Mango Peel Nanofiltration Concentrates to Enhance Anaerobic Digestion of Slurry from Piglets Fed with Laminaria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, Pre-Treatments, and Feed Mixtures
2.1.1. Substrates
2.1.2. Co-Substrate
2.1.3. Feed Mixture
2.2. Experimental Design and Operational Conditions
2.3. Performance and Stability Operational Parameters
2.4. Analytical Characterisations
2.5. Statistical Analysis
3. Results and Discussion
3.1. AD Trials
3.2. AcoD Trials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AcoD | anaerobic co-digestion |
AD | anaerobic digestion |
CORG | total organic carbon |
CSTR | continuous-stirred tank reactor |
EC | electrical conductivity |
FVW | fruit and vegetable wastes |
GHG | greenhouse gases |
GPR | gas production rate |
HRT | hydraulic retention time |
MPR | methane production rate |
NF | nanofiltration |
N-NH4+ | ammoniacal nitrogen |
OLR | organic loading rate |
SELR | specific energy loading rate |
SMP | specific methane production |
TCOD | total chemical oxygen demand |
TKN | Kjeldahl nitrogen |
TS | total solids |
UF | ultrafiltration |
VCF | volume concentration factor |
VFA | volatile fatty acids |
VS | volatile solids |
VSS | volatile suspended solids |
References
- Teigiserova, D.A.; Hamelin, L.; Thomsen, M. Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Sci. Total Environ. 2020, 706, 136033. [Google Scholar] [CrossRef]
- Leong, K.Y.; Chang, J.S. Valorization of fruit wastes for circular bioeconomy: Current advances, challenges, and opportunities. Bioresour. Technol. 2022, 359, 127459. [Google Scholar] [CrossRef]
- Santos, A.D.; Silva, J.R.; Castro, L.M.; Quinta-Ferreira, R.M. A biochemical methane potential of pig slurry. Energy Rep. 2022, 8, 153–158. [Google Scholar] [CrossRef]
- Arhoun, B.; Malpartida García, I.; Villen-Guzman, M.; Abdala Diaz, R.T.; Garcia-Herruzo, F.; Rodriguez-Maroto, J.M. Effect of pretreatment and co-substrate addition on biogas production from pig slurry. Water Environ. J. 2021, 35, 1147–1157. [Google Scholar] [CrossRef]
- Silva, I.; Jorge, C.; Brito, L.; Duarte, E. A pig slurry feast/famine feeding regime strategy to improve mesophilic anaerobic digestion efficiency and digestate hygienisation. Waste Manag. Res. 2021, 39, 947–955. [Google Scholar] [CrossRef]
- Ambrose, H.W.; Philip, L.; Suraishkumar, G.K.; Karthikaichamy, A.; Sen, T.K. Anaerobic co-digestion of activated sludge and fruit and vegetable waste: Evaluation of mixing ratio and impact of hybrid (microwave and hydrogen peroxide) sludge pre- treatment on two-stage digester stability and biogas yield. J. Water Process Eng. 2020, 37, 101498. [Google Scholar] [CrossRef]
- Srisowmeya, G.; Chakravarthy, M.; Devi, G.N. Critical considerations in two-stage anaerobic digestion of food waste—A review. Renew. Sustain. Energy Rev. 2020, 119, 109587. [Google Scholar] [CrossRef]
- Wainaina, S.; Awasthi, M.K.; Sarsaiya, S.; Chen, H.; Singh, E.; Kumar, A.; Ravindran, B.; Awasthi, S.K.; Liu, T.; Duan, Y.; et al. Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresour. Technol. 2020, 301, 122778. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Dennehy, C.; Lawlor, P.G.; Hu, Z.; McCabe, M.; Cormican, P.; Zhan, X.; Gardiner, G. Exploring the roles of and interactions among microbes in dry co-digestion of food waste and pig manure using high-throughput 16S rRNA gene amplicon sequencing. Biotechnol. Biofuels 2019, 12, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigors, S.; O’Doherty, J.; Rattigan, R.; Sweeney, T. Effect of Supplementing Seaweed Extracts to Pigs until d35 Post-Weaning on Performance and Aspects of Intestinal Health. Mar. Drugs 2021, 19, 183. [Google Scholar] [CrossRef]
- Vigors, S.; O’Doherty, J.V.; Rattigan, R.; McDonnell, M.J.; Rajauria, G.; Sweeney, T. Effect of a Laminarin Rich Macroalgal Extract on the Caecal and Colonic Microbiota in the Post-Weaned Pig. Mar. Drugs 2020, 18, 157. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, T.; O’Doherty, J.V. Marine macroalgal extracts to maintain gut homeostasis in the weaning piglet. Domest. Anim. Endocrinol. 2016, 56, S84–S89. [Google Scholar] [CrossRef]
- Sweeney, T.; Collins, C.B.; Reilly, P.; Pierce, K.M.; Ryan, M.; O’Doherty, J.V. Effect of purified beta-glucans derived from Laminaria digitata, Laminaria hyperborea and Saccharomyces cerevisiae on piglet performance, selected bacterial populations, volatile fatty acids and pro-inflammatory cytokines in the gastrointestinal tract of pigs. Br. J. Nutr. 2012, 108, 1226–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, C.F.; Trevisi, P.; Coelho, D.F.; Correa, F.; Ribeiro, D.M.; Alfaia, C.M.; Pinho, M.; Pestana, J.M.; Mourato, M.P.; Almeida, A.M.; et al. Influence of Chlorella vulgaris on growth, digestibility and gut morphology and microbiota of weaned piglet. Sci. Rep. 2022, 12, 6012. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Pio, L.; Bule, P.; Cardoso, V.; Alfaia, C.M.; Coelho, D.; Brás, J.; Fontes, C.M.G.A.; Prates, J.A.M. An individual alginate lyase is effective in the disruption of Laminaria digitata recalcitrant cell wall. Sci. Rep. 2021, 11, 9706. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.M.; Alfaia, C.M.; Pestana, J.M.; Carvalho, D.F.P.; Costa, M.; Martins, C.F.; Lemos, J.P.C.; Mourato, M.; Gueifão, S.; Delgado, I.; et al. Influence of Feeding Weaned Piglets with Laminaria digitata on the Quality and Nutritional Value of Meat. Foods 2022, 11, 1024. [Google Scholar] [CrossRef]
- Kumar, P.; Eid, E.M.; Taher, M.A.; El-Morsy, M.H.E.; Osman, H.E.M.; Al-Bakre, D.A.; Adelodun, B.; Abou Fayssal, S.; Goala, M.; Mioč, B.; et al. Biotransforming the Spent Substrate of Shiitake Mushroom (Lentinula edodes Berk.): A Synergistic Approach to Biogas Production and Tomato (Solanum lycopersicum L.) Fertilization. Horticulturae 2022, 8, 479. [Google Scholar] [CrossRef]
- AL-Huqail, A.A.; Kumar, V.; Kumar, R.; Eid, E.M.; Taher, M.A.; Adelodun, B.; Abou Fayssal, S.; Mioč, B.; Držaić, V.; Goala, M.; et al. Sustainable Valorization of Four Types of Fruit Peel Waste for Biogas Recovery and Use of Digestate for Radish (Raphanus sativus L. cv. Pusa Himani) Cultivation. Sustainability 2022, 14, 10224. [Google Scholar] [CrossRef]
- Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A. Bio-based fertilizers: A practical approach towards circular economy. Bioresour. Technol. 2020, 295, 122223. [Google Scholar] [CrossRef]
- Ajila, C.M.; Bhat, S.G.; Rao, U.J.S.P. Valuable components of raw and ripe peels from two Indian mango varieties. Food Chem. 2007, 102, 1006–1011. [Google Scholar] [CrossRef]
- Ajila, C.M.; Rao, U.J.S.P. Mango peel dietary fibre: Composition and associated bound phenolics. J. Funct. Foods 2013, 5, 444–450. [Google Scholar] [CrossRef]
- López-Cobo, A.; Verardo, V.; Diaz-de-Cerio, E.; Segura-Carretero, A.; Fernández- Gutiérrez, A.; Gómez-Caravaca, A.M. Use of HPLC and GC-QTOF to determine hydrophilic and lipophilic phenols in mango fruit (Mangifera indica L.) and its by-products. Food Res. Int. 2017, 100, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Macedo, A.; Gomes, T.; Ribeiro, C.; Moldão-Martins, M.; Duarte, E.; Alves, V.D. Membrane Technology for Valorization of Mango Peel Extracts. Foods 2022, 11, 2581. [Google Scholar] [CrossRef] [PubMed]
- Serna-Cock, L.; Gonzales, E.G.; Torres-León, C. Agro-industrial potential of the mango peel based on its nutritional and functional properties. Food Rev. Int. 2015, 32, 364–376. [Google Scholar] [CrossRef]
- Kumar, A.; Ramanathan, A. Theoretical analysis involved in the prediction of biomethane production from fruit wastes through anaerobic digestion. Mater. Today Proc. 2020, 46, 9788–9793. [Google Scholar] [CrossRef]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.F.; Arora, A. A hydrocolloid based biorefinery approach to the valorisation of mango peel waste. Food Hydrocoll. 2018, 77, 142–151. [Google Scholar] [CrossRef]
- Galanakis, C.M. Separation of functional macromolecules and micromolecules: From ultrafiltration to the border of nanofiltration. Trends Food Sci. Technol. 2015, 42, 44–63. [Google Scholar] [CrossRef]
- Macedo, A.; Monteiro, J.; Duarte, E. A contribution for the valorisation of sheep and goat cheese whey through nanofiltration. Membranes 2018, 8, 114. [Google Scholar] [CrossRef] [Green Version]
- Cassano, A.; Conidi, C.; Ruby-Figueroa, R. Recovery of flavonoids from orange press liquor by an integrated membrane process. Membranes 2014, 4, 509–524. [Google Scholar] [CrossRef] [Green Version]
- Fragoso, R.; Henriques, A.C.; Ochando-Pulido, J.; Smozinski, N.; Duarte, E. Enhanced biomethane production by co-digestion of mixed sewage sludge and dephenolised two-phase olive pomace. Waste Manag. Res. 2022, 40, 565–574. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 24th ed.; American Public Health Association: Washington, DC, USA, 2018. [Google Scholar]
- Cuetos, M.J.; Fernández, C.; Gómez, X.; Morán, A. Anaerobic co-digestion of swine manure with energy crop residues. Biotechnol. Bioprocess Eng. 2011, 16, 1044–1052. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis. Crude protein for fruit products—Method 920.152. In Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2000; ISBN 0935584544. [Google Scholar]
- Araújo, A.; Freitas, F.; Sevrin, C.; Grandfils, G.; Reis, M.A.M. Co-production of chitin-glucan complex and xylitol by Komagataella pastoris using glucose and xylose mixtures as carbon source. Carbohydr. Polym. 2017, 166, 24–30. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, C. Anaerobic codigestion of pretreated wheat straw with cattle manure and analysis of the microbial community. Bioresour. Technol. 2015, 186, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; Zhou, M.; Pan, X.; Li, C.; Lv, N.; Wang, T.; Cai, G.; Wang, R.; Li, J.; Zhu, G. Simultaneous biogas and biogas slurry production from co-digestion of pig manure and corn straw: Performance optimization and microbial community shift. Bioresour. Technol. 2019, 282, 37–47. [Google Scholar] [CrossRef]
- Azevedo, A.; Gominho, J.; Duarte, E. Performance of Anaerobic Co-digestion of Pig Slurry with Pineapple (Ananas comosus) Bio-waste Residues. Waste Biomass Valorization 2021, 12, 303–311. [Google Scholar] [CrossRef]
- Duan, N.; Zhang, D.; Lin, C.; Zhang, Y.; Zhao, L.; Liu, H.; Liu, Z. Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios. J. Environ. Manag. 2019, 231, 646–652. [Google Scholar] [CrossRef]
- Zhang, W.; Lang, Q.; Wu, S.; Li, W.; Bah, H.; Dong, R. Anaerobic digestion characteristics of pig manures depending on various growth stages and initial substrate concentrations in a scaled pig farm in Southern China. Bioresour. Technol. 2014, 156, 63–69. [Google Scholar] [CrossRef]
- Jarret, G.; Cerisuelo, A.; Peu, P.; Martinez, J.; Dourmad, J.Y. Impact of pig diets with different fibre contents on the composition of excreta and their gaseous emissions and anaerobic digestion. Agric. Ecosyst. Environ. 2012, 160, 51–58. [Google Scholar] [CrossRef]
- Ma, G.; Ndegwa, P.; Harrison, J.H.; Chen, Y. Methane yields during anaerobic co-digestion of animal manure with other feedstocks: A meta-analysis. Sci. Total Environ. 2020, 728, 138224. [Google Scholar] [CrossRef] [PubMed]
- Astals, S.; Musenze, R.S.; Bai, X.; Tannock, S.; Tait, S.; Pratt, S.; Jensen, P.D. Anaerobic co-digestion of pig manure and algae: Impact of intracellular algal products recovery on co-digestion performance. Bioresour. Technol. 2015, 181, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Montenegro-Landivar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Granados, M.; Farran, A.; Cortina, J.L.; Saurina, J.; Valderrama, C. Recovery of natural polyphenols from spinach and orange by-products by pressure-driven membrane processes. Membranes 2022, 12, 669. [Google Scholar] [CrossRef] [PubMed]
A | B | |
---|---|---|
TS (g/kg) | 291 ± 0.46 | 276 ± 0.13 |
VS (g/kg) | 257 ± 0.39 | 243 ± 0.12 |
VS/TS (%) | 88 | 88 |
TKN (g/kg) | 10.7 ± 0.12 | 9.7 ± 0.04 |
CORG (g/kg) | 149 | 141 |
C/N | 14 | 15 |
S2 | |
---|---|
TS (g/L) | 11.0 ± 0.5 |
VS (g/L) | 2.9 ± 0.05 |
Galactose (mg/L) | <1 |
Glucose (mg/L) | 116.9 ± 5.1 |
Fructose (mg/L) | 1958 ± 30.2 |
Sucrose (mg/L) | 856.9 ± 43.2 |
TKN (g/L) | 0.03 ± 0.004 |
CORG 1 (g/L) | 1.68 |
C/N | 56 |
AD0 | AD1 | |||
---|---|---|---|---|
Feed (S0) | Digestate | Feed (S1) | Digestate | |
pH | 5.4 ± 0.2 a | 7.5 ± 0.1 c | 6.5 ± 0.3 b | 7.5 ± 0.1 c |
EC (mS/cm) | 4.5 ± 0.2 a | 6.4 ± 0.3 b | 6.3 ± 1.5 a | 8.3 ± 1.4 b |
TS (g/L) | 30.9 ± 1.72 a | 10.2 ± 1.4 b | 33.6 ± 1.93 a | 12.8 ± 2.8 b |
VS (g/L) | 27.2 ± 1.61 a | 7.8 ± 1.2 b | 28.6 ± 1.8 a | 9.3 ± 2.1 b |
VS/TS (%) | 88 a | 75 b | 85 a | 73 b |
VSS (g/L) | - | 6.9 ± 1.0 b | - | 7.7 ± 1.5 b |
TCOD (g/L) | 35.8 ± 1.10 a | 11.3 ± 1.1 b | 38.1 ± 1.6 a | 12.5 ± 0.9 b |
TKN (g/L) | 1.2 ± 0.1 a | 1.1 ± 0.1 b | 1.1 ± 0.1 a | 1.0 ± 0.1 b |
N-NH4+ (g/L) | 0.2 ± 0.1 a | 0.7 ± 0.1 b | 0.3 ± 0.1 a | 0.7 ± 0.1 b |
CORG (g/L) | 15.8 ± 0.8 a | - | 16.6 ± 1.3 a | - |
C/N | 13 a | - | 15 a | - |
AD0 | AD1 | |
---|---|---|
GPR (mL/Lreactor.d) | 695 ± 7 a | 714 ± 39 a |
MPR (mL/Lreactor.d) | 458 ± 4 a | 462 ± 30 a |
OLR (g SV/Lreactor.d) | 2.09 ± 0.13 a | 2.01 ± 0.41 a |
CH4 (%) | 66.5 ± 0.7 a | 64.8 ± 1.3 a |
SELR (d−1) | 0.39 ± 0.09 a | 0.38 ± 0.03 a |
AcoD | ||
---|---|---|
Feed Mixture | Digestate | |
pH | 6.7 ± 0.3 | 7.4 ± 0.1 |
EC (mS/cm) | 6.6 ± 0.9 | 8.7 ± 0.7 |
TS (g/L) | 29.3 ± 2.3 | 11.9 ± 1.1 |
VS (g/L) | 23.6 ± 1.7 | 8.7 ± 0.8 |
VS/TS (%) | 81 | 73 |
VSS (g/L) | - | 6.8 ± 1.2 |
TCOD (g/L) | 33.3 ± 2.0 | 12.4 ± 1.2 |
TKN (g/L) | 0.8 ± 0.1 | 0.7 ± 0.1 |
N-NH4+ | 0.2 ± 0.1 | 0.4 ± 0.1 |
CORG | 12.6 ± 0.5 14 | - |
C/N | 18 | - |
AcoD | |
---|---|
GPR (mL/Lreactor.d) | 571 ± 38 |
MPR (mL/Lreactor.d) | 373 ± 30 |
OLR (g SV/Lreactor.d) | 1.32 ± 0.16 |
CH4 (%) | 66.3 ± 0.9 |
SELR (d−1) | 0.37 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macedo, A.; Fragoso, R.; Silva, I.; Gomes, T.; Martins, C.F.; Freire, J.B.; Duarte, E. Mango Peel Nanofiltration Concentrates to Enhance Anaerobic Digestion of Slurry from Piglets Fed with Laminaria. Membranes 2023, 13, 371. https://doi.org/10.3390/membranes13040371
Macedo A, Fragoso R, Silva I, Gomes T, Martins CF, Freire JB, Duarte E. Mango Peel Nanofiltration Concentrates to Enhance Anaerobic Digestion of Slurry from Piglets Fed with Laminaria. Membranes. 2023; 13(4):371. https://doi.org/10.3390/membranes13040371
Chicago/Turabian StyleMacedo, Antónia, Rita Fragoso, Inês Silva, Tânia Gomes, Cátia F. Martins, João Bengala Freire, and Elizabeth Duarte. 2023. "Mango Peel Nanofiltration Concentrates to Enhance Anaerobic Digestion of Slurry from Piglets Fed with Laminaria" Membranes 13, no. 4: 371. https://doi.org/10.3390/membranes13040371
APA StyleMacedo, A., Fragoso, R., Silva, I., Gomes, T., Martins, C. F., Freire, J. B., & Duarte, E. (2023). Mango Peel Nanofiltration Concentrates to Enhance Anaerobic Digestion of Slurry from Piglets Fed with Laminaria. Membranes, 13(4), 371. https://doi.org/10.3390/membranes13040371