Efficient, Breathable, and Compostable Multilayer Air Filter Material Prepared from Plant-Derived Biopolymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Electrospinning Solution
2.3. Preparation of Electrospinning Substrates
2.4. Electrospinning Process
2.5. Preconditioning under Humid Conditions
2.6. Determination of Filtration Efficiency and Pressure Drop
2.7. Mechanical Folding
2.8. Biodegradability
2.9. Surface Characterization
3. Results and Discussion
3.1. Morphology of the Composite Zein Filter and Filtration Performance
3.2. Effect of Crosslinking
3.2.1. Morphology and Air Filtration Performance
3.2.2. Effect of Humidity on Filtration Performance
3.2.3. Mechanical Handling Stability
3.3. Air Filtration Performance of Pleated Electrospun Filter
3.4. Stacking of Electrospun Zein Filters
3.5. Extended Filtration Performance of Composite Zein Filter
3.6. Biodegradability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sangkham, S. Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Stud. Chem. Environ. Eng. 2020, 2, 100052. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, T.; Cui, J.; Samal, S.K.; Xiong, R.; Huang, C. Bio-based electrospun nanofiber as building blocks for a novel eco-friendly air filtration membrane: A review. Sep. Purif. Technol. 2021, 277, 119623. [Google Scholar] [CrossRef]
- Zhang, Y. Effect of Electret Process Parameters on Filtration Performance of Polypropylene Melt-Blown Nonwoven Fabric. J. Phys. Conf. Ser. 2020, 1622, 012049. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, G.; Bhat, G.S.; Azari, H.; Pen, H. Electret characteristics of melt-blown polylactic acid fabrics for air filtration application. J. Appl. Polym. Sci. 2019, 137, 48309. [Google Scholar] [CrossRef]
- Soo, X.Y.D.; Wang, S.; Yeo, C.C.J.; Li, J.; Ni, X.P.; Jiang, L.; Xue, K.; Li, Z.; Fei, X.; Zhu, Q.; et al. Polylactic acid face masks: Are these the sustainable solutions in times of COVID-19 pandemic? Sci. Total. Environ. 2022, 807, 151084. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Zhu, M.; Jiang, Z.; Jiang, S.; Zhang, Q.; Xiong, R.; Huang, C. Green Electrospun Nanofibers and Their Application in Air Filtration. Macromol. Mater. Eng. 2018, 303, 1800336. [Google Scholar] [CrossRef]
- Ding, C.; Guo, Y.; Liu, J.; Kent, G.B.; Jobson, B.T.; Fu, X.; Yang, X.; Zhong, W.-H. A Super-breathable “Woven-like” Protein Nanofabric. ACS Appl. Bio Mater. 2020, 3, 2958–2964. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Wang, Y.; Zheng, M.; Dunne, F.; Liu, T.; Fu, X.; Kong, L.; Pan, S.; Zhong, W.-H. Morphology engineering of protein fabrics for advanced and sustainable filtration. J. Mater. Chem. A 2018, 6, 21585–21595. [Google Scholar] [CrossRef]
- Hu, J.; Xiong, Z.; Liu, Y.; Lin, J. A biodegradable composite filter made from electrospun zein fibers underlaid on the cellulose paper towel. Int. J. Biol. Macromol. 2022, 204, 419–428. [Google Scholar] [CrossRef]
- Lin, S.; Fu, X.; Luo, M.; Zhong, W.-H. Tailoring bimodal protein fabrics for enhanced air filtration performance. Sep. Purif. Technol. 2022, 290, 120913. [Google Scholar] [CrossRef]
- Liu, J.; Ding, C.; Dunne, F.O.; Guo, Y.; Fu, X.; Zhong, W.-H. A Bimodal Protein Fabric Enabled via In Situ Diffusion for High-Performance Air Filtration. Environ. Sci. Technol. 2020, 54, 12042–12050. [Google Scholar] [CrossRef] [PubMed]
- American Society of Testing and Materials. ASTM F3502-21: Standard Specification for Barrier Face Coverings. 2021. Available online: https://www.astm.org/f3502-21.html (accessed on 20 July 2022).
- Jiang, Q.; Reddy, N.; Yang, Y. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Acta Biomater. 2010, 6, 4042–4051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koombhongse, S.; Liu, W.; Reneker, D.H. Flat polymer ribbons and other shapes by electrospinning. J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 2598–2606. [Google Scholar] [CrossRef]
- Coelho, S.C.; Benaut, P.; Laget, S.; Estevinho, B.N.; Rocha, F. Optimization of electrospinning parameters for the production of zein microstructures for food and biomedical applications. Micron 2021, 152, 103164. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef]
- Haider, A.; Haider, S.; Kang, I.-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Reddy, N.; Li, Y.; Yang, Y. Alkali-catalyzed low temperature wet crosslinking of plant proteins using carboxylic acids. Biotechnol. Prog. 2009, 25, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, C.; Tian, H.; Yuan, L.; Xiang, A.; Li, J.; Wang, C.; Rajulu, A.V. Hydrophobic cross-linked zein-based nanofibers with efficient air filtration and improved moisture stability. Chem. Eng. J. 2020, 396, 125373. [Google Scholar] [CrossRef]
- Souzandeh, H.; Scudiero, L.; Wang, Y.; Zhong, W.-H. A Disposable Multi-Functional Air Filter: Paper Towel/Protein Nanofibers with Gradient Porous Structures for Capturing Pollutants of Broad Species and Sizes. ACS Sustain. Chem. Eng. 2017, 5, 6209–6217. [Google Scholar] [CrossRef]
- Souzandeh, H.; Molki, B.; Zheng, M.; Beyenal, H.; Scudiero, L.; Wang, Y.; Zhong, W.-H. Cross-Linked Protein Nanofilter with Antibacterial Properties for Multifunctional Air Filtration. ACS Appl. Mater. Interfaces 2017, 9, 22846–22855. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.J.; Tian, Y.; Wang, R.; Tian, M.; Liao, Y. Fabrication of bead-on-string polyacrylonitrile nanofibrous air filters with superior filtration efficiency and ultralow pressure drop. Sep. Purif. Technol. 2019, 237, 116377. [Google Scholar] [CrossRef]
- Reddy, N.; Li, Y.; Yang, Y. Wet Cross-Linking Gliadin Fibers with Citric Acid and a Quantitative Relationship between Cross-Linking Conditions and Mechanical Properties. J. Agric. Food Chem. 2008, 57, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-W.; Huang, S.-H.; Chiang, C.-M.; Hsiao, T.-C.; Chen, C.-C. Filter Quality of Pleated Filter Cartridges. Ann. Occup. Hyg. 2008, 52, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Park, B.H.; Lee, M.-H.; Jo, Y.M.; Kim, S.B. Influence of pleat geometry on filter cleaning in PTFE/glass composite filter. J. Air Waste Manag. Assoc. 2012, 62, 1257–1263. [Google Scholar] [CrossRef] [Green Version]
- Fotovati, S.; Hosseini, S.; Tafreshi, H.V.; Pourdeyhimi, B. Modeling instantaneous pressure drop of pleated thin filter media during dust loading. Chem. Eng. Sci. 2011, 66, 4036–4046. [Google Scholar] [CrossRef]
- Bian, Y.; Zhang, L.; Chen, C. Experimental and modeling study of pressure drop across electrospun nanofiber air filters. Build. Environ. 2018, 142, 244–251. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Q.; Young, T.M.; Harper, D.P.; Wang, S. A Novel Method for Fabricating an Electrospun Poly(Vinyl Alcohol)/Cellulose Nanocrystals Composite Nanofibrous Filter with Low Air Resistance for High-Efficiency Filtration of Particulate Matter. ACS Sustain. Chem. Eng. 2019, 7, 8706–8714. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Qin, Z.; Li, H.; Wang, J.; Zeng, G.; Liu, C.; Long, J.; Zhao, Y.; Li, Y.; et al. Airflow Synergistic Needleless Electrospinning of Instant Noodle-like Curly Nanofibrous Membranes for High-Efficiency Air Filtration. Small 2022, 18, 2107250. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, C.; Pan, Z. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration. J. Colloid Interface Sci. 2015, 441, 121–129. [Google Scholar] [CrossRef]
- Buivydiene, D.; Todea, A.M.; Asbach, C.; Krugly, E.; Martuzevicius, D.; Kliucininkas, L. Composite micro/nano fibrous air filter by simultaneous melt and solution electrospinning. J. Aerosol Sci. 2021, 154, 105754. [Google Scholar] [CrossRef]
- Li, S.; Hu, S.; Xie, B.; Jin, H.; Xin, J.; Wang, F.; Zhou, F. Influence of pleat geometry on the filtration and cleaning characteristics of filter media. Sep. Purif. Technol. 2019, 210, 38–47. [Google Scholar] [CrossRef]
- Cheng, K.; Zhu, J.; Qian, F.; Cao, B.; Lu, J.; Han, Y. CFD–DEM simulation of particle deposition characteristics of pleated air filter media based on porous media model. Particuology 2023, 72, 37–48. [Google Scholar] [CrossRef]
- Anantharamaiah, N.; Tafreshi, H.V.; Pourdeyhimi, B. A study on flow through hydroentangling nozzles and their degradation. Chem. Eng. Sci. 2006, 61, 4582–4594. [Google Scholar] [CrossRef]
- American Society of Testing and Materials. ASTM D5338-15: Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials under Controlled Composting Conditions, Incorporating Thermophilic Temperatures. 2021. Available online: https://www.astm.org/d5338-15r21.html (accessed on 20 July 2022).
Electrospinning Conditions | |||||||||
---|---|---|---|---|---|---|---|---|---|
Concentration (%, w/v) | 25% | 30% | 40% | ||||||
Substrate type | Flat | Flat | Flat | ||||||
Voltage (kV) | 21 kV | 23 kV | 25 kV | ||||||
Flow rate (mL/h) | 6 | 8 | 10 | ||||||
Number of nozzles | 6 | 6 | 6 | ||||||
Relative humidity (%) | 50–60 | 50–60 | 50–60 | ||||||
Temperature (°C) | 24 | 24 | 24 | ||||||
Distance (cm) | 10 | 10 | 10 | ||||||
Homogeneity/lateral distance (cm) | 5.5 | 5.5 | 5.5 | ||||||
Homogeneity speed (cm/s) | 1 | 1 | 1 | ||||||
Drum speed (rpm) | 100 | 100 | 100 | ||||||
Spinning time (min) | 5 | 15 | 25 | 5 | 15 | 25 | 5 | 15 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.; Shanbhag, S.; Selvaganapathy, P.R. Efficient, Breathable, and Compostable Multilayer Air Filter Material Prepared from Plant-Derived Biopolymers. Membranes 2023, 13, 380. https://doi.org/10.3390/membranes13040380
Wu R, Shanbhag S, Selvaganapathy PR. Efficient, Breathable, and Compostable Multilayer Air Filter Material Prepared from Plant-Derived Biopolymers. Membranes. 2023; 13(4):380. https://doi.org/10.3390/membranes13040380
Chicago/Turabian StyleWu, Rong, Sneha Shanbhag, and P. Ravi Selvaganapathy. 2023. "Efficient, Breathable, and Compostable Multilayer Air Filter Material Prepared from Plant-Derived Biopolymers" Membranes 13, no. 4: 380. https://doi.org/10.3390/membranes13040380
APA StyleWu, R., Shanbhag, S., & Selvaganapathy, P. R. (2023). Efficient, Breathable, and Compostable Multilayer Air Filter Material Prepared from Plant-Derived Biopolymers. Membranes, 13(4), 380. https://doi.org/10.3390/membranes13040380