M.; Xie, M.; She, Q.; Zhao, P.; Wang, X. Engineering pressure retarded osmosis membrane bioreactor (PRO-MBR) for simultaneous water and energy recovery from municipal wastewater. Sci. Total Environ. 2022, 826, 154048. [Google Scholar] [CrossRef] [PubMed]
- Ramon, G.Z.; Feinberg, B.J.; Hoek, E.M.V. Membrane-based production of salinity-gradient power. Energy Environ. Sci. 2011, 4, 4423–4434. [Google Scholar] [CrossRef]
- Gonzales, R.R.; Abdel-Wahab, A.; Adham, S.; Han, D.S.; Phuntsho, S.; Suwaileh, W.; Hilal, N.; Shon, H.K. Salinity gradient energy generation by pressure retarded osmosis: A review. Desalination 2021, 500, 114841. [Google Scholar] [CrossRef]
- She, Q.; Jin, X.; Tang, C.Y. Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute diffusion. J. Membr. Sci. 2012, 401–402, 262–273. [Google Scholar] [CrossRef]
- Post, J.W.; Hamelers, H.V.M.; Buisman, C.J.N. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system. Environ. Sci. Technol. 2008, 42, 5785–5790. [Google Scholar] [CrossRef]
- Mei, Y.; Tang, C.Y. Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination 2018, 425, 156–174. [Google Scholar] [CrossRef]
- Yip, N.Y.; Elimelech, M. Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis. Environ. Sci. Technol. 2014, 48, 11002–11012. [Google Scholar] [CrossRef] [PubMed]
- Post, J.W.; Veerman, J.; Hamelers, H.V.M.; Euverink, G.J.W.; Metz, S.J.; Nymeijer, K.; Buisman, C.J.N. Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis. J. Membr. Sci. 2007, 288, 218–230. [Google Scholar] [CrossRef] [Green Version]
- Ju, J.; Choi, Y.; Lee, S.; Jeong, N. Comparison of fouling characteristics between reverse electrodialysis (RED) and pressure retarded osmosis (PRO). Desalination 2021, 497, 114648. [Google Scholar] [CrossRef]
- Crown Princess of Norway to Open the World’s First Osmotic Power Plant. Available online: http://www.statkraft.com/presscentre/press-releases/crown-princess-mette-marit-to-open-the-worlds-first-osmotic-power-plant.aspx (accessed on 1 March 2021).
- Achilli, A.; Childress, A.E. Pressure retarded osmosis: From the vision of Sidney Loeb to the first prototype installation—Review. Desalination 2010, 261, 205–211. [Google Scholar] [CrossRef]
- Straub, A.P.; Lin, S.; Elimelech, M. Module-scale analysis of pressure retarded osmosis: Performance limitations and implications for full-scale operation. Environ. Sci. Technol. 2014, 48, 12435–12444. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S. Practical limit of energy production from seawater by full-scale pressure retarded osmosis. Energy 2018, 158, 373–382. [Google Scholar] [CrossRef]
- Straub, A.P.; Deshmukh, A.; Elimelech, M. Pressure-retarded osmosis for power generation from salinity gradients: Is it viable? Energy Environ. Sci. 2016, 9, 31–48. [Google Scholar] [CrossRef]
- He, W.; Wang, Y.; Shaheed, M.H. Modelling of osmotic energy from natural salt gradients due to pressure retarded osmosis: Effects of detrimental factors and flow schemes. J. Membr. Sci. 2014, 471, 247–257. [Google Scholar] [CrossRef]
- Yang, W.; Song, L.; Zhao, J.; Chen, Y.; Hu, B. Numerical analysis of performance of ideal counter-current flow pressure retarded osmosis. Desalination 2018, 433, 41–47. [Google Scholar] [CrossRef]
- Touati, K.; Tadeo, F.; Elfil, H. Osmotic energy recovery from Reverse Osmosis using two-stage Pressure Retarded Osmosis. Energy 2017, 132, 213–224. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Wang, Y.; Shaheed, M.H. Enhanced energy generation and membrane performance by two-stage pressure retarded osmosis (PRO). Desalination 2015, 359, 186–199. [Google Scholar] [CrossRef]
- Zhu, A.; Christofides, P.D.; Cohen, Y. Effect of thermodynamic restriction on energy cost optimization of RO membrane water desalination. Ind. Eng. Chem. Res. 2009, 48, 6010–6021. [Google Scholar] [CrossRef]
- Lin, S.; Elimelech, M. Staged reverse osmosis operation: Configurations, energy efficiency, and application potential. Desalination 2015, 366, 9–14. [Google Scholar] [CrossRef]
- Li, M. Dynamic Operation of Batch Reverse Osmosis and Batch Pressure Retarded Osmosis. Ind. Eng. Chem. Res. 2020, 59, 3097–3108. [Google Scholar] [CrossRef]
- Werber, J.R.; Deshmukh, A.; Elimelech, M. Can batch or semi-batch processes save energy in reverse-osmosis desalination? Desalination 2017, 402, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Sim, V.S.T.; She, Q.; Chong, T.H.; Tang, C.Y.; Fane, A.G.; Krantz, W.B. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO). Membranes 2013, 3, 98–125. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhou, Z.; Li, J.; Tang, Q.; Hu, Y. Investigation of the reduced specific energy consumption of the RO-PRO hybrid system based on temperature-enhanced pressure retarded osmosis. J. Membr. Sci. 2019, 581, 439–452. [Google Scholar] [CrossRef]
- Lee, S.; Park, T.-S.; Park, Y.-G.; Lee, W.-I.; Kim, S.-H. Toward scale-up of seawater reverse osmosis (SWRO)–pressure retarded osmosis (PRO) hybrid system: A case study of a 240 m3/day pilot plant. Desalination 2020, 491, 114429. [Google Scholar] [CrossRef]
- Mo, Z.; Li, D.; She, Q. Semi-closed reverse osmosis (SCRO): A concise, flexible, and energy-efficient desalination process. Desalination 2022, 544, 116147. [Google Scholar] [CrossRef]
- Lin, S.; Straub, A.P.; Elimelech, M. Thermodynamic limits of extractable energy by pressure retarded osmosis. Energy Environ. Sci. 2014, 7, 2706–2714. [Google Scholar] [CrossRef]
- Madsen, H.T.; Bruun Hansen, T.; Nakao, T.; Goda, S.; Søgaard, E.G. Combined geothermal heat and pressure retarded osmosis as a new green power system. Energy Convers. Manag. 2020, 226, 113504. [Google Scholar] [CrossRef]
- Manzoor, H.; Selam, M.A.; Abdur Rahman, F.B.; Adham, S.; Castier, M.; Abdel-Wahab, A. A tool for assessing the scalability of pressure-retarded osmosis (PRO) membranes. Renew. Energy 2020, 149, 987–999. [Google Scholar] [CrossRef]
- Huang, B.; Pu, K.; Wu, P.; Wu, D.; Leng, J. Design, Selection and Application of Energy Recovery Device in Seawater Desalination: A Review. Energies 2020, 13, 4150. [Google Scholar] [CrossRef]
- Bharadwaj, D.; Struchtrup, H. Large scale energy storage using multistage osmotic processes: Approaching high efficiency and energy density. Sustain. Energy Fuels 2017, 1, 599–614. [Google Scholar] [CrossRef]
- Bargiacchi, E.; Orciuolo, F.; Ferrari, L.; Desideri, U. Use of Pressure-Retarded-Osmosis to reduce Reverse Osmosis energy consumption by exploiting hypersaline flows. Energy 2020, 211, 118969. [Google Scholar] [CrossRef]
- She, Q.; Hou, D.; Liu, J.; Tan, K.H.; Tang, C.Y. Effect of feed spacer induced membrane deformation on the performance of pressure retarded osmosis (PRO): Implications for PRO process operation. J. Membr. Sci. 2013, 445, 170–182. [Google Scholar] [CrossRef]
- Benjamin, J.; Al Mashrafi, S.; Tejada-Martinez, A.; Diaz-Elsayed, N.; Arias, M.E.; Zhang, Q. Optimizing pressure retarded osmosis spacer geometries: An experimental and CFD modeling study. J. Membr. Sci. 2022, 647, 120284. [Google Scholar] [CrossRef]
Term a | Ideal Case | Practical Case | Reference | ||
---|---|---|---|---|---|
Baseline | Other Scenarios | ||||
1 | 0.85 | 0.80–0.95 | [31,33] | ||
1 | 0.98 | 0.98 | [27,34] | ||
b | 1 | 0.90 | HT: 0.85–0.95 | [35,36,37] | |
PX: 0.98 | |||||
() c | SS-PRO | 0 bar | 1.4 bar | 0.7–3.5 bar | [18,38] |
AB-PRO | 0 bar | 0.7 bar | 0.1–0.5 bar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Mo, Z.; She, Q. Comparison of Energy Efficiency between Atmospheric Batch Pressure-Retarded Osmosis and Single-Stage Pressure-Retarded Osmosis. Membranes 2023, 13, 354. https://doi.org/10.3390/membranes13030354
Li D, Mo Z, She Q. Comparison of Energy Efficiency between Atmospheric Batch Pressure-Retarded Osmosis and Single-Stage Pressure-Retarded Osmosis. Membranes. 2023; 13(3):354. https://doi.org/10.3390/membranes13030354
Chicago/Turabian StyleLi, Dan, Zijing Mo, and Qianhong She. 2023. "Comparison of Energy Efficiency between Atmospheric Batch Pressure-Retarded Osmosis and Single-Stage Pressure-Retarded Osmosis" Membranes 13, no. 3: 354. https://doi.org/10.3390/membranes13030354
APA StyleLi, D., Mo, Z., & She, Q. (2023). Comparison of Energy Efficiency between Atmospheric Batch Pressure-Retarded Osmosis and Single-Stage Pressure-Retarded Osmosis. Membranes, 13(3), 354. https://doi.org/10.3390/membranes13030354