Removal of Typical PPCPs by Reverse Osmosis Membranes: Optimization of Treatment Process by Factorial Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Device
2.1.1. Target Pollutants
2.1.2. RO Device
2.2. Experimental Process Design
2.2.1. PPCP Removal Experiment
2.2.2. PPCPs Dynamic Adsorption Experiment
2.3. Analysis and Determination Method
2.3.1. PPCPs Concentration Determination
2.3.2. Calculation of Permeation Flux and PPCPs Dynamic Adsorption Amount
2.4. Experiment Design and Optimization
3. Results and Discussion
3.1. Influence of Different Conditions on the Removal Rate and Permeation Flux of PPCPs
3.1.1. PPCP Removal Rates
3.1.2. Permeation Flux
3.2. Influence of Different Conditions on the Adsorption of PPCPs on the Membrane
3.3. Reverse Osmosis Process Optimization
3.3.1. Factorial Design Experiment
3.3.2. Analysis of Variance (ANOVA)
3.3.3. Main and Interaction Effect
3.3.4. Operation Condition Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
C0 (μg/L) | Qe (μg/cm2) | K (h−1) | R2 | |
---|---|---|---|---|
IBU | 500 | 4.45 | 3.78 | 0.994 |
1000 | 7.77 | 2.35 | 0.953 | |
CBZ | 500 | 3.71 | 0.50 | 0.977 |
1000 | 4.48 | 1.44 | 0.952 | |
TCS | 500 | 2.25 | 1.05 | 0.899 |
1000 | 2.81 | 1.24 | 0.887 |
P (bar) | Qe (μg/cm2) | K (h−1) | R2 | |
---|---|---|---|---|
IBU | 8 | 5.32 | 3.37 | 0.939 |
12 | 4.45 | 3.78 | 0.995 | |
16 | 3.69 | 1.01 | 0.901 | |
20 | 2.69 | 1.14 | 0.989 | |
CBZ | 8 | 3.71 | 0.50 | 0.977 |
12 | 2.50 | 1.24 | 0.954 | |
16 | 1.86 | 2.26 | 0.928 | |
20 | 1.75 | 3.03 | 0.965 | |
TCS | 8 | 4.63 | 0.57 | 0.844 |
12 | 3.95 | 0.60 | 0.812 | |
16 | 2.80 | 2.58 | 0.915 | |
20 | 2.25 | 1.05 | 0.899 |
pH | Qe (μg/cm2) | K (h−1) | R2 | |
---|---|---|---|---|
IBU | 3 | 17.51 | 1.65 | 0.982 |
5 | 4.93 | 0.27 | 0.967 | |
7 | 3.74 | 3.58 | 0.972 | |
9 | 2.39 | 0.26 | 0.969 | |
11 | 1.82 | 4.26 | 0.983 | |
CBZ | 3 | 1.64 | 2.22 | 0.975 |
5 | 1.80 | 1.83 | 0.975 | |
7 | 1.93 | 1.53 | 0.897 | |
9 | 1.76 | 3.39 | 0.939 | |
11 | 2.12 | 2.29 | 0.950 | |
TCS | 3 | 4.34 | 3.22 | 0.897 |
5 | 3.18 | 0.60 | 0.981 | |
7 | 3.09 | 0.94 | 0.931 | |
9 | 2.98 | 0.34 | 0.971 | |
11 | 2.27 | 0.40 | 0.857 |
References
- Carballa, M.; Omil, F.; Ternes, T.; Lema, J.M. Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Res. 2007, 41, 2139–2150. [Google Scholar] [CrossRef] [PubMed]
- Narumiya, M.; Nakada, N.; Yamashita, N.; Tanaka, H. Phase distribution and removal of pharmaceuticals and personal care products during anaerobic sludge digestion. J. Hazard. Mater. 2013, 260, 305–312. [Google Scholar] [CrossRef]
- Park, J.; Yamashita, N.; Park, C.; Shimono, T.; Takeuchi, D.M.; Tanaka, H. Removal characteristics of pharmaceuticals and personal care products: Comparison between membrane bioreactor and various biological treatment processes. Chemosphere 2017, 179, 347–358. [Google Scholar] [CrossRef]
- Lin, Y.L.; Tsai, C.C.; Zheng, N.Y. Improving the organic and biological fouling resistance and removal of pharmaceutical and personal care products through nanofiltration by using in situ radical graft polymerization. Sci. Total Environ. 2018, 635, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Radjenovic, J.; Petrovic, M.; Ventura, F.; Barcelo, D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 2008, 42, 3601–3610. [Google Scholar] [CrossRef]
- Yuksel, S.; Kabay, N.; Yuksel, M. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. J. Hazard. Mater. 2013, 263 Pt 2, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Sahar, E.; David, I.; Gelman, Y.; Chikurel, H.; Aharoni, A.; Messalem, R.; Brenner, A. The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination 2011, 273, 142–147. [Google Scholar] [CrossRef]
- Yao, M.; Duan, L.; Song, Y.; Hermanowicz, S.W. Degradation mechanism of Ibuprofen via a forward osmosis membrane bioreactor. Bioresour. Technol. 2021, 321, 124448. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Schafer, A.I.; Elimelech, M. Pharmaceutical retention mechanisms by nanofiltration membranes. Environ. Sci. Technol. 2005, 39, 7698–7705. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Schafer, A.I.; Elimelech, M. Removal of natural hormones by nanofiltration membranes: Measurement, modeling, and mechanisms. Environ. Sci. Technol. 2004, 38, 1888–1896. [Google Scholar] [CrossRef]
- Lee, S.; Elimelech, M. Relating organic fouling of reverse osmosis membranes to intermolecular adhesion forces. Environ. Sci. Technol. 2006, 40, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Toshima, S.; Amy, G.; Watanabe, Y. Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes. J. Membr. Sci. 2004, 245, 71–78. [Google Scholar] [CrossRef]
- Yang, L.; She, Q.; Wan, M.P.; Wang, R.; Chang, V.W.; Tang, C.Y. Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration. Water Res. 2017, 116, 116–125. [Google Scholar] [CrossRef]
- Yangali-Quintanilla, V.; Verliefde, A.; Kim, T.U.; Sadmani, A.; Kennedy, M.; Amy, G. Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes. J. Membr. Sci. 2009, 342, 251–262. [Google Scholar] [CrossRef]
- Yangali-Quintanilla, V.; Sadmani, A.; McConville, M.; Kennedy, M.; Amy, G. A QSAR model for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors) by nanofiltration membranes. Water Res. 2010, 44, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Van der Bruggen, B.; Schaep, J.; Wilms, D.; Vandecasteele, C. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J. Membr. Sci. 1999, 156, 29–41. [Google Scholar] [CrossRef]
- Licona, K.P.M.; de O. Geaquinto, L.R.; Nicolini, J.V.; Figueiredo, N.G.; Chiapetta, S.C.; Habert, A.C.; Yokoyama, L. Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water. J. Water Process Eng. 2018, 25, 195–204. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, P.-K.; Lee, C.-H.; Kwon, H.-H. Surface modification of nanofiltration membranes to improve the removal of organic micro-pollutants (EDCs and PhACs) in drinking water treatment: Graft polymerization and cross-linking followed by functional group substitution. J. Membr. Sci. 2008, 321, 190–198. [Google Scholar] [CrossRef]
- Childress, A.E.; Elimelech, M. Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics. Environ. Sci. Technol. 2000, 34, 3710–3716. [Google Scholar] [CrossRef]
- Freger, V.; Bottino, A.; Capannelli, G.; Perry, M.; Gitis, V.; Belfer, S. Characterization of novel acid-stable NF membranes before and after exposure to acid using ATR-FTIR, TEM and AFM. J. Membr. Sci. 2005, 256, 134–142. [Google Scholar] [CrossRef]
- Kimura, K.; Amy, G.; Drewes, J.; Watanabe, Y. Adsorption of hydrophobic compounds onto NF/RO membranes: An artifact leading to overestimation of rejection. J. Membr. Sci. 2003, 221, 89–101. [Google Scholar] [CrossRef]
- Schafer, A.I.; Akanyeti, I.; Semiao, A.J. Micropollutant sorption to membrane polymers: A review of mechanisms for estrogens. Adv. Colloid Interface Sci. 2011, 164, 100–117. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, W.; Zhu, H.; Wei, D.; He, F.; Wang, D.; Du, B.; Wei, Q. Effect of turbidity on micropollutant removal and membrane fouling by MIEX/ultrafiltration hybrid process. Chemosphere 2019, 216, 488–498. [Google Scholar] [CrossRef]
- Chen, L.-C.; Lei, S.; Wang, M.-Z.; Yang, J.; Ge, X.-W. Fabrication of macroporous polystyrene/graphene oxide composite monolith and its adsorption property for tetracycline. Chin. Chem. Lett. 2016, 27, 511–517. [Google Scholar] [CrossRef]
- Mauter, M.S.; Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859. [Google Scholar] [CrossRef] [PubMed]
- Comerton, A.M.; Andrews, R.C.; Bagley, D.M.; Yang, P. Membrane adsorption of endocrine disrupting compounds and pharmaceutically active compounds. J. Membr. Sci. 2007, 303, 267–277. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Lee, C.-H. Elucidating the Rejection Mechanisms of PPCPs by Nanofiltration and Reverse Osmosis Membranes. Ind. Eng. Chem. Res. 2014, 53, 6798–6806. [Google Scholar] [CrossRef]
- Brasil, J.L.; Martins, L.C.; Ev, R.R.; Dupont, J.; Dias, S.L.P.; Sales, J.A.A.; Airoldi, C.; Lima, É.C. Factorial design for optimization of flow-injection preconcentration procedure for copper(II) determination in natural waters, using 2-aminomethylpyridine grafted silica gel as adsorbent and spectrophotometric detection. Int. J. Environ. Anal. Chem. 2005, 85, 475–491. [Google Scholar] [CrossRef]
- Arenas, L.T.; Lima, E.C.; dos Santos, A.A.; Vaghetti, J.C.P.; Costa, T.M.H.; Benvenutti, E.V. Use of statistical design of experiments to evaluate the sorption capacity of 1,4-diazoniabicycle[2.2.2]octane/silica chloride for Cr(VI) adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2007, 297, 240–248. [Google Scholar] [CrossRef]
- Deshmukh, S.S.; Childress, A.E. Zeta potential of commercial RO membranes: Influence of source water type and chemistry. Desalination 2001, 140, 87–95. [Google Scholar] [CrossRef]
- Zhao, K.; Jia, J. Dielectric analysis of multi-layer structure of nanofiltration membrane in electrolyte solutions: Ion penetrability, selectivity, and influence of pH. J. Colloid Interface Sci. 2012, 386, 16–27. [Google Scholar] [CrossRef]
- Oak, M.S.; Kobayashi, T.; Wang, H.Y.; Fukaya, T.; Fujii, N. pH effect on molecular size exclusion of polyacrylonitrile ultrafiltration membranes having carboxylic acid groups. J. Membr. Sci. 1997, 123, 185–195. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Chiou, J.-H.; Lee, C.-H. Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes. J. Hazard. Mater. 2014, 277, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.Q.; Nghiem, L.D.; Price, W.E. Factors governing the rejection of trace organic contaminants by nanofiltration and reverse osmosis membranes. Desalination Water Treat. 2014, 52, 589–599. [Google Scholar] [CrossRef]
- Yi, X.S.; Shi, W.X.; Yu, S.L.; Li, X.H.; Sun, N.; He, C. Factorial design applied to flux decline of anionic polyacrylamide removal from water by modified polyvinylidene fluoride ultrafiltration membranes. Desalination 2011, 274, 7–12. [Google Scholar] [CrossRef]
- Seyed Shahabadi, S.M.; Reyhani, A. Optimization of operating conditions in ultrafiltration process for produced water treatment via the full factorial design methodology. Sep. Purif. Technol. 2014, 132, 50–61. [Google Scholar] [CrossRef]
Factor | Name | Units | Type | Minimum | Maximum | Coded Low | Coded High |
---|---|---|---|---|---|---|---|
A | Concentration | μg/L | Numeric | 50 | 1000 | −1 ↔ 50 | +1 ↔ 1000 |
B | Pressure | bar | Numeric | 8 | 20 | −1 ↔ 8 | +1 ↔ 20 |
C | pH | / | Numeric | 3 | 11 | −1 ↔ 3 | +1 ↔ 11 |
Run | Factor1 A | Factor2 B | Factor3 C | IBU Removal | CBZ Removal | TCS Removal |
---|---|---|---|---|---|---|
1 | 1000 | 20 | 3 | 99.98 | 96.51 | 99.58 |
2 | 50 | 8 | 11 | 97.52 | 95.31 | 98.10 |
3 | 50 | 8 | 11 | 96.89 | 93.54 | 98.05 |
4 | 1000 | 20 | 11 | 99.76 | 99.60 | 99.55 |
5 | 1000 | 8 | 3 | 97.90 | 95.90 | 99.26 |
6 | 50 | 20 | 3 | 99.01 | 95.81 | 98.95 |
7 | 50 | 20 | 3 | 99.63 | 97.53 | 98.99 |
8 | 1000 | 8 | 11 | 98.49 | 98.98 | 99.23 |
9 | 1000 | 20 | 3 | 99.79 | 98.28 | 99.63 |
10 | 50 | 20 | 11 | 99.60 | 98.89 | 98.92 |
11 | 50 | 8 | 3 | 97.57 | 93.90 | 98.17 |
12 | 50 | 20 | 11 | 98.95 | 97.21 | 98.87 |
13 | 1000 | 8 | 11 | 97.88 | 97.27 | 99.19 |
14 | 1000 | 8 | 3 | 98.56 | 97.61 | 99.30 |
15 | 1000 | 20 | 11 | 99.95 | 97.89 | 99.51 |
16 | 50 | 8 | 3 | 96.91 | 92.19 | 98.12 |
Source | Sum of Squares | df | Mean Square | f-Value | p-Value | ||
---|---|---|---|---|---|---|---|
IBU removal | Model | 16.64 | 7 | 2.38 | 15.04 | 0.0005 | significant |
A-Concentration | 2.43 | 1 | 2.43 | 15.40 | 0.0044 | ||
B-pressure | 14.03 | 1 | 14.03 | 88.79 | <0.0001 | ||
C-pH | 0.01 | 1 | 0.01 | 0.04 | 0.8547 | ||
AB | 0.17 | 1 | 0.17 | 1.07 | 0.3303 | ||
AC | 0.00 | 1 | 0.00 | 0.00 | 0.9961 | ||
BC | 0.00 | 1 | 0.00 | 0.00 | 0.9922 | ||
ABC | 0.00 | 1 | 0.00 | 0.00 | 0.9786 | ||
Pure Error | 1.26 | 8 | 0.16 | ||||
Cor Total | 17.91 | 15 | |||||
Std. dev. | 0.40 | R2 | 0.9294 | ||||
Mean | 98.65 | Adjusted R2 | 0.8676 | ||||
CBZ removal | Model | 54.09 | 7 | 7.73 | 5.20 | 0.0168 | significant |
A-Concentration | 19.50 | 1 | 19.50 | 13.14 | 0.0067 | ||
B-pressure | 18.12 | 1 | 18.12 | 12.20 | 0.0082 | ||
C-pH | 7.51 | 1 | 7.51 | 5.06 | 0.0546 | ||
AB | 8.95 | 1 | 8.95 | 6.03 | 0.0396 | ||
AC | 0.00 | 1 | 0.00 | 0.00 | 0.9864 | ||
BC | 0.00 | 1 | 0.00 | 0.00 | 0.9953 | ||
ABC | 0.00 | 1 | 0.00 | 0.00 | 0.9921 | ||
Pure Error | 11.88 | 8 | 1.48 | ||||
Cor Total | 65.97 | 15 | |||||
Std. dev. | 1.22 | R2 | 0.8199 | ||||
Mean | 96.65 | Adjusted R2 | 0.6624 | ||||
TCS removal | Model | 4.73 | 7 | 0.68 | 726.45 | <0.0001 | significant |
A-Concentration | 3.15 | 1 | 3.15 | 3383.12 | <0.0001 | ||
B-pressure | 1.31 | 1 | 1.31 | 1409.87 | <0.0001 | ||
C-pH | 0.02 | 1 | 0.02 | 22.94 | 0.0014 | ||
AB | 0.25 | 1 | 0.25 | 269.23 | <0.0001 | ||
AC | 0.00 | 1 | 0.00 | 0.00 | 0.9932 | ||
BC | 0.00 | 1 | 0.00 | 0.00 | 0.9971 | ||
ABC | 0.00 | 1 | 0.00 | 0.00 | 0.9937 | ||
Pure Error | 0.01 | 8 | 0.00 | ||||
Cor Total | 4.74 | 15 | |||||
Std. dev. | 0.03 | R2 | 0.9984 | ||||
Mean | 98.96 | Adjusted R2 | 0.9971 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Duan, L.; Gao, Q.; Zhao, Y.; Gao, F. Removal of Typical PPCPs by Reverse Osmosis Membranes: Optimization of Treatment Process by Factorial Design. Membranes 2023, 13, 355. https://doi.org/10.3390/membranes13030355
Liu J, Duan L, Gao Q, Zhao Y, Gao F. Removal of Typical PPCPs by Reverse Osmosis Membranes: Optimization of Treatment Process by Factorial Design. Membranes. 2023; 13(3):355. https://doi.org/10.3390/membranes13030355
Chicago/Turabian StyleLiu, Jianing, Liang Duan, Qiusheng Gao, Yang Zhao, and Fu Gao. 2023. "Removal of Typical PPCPs by Reverse Osmosis Membranes: Optimization of Treatment Process by Factorial Design" Membranes 13, no. 3: 355. https://doi.org/10.3390/membranes13030355
APA StyleLiu, J., Duan, L., Gao, Q., Zhao, Y., & Gao, F. (2023). Removal of Typical PPCPs by Reverse Osmosis Membranes: Optimization of Treatment Process by Factorial Design. Membranes, 13(3), 355. https://doi.org/10.3390/membranes13030355