Novel MXene-Modified Polyphenyl Sulfone Membranes for Functional Nanofiltration of Heavy Metals-Containing Wastewater
Abstract
:1. Introduction
2. Materials and Methodologies
2.1. Materials
2.2. Nanocomposite Membrane Fabrication
2.3. Nanocomposite Membrane Characterization
2.4. Performance Evaluation
3. Results and Discussion
3.1. MXene-Modified Nanocomposite Membranes
3.2. Performance Evaluation of MXene-Modified Nanocomposite Membranes
3.2.1. Pure Water Flux (PWF) of the Nanocomposite Membranes
3.2.2. Potential Separation of Nanocomposite Membranes
3.2.3. Fouling Behavior of Nanocomposite Membranes
3.2.4. Comparison Study
4. Limitations of MXene Modified Membranes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
2D | two dimensions |
PPSU | polyphenyl sulfone |
AFM | stomic force microscopy |
SEM | scanning electron microscopy |
FTIR | Fourier-transform infrared spectroscopy |
Wt.% | weight percentage |
Cu2+ | copper ions |
Cd2+ | cadmium ions |
Pd2+ | lead ions |
0D | zero dimension |
1D | one dimension |
PVDF | polyvinylidene fluoride |
TiO2 | titanium dioxide |
O | oxygen |
OH | hydroxyl |
F | fluorine |
MgCl2 | magnesium chloride |
NaCl | sodium chloride |
Cl− | chloride ion |
NO3− | nitrates ions |
g-C3N4 | graphitic Carbon Nitride |
Cr6+ | chromium ions |
NF | nanofiltration |
DMAC | dimethyl acetamide |
PVP | polyvinylpyrrolidone |
Ti3C2Tx | MXene |
Cu (NO3)2·3H2O | copper nitrate trihydrate |
Cd (NO3)2·4H2O | cadmium nitrate tetrahydrate |
Pb(NO3)2 | lead (II) nitrate |
DI | deionized |
ρ | porosity of membrane (%) |
Wwet | wet membrane weight (g) |
Wdry | dry membrane weight (g) |
Dw | density of water (0.998 g/cm3) |
Dp | density of PPSU polymer (1.3 g/cm3) |
rm | mean pore radius |
μ | water viscosity (0.00089 Pa·s) |
h | membrane thickness (m) |
Jw | water flux (m3/m2·s) |
∆P | differential pressure |
Rq | root mean square roughness |
Ra | the average roughness |
Jw | water flux (L/m2·h) |
V | permeated water volume (L), |
Δt | the measurement period (h), |
A | membrane area (m2). |
R%: | retention percentage |
Cp | solute concentration in the permeate |
Cf | solute concentration in the feed. |
J0 | initial water flux of control membrane |
J1 | solute flux of heavy metal ions |
J2 | water flux of fouled membrane after cleaning |
CA | Contact angle |
PES | Polyethersulfone |
PWF | Pure water flux |
References
- Sobhanardakani, S.; Tayebi, L.; Farmany, A. Toxic metal (Pb, Hg and As) contamination of muscle, gill and liver tissues of Otolithes rubber, Pampus argenteus, Parastromateus niger, Scomberomorus commerson and Onchorynchus mykiss. World Appl. Sci. J. 2011, 14, 1453–1456. [Google Scholar]
- Barakat, M. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhou, S.; Pan, S.-Y.; Zhu, S.; Yu, Y.; Zheng, H. Performance evaluation and optimization of flocculation process for removing heavy metal. Chem. Eng. J. 2020, 385, 123911. [Google Scholar] [CrossRef]
- Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Matlock, M.M.; Howerton, B.S.; Atwood, D.A. Chemical precipitation of heavy metals from acid mine drainage. Water Res. 2002, 36, 4757–4764. [Google Scholar] [CrossRef] [PubMed]
- Bashir, A.; Malik, L.A.; Ahad, S.; Manzoor, T.; Bhat, M.A.; Dar, G.; Pandith, A.H. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett. 2019, 17, 729–754. [Google Scholar] [CrossRef]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Kim, H.Y.; Joshi, M.K. Technological trends in heavy metals removal from industrial wastewater: A review. J. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Awual, M.R. Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent. J. Clean. Prod. 2019, 228, 1311–1319. [Google Scholar] [CrossRef]
- Perumal, S.; Atchudan, R.; Edison, T.N.J.I.; Babu, R.S.; Karpagavinayagam, P.; Vedhi, C. A Short Review on Recent Advances of Hydrogel-Based Adsorbents for Heavy Metal Ions. Metals 2021, 11, 864. [Google Scholar] [CrossRef]
- Dièye, E.H.; Fall, A.; Fall, M.; Ferreira, C.A.; Silveira, M.R.; Baldissera, A.F. Removal of heavy metals by electrodialysis using polyanilines prepared in hydrochloric acid and ionic liquids. Emergent Mater. 2021, 5, 1533–1542. [Google Scholar] [CrossRef]
- Torma, C.Z.; Cséfalvay, E. Nanofiltration and electrodialysis: Alternatives in heavy metal containing high salinity process water treatment. Chem. Pap. 2018, 72, 1115–1124. [Google Scholar] [CrossRef]
- Xiao, Y.; Tan, S.; Wang, D.; Wu, J.; Jia, T.; Liu, Q.; Qi, Y.; Qi, X.; He, P.; Zhou, M. CeO2/BiOIO3 heterojunction with oxygen vacancies and Ce4+/Ce3+ redox centers synergistically enhanced photocatalytic removal heavy metal. Appl. Surf. Sci. 2020, 530, 147116. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Gao, J.; Chung, T.-S. Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal. J. Membr. Sci. 2016, 515, 230–237. [Google Scholar] [CrossRef]
- Huang, B.-Q.; Tang, Y.-J.; Gao, A.-R.; Zeng, Z.-X.; Xue, S.-M.; Ji, C.-H.; Tang, C.Y.; Xu, Z.-L. Dually charged polyamide nanofiltration membranes fabricated by microwave-assisted grafting for heavy metals removal. J. Membr. Sci. 2021, 640, 119834. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Shukla, A.K.; Alam, J.; Alhoshan, M.; Dass, L.A.; Muthumareeswaran, M. Development of a nanocomposite ultrafiltration membrane based on polyphenylsulfone blended with graphene oxide. Sci. Rep. 2017, 7, 41976. [Google Scholar] [CrossRef] [Green Version]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Al-Ani, F.H.; Al-Najar, A.E. A new Sponge-GAC-Sponge membrane module for submerged membrane bioreactor use in hospital wastewater treatment. Biochem. Eng. J. 2018, 133, 130–139. [Google Scholar] [CrossRef]
- Alsalhy, Q.; Merza, A.; Rashid, K.; Adam, A.; Figoli, A.; Simone, S.; Drioli, E. Preparation and Characterization of poly(vinyl chloride)/poly (styrene)/poly (ethylene glycol) hollow-fiber membranes. J. Appl. Polym. Sci. 2013, 130, 989–1004. [Google Scholar] [CrossRef]
- Khayet, M.; García-Payo, M.C.; Qusay, F.A.; Khulbe, K.C.; Feng, C.Y.; Matsuura, T. Effects of gas gap type on structural morphology and performance of hollow fibers. J. Membr. Sci. 2008, 311, 259–269. [Google Scholar] [CrossRef]
- Jalal Sadiq, A.; Shabeeb, K.M.; Khalil, B.I.; Alsalhy, Q.F. Effect of embedding MWCNT-g-GO with PVC on the performance of PVC membranes for oily wastewater treatment. Chem. Eng. Comun. 2020, 207, 733–750. [Google Scholar] [CrossRef]
- Al-Ani, D.M.; Al-Ani, F.H.; Alsalhy, Q.F.; Ibrahim, S.S. Preparation and characterization of nanofiltration membranes from PPSU-PES polymer blend for dyes removal. Chem. Eng. Comun. 2021, 208, 41–59. [Google Scholar] [CrossRef]
- Al-Ani, F.H.; Alsalhy, Q.F.; Raheem, R.S.; Rashid, K.T.; Figoli, A. Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater. Membranes 2020, 10, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghadhban, M.Y.; Majdi, H.S.; Rashid, K.T.; Alsalhy, Q.F.; Lakshmi, D.S.; Salih, I.K.; Figoli, A. Removal of Dye from a Leather Tanning Factory by Flat-Sheet Blend Ultrafiltration (UF) Membrane. Membranes 2020, 10, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadiq, A.J.; Awad, E.S.; Shabeeb, K.M.; Khalil, B.I.; Al-Jubouri, S.M.; Sabirova, T.M.; Tretyakova, N.A.; Majdi, H.S.; Alsalhy, Q.F.; Braihi, A.J. Comparative study of embedded functionalised MWCNTs and GO in Ultrafiltration (UF) PVC membrane: Interaction mechanisms and performance. Int. J. Environ. Anal. Chem. 2023, 103, 415–436. [Google Scholar] [CrossRef]
- Kadhim, R.J.; Al-Ani, F.H.; Alsalhy, Q.F. MCM-41 mesoporous modified polyethersulfone nanofiltration membranes and their prospects fordyes removal. Int. J. Environ. Anal. Chem. 2021, 103, 828–848. [Google Scholar] [CrossRef]
- Yahya, A.A.; Rashid, K.T.; Ghadhban, M.Y.; Mousa, N.E.; Majdi, H.S.; Salih, I.K.; Alsalhy, Q.F. Removal of 4-Nitrophenol from Aqueous Solution by Using Polyphenylsulfone-Based Blend Membranes: Characterization and Performance. Membranes 2021, 11, 171. [Google Scholar] [CrossRef]
- Cardinale, A.M.; Carbone, C.; Fortunato, M.; Fabiano, B.; Reverberi, A.P. ZnAl-SO4 Layered Double Hydroxide and Allophane for Cr (VI), Cu (II) and Fe (III) Adsorption in Wastewater: Structure Comparison and Synergistic Effects. Materials 2022, 15, 6887. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Anil, A.G.; Kapoor, D.; Khasnabis, S.; Shekar, S.; Pavithra, N.; Samuel, J.; Subramanian, S.; Singh, J. Adsorption and detoxification of pharmaceutical compounds from wastewater using nanomaterials: A review on mechanism, kinetics, valorization and circular economy. J. Environ. Manag. 2021, 300, 113569. [Google Scholar] [CrossRef]
- Moradi, R.; Monfared, S.M.; Amini, Y.; Dastbaz, A. Vacuum enhanced membrane distillation for trace contaminant removal of heavy metals from water by electrospun PVDF/TiO 2 hybrid membranes. Korean J. Chem. Eng. 2016, 33, 2160–2168. [Google Scholar] [CrossRef]
- Pandey, M.; Deshmukh, K.; Pasha, S.K.K. Chapter 10—MXene-based materials for lithium–sulfur and multivalent rechargeable batteries. In Mxenes and Their Composites; Sadasivuni, K.K., Deshmukh, K., Pasha, S.K.K., Kovářík, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 343–369. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [Green Version]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Anasori, B.; Lukatskaya, M.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Sun, Y.; Dall’Agnese, C.; Zhang, C.; Yang, L.; Jin, X.; Dall’Agnese, Y.; Wang, X.-F. Chapter 14—Applications of MXenes and their composites in catalysis and photoelectrocatalysis. In Mxenes and Their Composites; Sadasivuni, K.K., Deshmukh, K., Pasha, S.K.K., Kovářík, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 449–498. [Google Scholar] [CrossRef]
- Vankayala, R.; Thangudu, S.; Kuthala, N.; Kalluru, P. Chapter 15—MXenes and their composites for medical and biomedical applications. In Mxenes and Their Composites; Sadasivuni, K.K., Deshmukh, K., Pasha, S.K.K., Kovářík, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 499–524. [Google Scholar] [CrossRef]
- Liu, A.; Liang, X.; Ma, T. Chapter 9—MXenes and their composites for lithium- and sodium-ion battery applications. In Mxenes and Their Composites; Sadasivuni, K.K., Deshmukh, K., Pasha, S.K.K., Kovářík, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 307–341. [Google Scholar] [CrossRef]
- Saraswathi, K.; Reddy, M.S.B.; Rao, K.V.; Deshmukh, K.; Ponnamma, D.; Waseem, S.; Aly Rakha, M.F.I.; Pasha, S.K.K.; Sadasivuni, K.K. Chapter 21—MXenes and their composites for energy harvesting applications. In Mxenes and Their Composites; Sadasivuni, K.K., Deshmukh, K., Pasha, S.K.K., Kovářík, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 687–723. [Google Scholar] [CrossRef]
- Lam, S.-M.; Jaffari, Z.H.; Yong, Z.-J.; Sin, J.-C.; Zeng, H.; Lin, H.; Li, H.; Mohamed, A.R. Chapter 16—MXenes and their composites for potential antimicrobial applications. In Mxenes and Their Composites; Sadasivuni, K.K., Deshmukh, K., Pasha, S.K.K., Kovářík, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 525–551. [Google Scholar] [CrossRef]
- Nirogi, A.; Elsa, G.; Vijayakumar, M.; Sankar, A.B.; Karthik, M. Chapter 11—MXenes and their composites for supercapacitors and hybrid capacitors. In Mxenes and Their Composites; Sadasivuni, K.K., Deshmukh, K., Pasha, S.K.K., Kovářík, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 371–396. [Google Scholar] [CrossRef]
- Pandey, R.P.; Kallem, P.; Hegab, H.M.; Rasheed, P.A.; Banat, F.; Hasan, S.W. Cross-linked laminar graphene oxide membranes for wastewater treatment and desalination: A review. J. Environ. Manag. 2022, 317, 115367. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Graham, N.; Yu, W.; Shi, Y.; Sun, K.; Liu, T. Preparation and evaluation of a high performance Ti3C2Tx-MXene membrane for drinking water treatment. J. Membr. Sci. 2022, 654, 120469. [Google Scholar] [CrossRef]
- Wang, S.; Wang, F.; Jin, Y.; Meng, X.; Meng, B.; Yang, N.; Sunarso, J.; Liu, S. Removal of heavy metal cations and co-existing anions in simulated wastewater by two separated hydroxylated MXene membranes under an external voltage. J. Membr. Sci. 2021, 638, 119697. [Google Scholar] [CrossRef]
- Lin, Q.; Zeng, G.; Pu, S.; Yan, G.; Luo, J.; Wan, Y.; Zhao, Z. A dual regulation strategy for MXene-based composite membrane to achieve photocatalytic self-cleaning properties and multi-functional applications. Chem. Eng. J. 2022, 443, 136335. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, K.; Wang, K.; Xie, Z.; Ladewig, B.; Wang, H. Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J. Membr. Sci. 2012, 423–424, 362–370. [Google Scholar] [CrossRef]
- Al-Araji, D.D.; Al-Ani, F.H.; Alsalhy, Q.F. Modification of polyethersulfone membranes by Polyethyleneimine (PEI) grafted Silica nanoparticles and their application for textile wastewater treatment. Environ. Technol. 2022. [Google Scholar] [CrossRef]
- Al-Timimi, D.A.H.; Alsalhy, Q.F.; AbdulRazak, A.A.; Drioli, E. Novel polyether sulfone/polyethylenimine grafted nano-silica nanocomposite membranes: Interaction mechanism and ultrafiltration performance. J. Membr. Sci. 2022, 659, 120784. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, W.; Xu, H.; Yang, W.; Kong, Q.; Wang, A.; Ding, M.; Shang, J. Fabrication of a novel antifouling polysulfone membrane with in situ embedment of mxene nanosheets. Int. J. Environ. Res. Public Health 2019, 16, 4659. [Google Scholar] [CrossRef] [Green Version]
- Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Zangeneh, H. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci. 2014, 453, 292–301. [Google Scholar] [CrossRef]
- Kiani, S.; Mousavi, S.M.; Saljoughi, E.; Shahtahmassebi, N. Preparation and characterization of modified polyphenylsulfone membranes with hydrophilic property for filtration of aqueous media. Polym. Adv. Technol. 2018, 29, 1632–1648. [Google Scholar] [CrossRef]
- Qiu, S.; Wu, L.; Pan, X.; Zhang, L.; Chen, H.; Gao, C. Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes. J. Membr. Sci. 2009, 342, 165–172. [Google Scholar] [CrossRef]
- Kiani, S.; Mousavi, S.M.; Shahtahmassebi, N.; Saljoughi, E. Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol. Appl. Surf. Sci. 2015, 359, 252–258. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. Effect of TiO2 nanoparticles on the performance of polyphenylsulfone biomaterial for orthopaedic implants. J. Mater. Chem. 2014, 2, 7502–7514. [Google Scholar]
- Dashtbozorg, A.; Saljoughi, E.; Mousavi, S.M.; Kiani, S. High-performance and robust polysulfone nanocomposite membrane containing 2D functionalized MXene nanosheets for the nanofiltration of salt and dye solutions. Desalination 2022, 527, 115600. [Google Scholar] [CrossRef]
- Al Aani, S.; Wright, C.J.; Atieh, M.A.; Hilal, N. Engineering nanocomposite membranes: Addressing current challenges and future opportunities. Desalination 2017, 401, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Al-Rashdi, B.; Somerfield, C.; Hilal, N. Heavy Metals Removal Using Adsorption and Nanofiltration Techniques. Sep. Purif. Rev. 2011, 40, 209–259. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Chung, T.-S. Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration. Environ. Sci. Technol. 2015, 49, 10235–10242. [Google Scholar] [CrossRef]
- Miao, R.; Feng, Y.; Wang, Y.; Wang, P.; Li, P.; Li, X.; Wang, L. Exploring the influence mechanism of ozonation on protein fouling of ultrafiltration membranes as a result of the interfacial interaction of foulants at the membrane surface. Sci. Total Environ. 2021, 785, 147340. [Google Scholar] [CrossRef]
- Mbareck, C.; Nguyen, Q.T.; Alaoui, O.T.; Barillier, D. Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water. J. Hazard. Mater. 2009, 171, 93–101. [Google Scholar] [CrossRef]
- Al-Rashdi, B.; Johnson, D.; Hilal, N. Removal of heavy metal ions by nanofiltration. Desalination 2013, 315, 2–17. [Google Scholar] [CrossRef]
- Tian, J.; Chang, H.; Gao, S.; Zhang, R. How to fabricate a negatively charged NF membrane for heavy metal removal via the interfacial polymerization between PIP and TMC? Desalination 2020, 491, 114499. [Google Scholar] [CrossRef]
- Zeng, G.; He, Y.; Zhan, Y.; Zhang, L.; Pan, Y.; Zhang, C.; Yu, Z. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. J. Hazard. Mater. 2016, 317, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.P.; Sun, S.P.; Gao, J.; Fu, F.J.; Chung, T.S. Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. J. Membr. Sci. 2014, 456, 117–127. [Google Scholar] [CrossRef]
- Gao, J.; Sun, S.-P.; Zhu, W.-P.; Chung, T.-S.; Chung, T.-S. Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal. Water Res. 2014, 63, 252–261. [Google Scholar] [CrossRef]
- Murthy, Z.; Chaudhari, L.B. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. J. Hazard. Mater. 2008, 160, 70–77. [Google Scholar] [CrossRef]
- Figoli, A.; Ursino, C.; Santoro, S.; Ounifi, I.; Chekir, J.; Hafiane, A.; Ferjani, E. Cellulose Acetate Nanofiltration Membranes for Cadmium Remediation. J. Membr. Sci. Res. 2020, 6, 226–234. [Google Scholar]
- Hadi, S.; Mohammed, A.A.; Al-Jubouri, S.M.; Abd, M.F.; Majdi, H.S.; Alsalhy, Q.F.; Rashid, K.T.; Ibrahim, S.S.; Salih, I.K.; Figoli, A. Experimental and Theoretical Analysis of Lead Pb2+ and Cd2+ Retention from a Single Salt Using a Hollow Fiber PES Membrane. Membranes 2020, 10, 136. [Google Scholar] [CrossRef]
- Ahmed, S.H.; Al-Jubouri, S.M.; Zouli, N.; Mohammed, A.A.; Majdi, H.S.; Salih, I.K.; Al-shaeli, M.; Al-Rahawi, A.M.; Alsalhy, Q.F.; Figoli, A. Performance Evaluation of Polyethersulfone Membranes for Competitive Removal of Cd2+, Co2+, and Pb2+ Ions from Simulated Groundwater. Geofluids 2021, 2021, 6654477. [Google Scholar] [CrossRef]
- Vasyukova, I.A.; Zakharova, O.V.; Kuznetsov, D.V.; Gusev, A.A. Synthesis, toxicity assessment, environmental and biomedical applications of MXenes: A review. Nanomaterials 2022, 12, 1797. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yu, Y.; Su, G. Safety Assessment of 2D MXenes: In Vitro and In Vivo. Nanomaterials 2022, 12, 828. [Google Scholar] [CrossRef] [PubMed]
- Karahan, H.E.; Goh, K.; Zhang, C.; Yang, E.; Yıldırım, C.; Chuah, C.Y.; Ahunbay, M.G.; Lee, J.; Tantekin-Ersolmaz, Ş.B.; Chen, Y.; et al. MXene Materials for Designing Advanced Separation Membranes. Adv. Mater. 2020, 32, 1906697. [Google Scholar] [CrossRef] [PubMed]
Membrane ID | PPSU wt.% | PVP wt.% | DMAC wt.% | MXene (g) |
---|---|---|---|---|
Ctrl-M | 20 | 2 | 78 | 0 |
0.1-M | 20 | 2 | 78 | 0.1 |
0.3-M | 20 | 2 | 78 | 0.3 |
0.6-M | 20 | 2 | 78 | 0.6 |
1-M | 20 | 2 | 78 | 1 |
1.5-M | 20 | 2 | 78 | 1.5 |
Membrane ID | Ra | Rq |
---|---|---|
Ctrl-M | 56.75 | 89.3 |
0.1-M | 20.52 | 30.85 |
0.3-M | 23.4 | 36.03 |
0.6-M | 20.95 | 32 |
1.0-M | 27.32 | 44.64 |
1.5-M | 23.9 | 37.13 |
Type of Modification | Application | Flux (LMH) | Rejection (%) | Ref. |
---|---|---|---|---|
PVDF/APTES functionalized halloysite-Magnetic graphene oxide/metformin | Aqueous solution Cu2+ Cd2+ Cr2+ | 14.2 | Cu2+ = 47.9% Cd2+ = 44.2% Cr2+ = 52.3% | [62] |
Dual layer polybenzimidazole/PES | Aqueous solution Cr2+ Pb2+ Cd2+ | 8.3 | Cr2+ = 98% Pb2+ = 93% Cd2+ = 70% | [63] |
NF270 | Pb(NO3)2/Cd(NO3)2 aqueous solution | - | Cd2+ = 99% Pb2+ = 74% | [60] |
(PEI) cross-linked P84 | Pb(NO3)2 aqueous solution | - | Pb2+ = 91.05% | [64] |
TFC-NF300 polyamide thin film | CdCl2; NiSO4 aqueous solution | - | Cd2+ = 80% Ni2+ = 97% | [65] |
cellulose acetate (CA) NF-23 | Cd(NO3)2 | - | Cd2+ = 84% | [66] |
PES hollow fiber | Ternary aqueous solution Pb2+ Cd2+ Co2+ | 16.4 37.9 16.6 | Pb2+ = 40% Cd2+ = 48.3% Co2+ = 50.5% | [67] |
PES hollow fiber | Binary aqueous solution Pb2+ Co2+ Cd2+ | - | Pb2+ = 60.3% Co2+ = 58% Cd2+ = 44.5% | [68] |
PPSU NF bulk modification MXene-modified | Wastewater | 11.1 | 97% for copper, 93.4% for cadmium, and 93% for lead | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naji, M.A.; Salimi-Kenari, H.; Alsalhy, Q.F.; Al-Juboori, R.A.; Huynh, N.; Rashid, K.T.; Salih, I.K. Novel MXene-Modified Polyphenyl Sulfone Membranes for Functional Nanofiltration of Heavy Metals-Containing Wastewater. Membranes 2023, 13, 357. https://doi.org/10.3390/membranes13030357
Naji MA, Salimi-Kenari H, Alsalhy QF, Al-Juboori RA, Huynh N, Rashid KT, Salih IK. Novel MXene-Modified Polyphenyl Sulfone Membranes for Functional Nanofiltration of Heavy Metals-Containing Wastewater. Membranes. 2023; 13(3):357. https://doi.org/10.3390/membranes13030357
Chicago/Turabian StyleNaji, Mohammed Azeez, Hamed Salimi-Kenari, Qusay F. Alsalhy, Raed A. Al-Juboori, Ngoc Huynh, Khalid T. Rashid, and Issam K. Salih. 2023. "Novel MXene-Modified Polyphenyl Sulfone Membranes for Functional Nanofiltration of Heavy Metals-Containing Wastewater" Membranes 13, no. 3: 357. https://doi.org/10.3390/membranes13030357
APA StyleNaji, M. A., Salimi-Kenari, H., Alsalhy, Q. F., Al-Juboori, R. A., Huynh, N., Rashid, K. T., & Salih, I. K. (2023). Novel MXene-Modified Polyphenyl Sulfone Membranes for Functional Nanofiltration of Heavy Metals-Containing Wastewater. Membranes, 13(3), 357. https://doi.org/10.3390/membranes13030357