Forward Osmosis Membrane: Review of Fabrication, Modification, Challenges and Potential
Abstract
:1. Introduction
2. Role of Active Layer and Substrate on FO Performance
3. Thin Film Nanocomposite FO Membranes
3.1. GO Nanoparticle
3.2. Zeolite Nanoparticle
3.3. TiO2 Nanoparticle
3.4. SiO2 Nanoparticle
3.5. ZnO Nanoparticle
3.6. Other Nanoparticles
3.7. Mixture Nanoparticles
4. Draw Solution
4.1. Electrolyte Draw Solutions
4.2. Non-Electrolyte Draw Solutions
5. Effect of Operating Condition in FO
5.1. Flow Rate
5.2. Concentration
5.3. Temperature
6. Challenges for TFC-FO
6.1. Concentration Polarization
6.1.1. Impacts of CP
6.1.2. Mitigation of CP
6.2. Membrane Fouling
6.3. Reverse Solute Diffusion
7. Energy Consumption in FO Compared to RO
8. Other FO Applications
8.1. From an Agricultural Perspective
8.2. From an Industrial Perspective
9. Case Studies
9.1. Pilot Plant A
9.2. Pilot Plant B
9.3. Pilot Plant C
9.4. Pilot Plant D
9.5. Pilot Plant E
10. FO Future
11. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Liu, K.; Gao, Y.; Li, G.; Li, Z.; Wang, Q.; Guo, L.; Liu, T.; Al-Namazi, M.A.; Li, S. Removal and Fouling Influence of Microplastics in Fertilizer Driven Forward Osmosis for Wastewater Reclamation. Membranes 2021, 11, 845. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, E.; Buttiglieri, G.; Blandin, G.; Comas, J. Exploring the limitations of forward osmosis for direct hydroponic fertigation: Impact of ion transfer and fertilizer composition on effective dilution. J. Environ. Manag. 2022, 305, 114339. [Google Scholar] [CrossRef]
- Abbas, T.K.; Rashid, K.T.; Alsalhy, Q.F. NaY zeolite-polyethersulfone-modified membranes for the removal of cesium-137 from liquid radioactive waste. Chem. Eng. Res. Des. 2022, 179, 535–548. [Google Scholar] [CrossRef]
- Rashid, W.T.; Alkadir, I.A.; Jalhoom, M.G.; Rashid, K.T. (Polyphenyl Sulfone-Polyether Sulfone) Blending to Performance Flat Sheet Membrane to Remove Some Heavy and Radioactive Elements from Phosphogypsum. Waste Eng. Technol. J. 2021, 39, 382–393. [Google Scholar] [CrossRef]
- Al-Bahate, M.J.; Shabeeb, K.M.; Khalil, B.I. Effect of Polyvinyl Pyrrolidone on Polyvinyl Chloride-Graft-Acrylamide Membranes. Eng. Technol. J. 2020, 38, 1205–1315. [Google Scholar] [CrossRef]
- Al-Shaeli, M.; Al-Juboori, R.A.; Al Aani, S.; Ladewig, B.P.; Hilal, N. Natural and recycled materials for sustainable membrane modification: Recent trends and prospects. Sci. Total Environ. 2022, 838, 156014. [Google Scholar] [CrossRef]
- Klaysom, C.; Cath, T.Y.; Depuydt, T.; Vankelecom, I.F. Forward and pressure retarded osmosis: Potential solutions for global challenges in energy and water supply. Chem. Soc. Rev. 2013, 42, 6959–6989. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.; Wang, Y. Novel carboxyethyl amine sodium salts as draw solutes with superior forward osmosis performance. AIChE J. 2016, 62, 1226–1235. [Google Scholar] [CrossRef]
- Mohammadifakhr, M.; de Grooth, J.; Roesink, H.D.W.; Kemperman, A.J.B. Forward Osmosis: A Critical Review. Processes 2020, 8, 404. [Google Scholar] [CrossRef] [Green Version]
- Ge, Q.; Su, J.; Amy, G.L.; Chung, T.-S. Exploration of polyelectrolytes as draw solutes in forward osmosis processes. Water Res. 2012, 46, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Litwiller, E.; Choi, S.-H.; Pinnau, I. Evaluation of sodium lignin sulfonate as draw solute in forward osmosis for desert restoration. J. Membr. Sci. 2014, 453, 463–470. [Google Scholar] [CrossRef]
- Khazaie, F.; Shokrollahzadeh, S.; Bide, Y.; Sheshmani, S.; Shahvelayati, A.S. High-Flux sodium alginate sulfate draw solution for water recovery from saline waters and wastewaters via forward osmosis. Chem. Eng. J. 2021, 417, 129250. [Google Scholar] [CrossRef]
- Al-Furaiji, M.; Kadhom, M.; Waisi, B.; Kalash, K. Coupled effect of organic fouling and scaling in the treatment of hyper-saline produced water using forward osmosis. Chem. Eng. Commun. 2022, 1–9. [Google Scholar] [CrossRef]
- Ambrosi, A.; Al-Furaiji, M.; McCutcheon, J.R.; Cardozo, N.S.M.; Tessaro, I.C. Transport of components in the separation of ethanol from aqueous dilute solutions by forward osmosis. Ind. Eng. Chem. Res. 2018, 57, 2967–2975. [Google Scholar] [CrossRef]
- Phuntsho, S.; Hong, S.; Elimelech, M.; Shon, H.K. Osmotic equilibrium in the forward osmosis process: Modelling, experiments and implications for process performance. J. Membr. Sci. 2014, 453, 240–252. [Google Scholar] [CrossRef]
- Yadav, S.; Saleem, H.; Ibrar, I.; Naji, O.; Hawari, A.A.; Alanezi, A.A.; Zaidi, S.J.; Altaee, A.; Zhou, J. Recent developments in forward osmosis membranes using carbon-based nanomaterials. Desalination 2020, 482, 114375. [Google Scholar] [CrossRef]
- Mokarizadeh, H.; Moayedfard, S.; Maleh, M.S.; Mohamed, S.I.G.P.; Nejati, S.; Esfahani, M.R. The role of support layer properties on the fabrication and performance of thin-film composite membranes: The significance of selective layer-support layer connectivity. Sep. Purif. Technol. 2021, 278, 119451. [Google Scholar] [CrossRef]
- Emadzadeh, D.; Lau, W.J.; Ismail, A.F. Synthesis of thin film nanocomposite forward osmosis membrane with enhancement in water flux without sacrificing salt rejection. Desalination 2013, 330, 90–99. [Google Scholar] [CrossRef]
- Long, Q.; Jia, Y.; Li, J.; Yang, J.; Liu, F.; Zheng, J.; Yu, B. Recent Advance on Draw Solutes Development in Forward Osmosis. Processes 2018, 6, 165. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Fang, Z.; Liang, P.; Huang, X. Direct concentration of municipal sewage by forward osmosis and membrane fouling behavior. Bioresour. Technol. 2018, 247, 730–735. [Google Scholar] [CrossRef]
- Awad, A.M.; Jalab, R.; Minier-Matar, J.; Adham, S.; Nasser, M.S.; Judd, S. The status of forward osmosis technology implementation. Desalination 2019, 461, 10–21. [Google Scholar] [CrossRef]
- Nguyen, N.C.; Nguyen, H.T.; Ho, S.-T.; Chen, S.-S.; Ngo, H.H.; Guo, W.; Ray, S.S.; Hsu, H.-T. Exploring high charge of phosphate as new draw solute in a forward osmosis–membrane distillation hybrid system for concentrating high-nutrient sludge. Sci. Total Environ. 2016, 557–558, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Cath, T.Y.; Drewes, J.E.; Lundin, C.D.; Hancock, N.T. Forward osmosis—Reverse osmosis process offers a novel hybrid solution for water purification and reuse. IDA J. Desalination Water Reuse 2010, 2, 16–20. [Google Scholar] [CrossRef]
- Iskander, S.M.; Zou, S.; Brazil, B.; Novak, J.T.; He, Z. Energy consumption by forward osmosis treatment of landfill leachate for water recovery. Waste Manag. 2017, 63, 284–291. [Google Scholar] [CrossRef]
- Hau, N.T.; Chen, S.-S.; Nguyen, N.C.; Huang, K.Z.; Ngo, H.H.; Guo, W. Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge. J. Membr. Sci. 2014, 455, 305–311. [Google Scholar] [CrossRef]
- Devia, Y.P.; Imai, T.; Higuchi, T.; Kanno, A.; Yamamoto, K.; Sekine, M. Effect of operating conditions on forward osmosis for nutrient rejection using magnesium chloride as a draw solution. Int. J. Environ. Ecol. Eng. 2015, 9, 691–696. [Google Scholar]
- Aydiner, C.; Sen, U.; Topcu, S.; Ekinci, D.; Altinay, A.D.; Koseoglu-Imer, D.Y.; Keskinler, B. Techno-economic viability of innovative membrane systems in water and mass recovery from dairy wastewater. J. Membr. Sci. 2014, 458, 66–75. [Google Scholar] [CrossRef]
- Pal, P.; Sardar, M.; Pal, M.; Chakrabortty, S.; Nayak, J. Modelling forward osmosis-nanofiltration integrated process for treatment and recirculation of leather industry wastewater. Comput. Chem. Eng. 2019, 127, 99–110. [Google Scholar] [CrossRef]
- Cui, Y.; Chung, T.-S. Pharmaceutical concentration using organic solvent forward osmosis for solvent recovery. Nat. Commun. 2018, 9, 1426. [Google Scholar] [CrossRef] [Green Version]
- Aghilesh, K.; Mungray, A.; Agarwal, S.; Ali, J.; Garg, M.C. Performance optimisation of forward-osmosis membrane system using machine learning for the treatment of textile industry wastewater. J. Clean. Prod. 2021, 289, 125690. [Google Scholar]
- Huang, J.; Long, Q.; Xiong, S.; Shen, L.; Wang, Y. Application of poly (4-styrenesulfonic acid-co-maleic acid) sodium salt as novel draw solute in forward osmosis for dye-containing wastewater treatment. Desalination 2017, 421, 40–46. [Google Scholar] [CrossRef]
- Singh, S.K.; Sharma, C.; Maiti, A. Forward osmosis to treat effluent of pulp and paper industry using urea draw-solute: Energy consumption, water flux, and solute flux. Sep. Purif. Technol. 2021, 278, 119617. [Google Scholar] [CrossRef]
- Gwak, G.; Jung, B.; Han, S.; Hong, S. Evaluation of poly (aspartic acid sodium salt) as a draw solute for forward osmosis. Water Res. 2015, 80, 294–305. [Google Scholar] [CrossRef]
- Haupt, A.; Marx, C.; Lerch, A. Modelling Forward Osmosis Treatment of Automobile Wastewaters. Membranes 2019, 9, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wang, K.Y.; Helmer, B.; Chung, T.-S. Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes. Ind. Eng. Chem. Res. 2012, 51, 10039–10050. [Google Scholar] [CrossRef]
- Shabani, Z.; Kahrizi, M.; Mohammadi, T.; Kasiri, N.; Sahebi, S. A novel Thin film composite forward osmosis membrane using bio-inspired polydopamine coated polyvinyl chloride substrate: Experimental and computational fluid dynamics modelling. Process Saf. Environ. Prot. 2021, 147, 756–771. [Google Scholar] [CrossRef]
- Al-Ani, F.H.; Alsalhy, Q.F.; Raheem, R.S.; Rashid, K.T.; Figoli, A. Experimental investigation of the effect of implanting tio2-nps on pvc for long-term uf membrane performance to treat refinery wastewater. Membranes 2020, 10, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiraferri, A.; Yip, N.Y.; Phillip, W.A.; Schiffman, J.D.; Elimelech, M. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J. Membr. Sci. 2011, 367, 340–352. [Google Scholar] [CrossRef] [Green Version]
- Darwish, N.B.; Alkhudhiri, A.; AlRomaih, H.; Alalawi, A.; Leaper, M.C.; Hilal, N. Effect of lithium chloride additive on forward osmosis membranes performance. J. Water Process Eng. 2020, 33, 101049. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Ali, J.M.; Abbas, A.A.; Rashed, A.; Bruggen, B.V.; Balta, S. Enhancement of poly (phenyl sulfone) membranes with ZnO nanoparticles. Desalination Water Treat. 2013, 51, 6070–6081. [Google Scholar] [CrossRef]
- Abdullah, R.R.; Shabeeb, K.; Alzubaydi, A.; Figoli, A.; Criscuoli, A.; Drioli, E.; Alsalhy, Q. Characterization of the Efficiency of Photo-Catalytic Ultrafiltation PES Membrane Modified with Tungsten Oxide in the Removal of Tinzaparin Sodium. Eng. Technol. J. 2022, 40, 1–10. [Google Scholar] [CrossRef]
- Zirehpour, A.; Rahimpour, A.; Ulbricht, M. Nano-sized metal organic framework to improve the structural properties and desalination performance of thin film composite forward osmosis membrane. J. Membr. Sci. 2017, 531, 59–67. [Google Scholar] [CrossRef]
- Klaysom, C.; Hermans, S.; Gahlaut, A.; Van Craenenbroeck, S.; Vankelecom, I.F.J. Polyamide/Polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: Film optimization, characterization and performance evaluation. J. Membr. Sci. 2013, 445, 25–33. [Google Scholar] [CrossRef]
- Al-Furaiji, M.; Kadhom, M.; Kalash, K.; Waisi, B.; Albayati, N. Preparation of TFC Membranes Sup-ported with Elelctrospun Nanofibers for Desalination by Forward Osmosis. Drink. Water Eng. Sci. Discuss 2020, 2020, 1–17. [Google Scholar]
- Sheikhi, M.; Mirshekar, L.; Kamarehie, B.; Ghaderpoori, M.; Ramavandi, B.; Amini, F.; Fadaie, N.; Sahebi, S. Thin-Film Composite Forward-Osmosis Membranes Reinforced on Woven Mesh and Nonwoven Backing Fabric Supports. Chem. Eng. Technol. 2021, 44, 1251–1258. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, S.; Liu, C.-X.; Shen, L.; Ding, C.; Guan, C.-Y.; Wang, Y. Confining migration of amine monomer during interfacial polymerization for constructing thin-film composite forward osmosis membrane with low fouling propensity. Chem. Eng. Sci. 2019, 207, 54–68. [Google Scholar] [CrossRef]
- Farahbakhsh, J.; Vatanpour, V.; Khoshnam, M.; Zargar, M. Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review. React. Funct. Polym. 2021, 166, 105015. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Han, X.; Liu, Y.; Wang, C.; Yan, F.; Wang, J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J. Membr. Sci. 2021, 640, 119765. [Google Scholar] [CrossRef]
- Sotto, A.; Rashed, A.; Zhang, R.-X.; Martínez, A.; Braken, L.; Luis, P.; Van der Bruggen, B. Improved membrane structures for seawater desalination by studying the influence of sublayers. Desalination 2012, 287, 317–325. [Google Scholar] [CrossRef]
- Lu, X.; Chavez, L.H.A.; Castrillo, S.R.-V.; Ma, J.; Elimelech, M. Influence of active layer and support layer surface structures on organic fouling propensity of thin-film composite forward osmosis membranes. Environ. Sci. Technol. 2015, 49, 1436–1444. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhu, H.; Feng, L.; Zhang, L. Effects of polyethylene glycol on the structure and filtration performance of thin-film PA-Psf composite forward osmosis membranes. Sep. Sci. Technol. 2016, 51, 862–873. [Google Scholar] [CrossRef]
- Zhang, R.X.; Vanneste, J.; Poelmans, L.; Sotto, A.; Wang, X.L.; Van der Bruggen, B. Effect of the manufacturing conditions on the structure and performance of thin-film composite membranes. J. Appl. Polym. Sci. 2012, 125, 3755–3769. [Google Scholar] [CrossRef]
- Corvilain, M.; Klaysom, C.; Szymczyk, A.; Vankelecom, I.F.J. Formation mechanism of sPEEK hydrophilized PES supports for forward osmosis. Desalination 2017, 419, 29–38. [Google Scholar] [CrossRef]
- Sahebi, S.; Phuntsho, S.; Woo, Y.C.; Park, M.J.; Tijing, L.D.; Hong, S.; Shon, H.K. Effect of sulphonated polyethersulfone substrate for thin film composite forward osmosis membrane. Desalination 2016, 389, 129–136. [Google Scholar] [CrossRef]
- Widjojo, N.; Chung, T.-S.; Weber, M.; Maletzko, C.; Warzelhan, V. The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes. J. Membr. Sci. 2011, 383, 214–223. [Google Scholar] [CrossRef]
- Han, G.; Chung, T.-S.; Toriida, M.; Tamai, S. Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination. J. Membr. Sci. 2012, 423, 543–555. [Google Scholar] [CrossRef]
- Wei, J.; Liu, X.; Qiu, C.; Wang, R.; Tang, C.Y. Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes. J. Membr. Sci. 2011, 381, 110–117. [Google Scholar] [CrossRef]
- Tian, M.; Qiu, C.; Liao, Y.; Chou, S.; Wang, R. Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates. Sep. Purif. Technol. 2013, 118, 727–736. [Google Scholar] [CrossRef]
- Rastgar, M.; Shakeri, A.; Salehi, H. Study of polyamide thin film characteristics impact on permeability/selectivity performance and fouling behavior of forward osmosis membrane. Environ. Sci. Pollut. Res. 2019, 26, 1181–1191. [Google Scholar] [CrossRef]
- Xu, J.; Yan, H.; Zhang, Y.; Pan, G.; Liu, Y. The morphology of fully-aromatic polyamide separation layer and its relationship with separation performance of TFC membranes. J. Membr. Sci. 2017, 541, 174–188. [Google Scholar] [CrossRef]
- Zhou, Z.; Lee, J.Y.; Chung, T.-S. Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction. Chem. Eng. J. 2014, 249, 236–245. [Google Scholar] [CrossRef]
- Kadhom, M.; Deng, B. Synthesis of high-performance thin film composite (TFC) membranes by controlling the preparation conditions: Technical notes. J. Water Process Eng. 2019, 30, 100542. [Google Scholar] [CrossRef]
- Chiao, Y.-H.; Sengupta, A.; Chen, S.-T.; Hung, W.-S.; Lai, J.-Y.; Upadhyaya, L.; Qian, X.; Wickramasinghe, S.R. Novel thin-film composite forward osmosis membrane using polyethylenimine and its impact on membrane performance. Sep. Sci. Technol. 2020, 55, 590–600. [Google Scholar] [CrossRef]
- Xiong, S.; Zuo, J.; Ma, Y.G.; Liu, L.; Wu, H.; Wang, Y. Novel thin film composite forward osmosis membrane of enhanced water flux and anti-fouling property with N-[3-(trimethoxysilyl) propyl] ethylenediamine incorporated. J. Membr. Sci. 2016, 520, 400–414. [Google Scholar] [CrossRef]
- Nayak, V.; Ms, J.; Balakrishna, R.G.; Padaki, M.; Zadorozhnyy, V.Y.; Kaloshkin, S.D. 4-aminophenyl sulfone (APS) as novel monomer in fabricating paper based TFC composite for forward osmosis: Selective layer optimization. J. Environ. Chem. Eng. 2020, 8, 103664. [Google Scholar] [CrossRef]
- Zhang, Z.; Kang, G.; Yu, H.; Jin, Y.; Cao, Y. Fabrication of a highly permeable composite nanofiltration membrane via interfacial polymerization by adding a novel acyl chloride monomer with an anhydride group. J. Membr. Sci. 2019, 570, 403–409. [Google Scholar] [CrossRef]
- Kahrizi, M.; Gonzales, R.R.; Kong, L.; Matsuyama, H.; Lu, P.; Lin, J.; Zhao, S. Significant roles of substrate properties in forward osmosis membrane performance: A review. Desalination 2022, 528, 115615. [Google Scholar] [CrossRef]
- Park, M.J.; Phuntsho, S.; He, T.; Nisola, G.M.; Tijing, L.D.; Li, X.-M.; Chen, G.; Chung, W.-J.; Shon, H.K. Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes. J. Membr. Sci. 2015, 493, 496–507. [Google Scholar] [CrossRef]
- Idris, S.N.; Jullok, N.; Lau, W.J.; Ong, H.L.; Dong, C.-D. Graphene oxide incorporated polysulfone substrate for flat sheet thin film nanocomposite pressure retarded osmosis membrane. Membranes 2020, 10, 416. [Google Scholar] [CrossRef] [PubMed]
- Akther, N.; Yuan, Z.; Chen, Y.; Lim, S.; Phuntsho, S.; Ghaffour, N.; Matsuyama, H.; Shon, H. Influence of graphene oxide lateral size on the properties and performances of forward osmosis membrane. Desalination 2020, 484, 114421. [Google Scholar] [CrossRef]
- Saeedi-Jurkuyeh, A.; Jafari, A.J.; Kalantary, R.R.; Esrafili, A. A novel synthetic thin-film nanocomposite forward osmosis membrane modified by graphene oxide and polyethylene glycol for heavy metals removal from aqueous solutions. React. Funct. Polym. 2020, 146, 104397. [Google Scholar] [CrossRef]
- Ma, N.; Wei, J.; Liao, R.; Tang, C.Y. Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis. J. Membr. Sci. 2012, 405, 149–157. [Google Scholar] [CrossRef]
- Ma, N.; Wei, J.; Qi, S.; Zhao, Y.; Gao, Y.; Tang, C.Y. Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes. J. Membr. Sci. 2013, 441, 54–62. [Google Scholar] [CrossRef]
- Salehi, T.M.; Peyravi, M.; Jahanshahi, M.; Lau, W.-J.; Rad, A.S. Impacts of zeolite nanoparticles on substrate properties of thin film nanocomposite membranes for engineered osmosis. J. Nanoparticle Res. 2018, 20, 1–15. [Google Scholar] [CrossRef]
- Emadzadeh, D.; Lau, W.J.; Matsuura, T.; Ismail, A.F.; Rahbari-Sisakht, M. Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization. J. Membr. Sci. 2014, 449, 74–85. [Google Scholar] [CrossRef]
- Emadzadeh, D.; Lau, W.J.; Matsuura, T.; Rahbari-Sisakht, M.; Ismail, A.F. A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination. Chem. Eng. J. 2014, 237, 70–80. [Google Scholar] [CrossRef]
- Amini, M.; Rahimpour, A.; Jahanshahi, M. Forward osmosis application of modified TiO2-polyamide thin film nanocomposite membranes. Desalinat. Water Treat. 2016, 57, 14013–14023. [Google Scholar] [CrossRef]
- Tharayil, J.; Manaf, A. Effect of different inorganic draw solutes on SiNPs-TFN membrane for forward osmosis desalination. Int. J. Environ. Sci. Technol. 2022, 19, 289–298. [Google Scholar] [CrossRef]
- Niksefat, N.; Jahanshahi, M.; Rahimpour, A. The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination 2014, 343, 140–146. [Google Scholar] [CrossRef]
- Huang, Y.; Jin, H.; Yu, P.; Luo, Y. Polyamide thin-film composite membrane based on nano-silica modified polysulfone microporous support layer for forward osmosis. Desalinat. Water Treat. 2016, 57, 20177–20187. [Google Scholar] [CrossRef]
- Islam, M.S.; Touati, K.; Rahaman, M.S. High flux and antifouling thin-film nanocomposite forward osmosis membrane with ingrained silica nanoparticles. ACS EST Eng. 2021, 1, 467–477. [Google Scholar] [CrossRef]
- Mansouri, S.; Khalili, S.; Peyravi, M.; Jahanshahi, M.; Darabi, R.R.; Ardeshiri, F.; Rad, A.S. Sublayer assisted by hydrophilic and hydrophobic ZnO nanoparticles toward engineered osmosis process. Korean J. Chem. Eng. 2018, 35, 2256–2268. [Google Scholar] [CrossRef]
- Ghalavand, R.; Mokhtary, M.; Shakeri, A.; Alizadeh, O. ZnO@PMMA incorporated PSf substrate for improving thin-film composite membrane performance in forward osmosis process. Chem. Eng. Res. Des. 2022, 177, 594–603. [Google Scholar] [CrossRef]
- Ding, W.; Li, Y.; Bao, M.; Zhang, J.; Zhang, C.; Lu, J. Highly permeable and stable forward osmosis (FO) membrane based on the incorporation of Al2O3 nanoparticles into both substrate and polyamide active layer. RSC Adv. 2017, 7, 40311–40320. [Google Scholar] [CrossRef] [Green Version]
- Darabi, R.R.; Peyravi, M.; Jahanshahi, M.; Amiri, A.A.Q. Decreasing ICP of forward osmosis (TFN-FO) membrane through modifying PES-Fe3O4 nanocomposite substrate. Korean J. Chem. Eng. 2017, 34, 2311–2324. [Google Scholar] [CrossRef]
- Sirinupong, T.; Youravong, W.; Tirawat, D.; Lau, W.; Lai, G.; Ismail, A. Synthesis and characterization of thin film composite membranes made of PSF-TiO2/GO nanocomposite substrate for forward osmosis applications. Arab. J. Chem. 2018, 11, 1144–1153. [Google Scholar] [CrossRef]
- Rastgar, M.; Shakeri, A.; Bozorg, A.; Salehi, H.; Saadattalab, V. Impact of nanoparticles surface characteristics on pore structure and performance of forward osmosis membranes. Desalination 2017, 421, 179–189. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, L.; Guan, C.-Y.; Liu, C.-X.; Lang, W.-Z.; Wang, Y. Construction of SiO2@ MWNTs incorporated PVDF substrate for reducing internal concentration polarization in forward osmosis. J. Membr. Sci. 2018, 564, 328–341. [Google Scholar] [CrossRef]
- Darabi, R.R.; Jahanshahi, M.; Peyravi, M. A support assisted by photocatalytic Fe3O4/ZnO nanocomposite for thin-film forward osmosis membrane. Chem. Eng. Res. Des. 2018, 133, 11–25. [Google Scholar] [CrossRef]
- Sadiq, A.J.; Awad, E.S.; Shabeeb, K.M.; Khalil, B.I.; Al-Jubouri, S.M.; Sabirova, T.; Tretyakova, N.; Majdi, H.S.; Alsalhy, Q.F.; Braihi, A.J. Comparative study of embedded functionalised MWCNTs and GO in Ultrafiltration (UF) PVC membrane: Interaction mechanisms and performance. Int. J. Environ. Anal. Chem. 2020, 103, 415–436. [Google Scholar] [CrossRef]
- Al-Maliki, R.M.; Alsalhy, Q.F.; Al-Jubouri, S.; Salih, I.K.; AbdulRazak, A.A.; Shehab, M.A.; Németh, Z.; Hernadi, K. Classification of Nanomaterials and the Effect of Graphene Oxide (GO) and Recently Developed Nanoparticles on the Ultrafiltration Membrane and Their Applications: A Review. Membranes 2022, 12, 1043. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Y.; Li, C.; Hou, L.-a. Comparison of performance and biofouling resistance of thin-film composite forward osmosis membranes with substrate/active layer modified by graphene oxide. RSC Adv. 2019, 9, 6502–6509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perego, C.; Bagatin, R.; Tagliabue, M.; Vignola, R. Zeolites and related mesoporous materials for multi-talented environmental solutions. Microporous Mesoporous Mater. 2013, 166, 37–49. [Google Scholar] [CrossRef]
- Ghanbari, M.; Emadzadeh, D.; Lau, W.J.; Matsuura, T.; Davoody, M.; Ismail, A.F. Super hydrophilic TiO2/HNT nanocomposites as a new approach for fabrication of high performance thin film nanocomposite membranes for FO application. Desalination 2015, 371, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Al-Jadir, T.; Alardhi, S.M.; Alheety, M.A.; Najim, A.A.; Salih, I.K.; Al-Furaiji, M.; Alsalhy, Q.F. Fabrication and characterization of polyphenylsulfone/titanium oxide nanocomposite membranes for oily wastewater treatment. J. Ecol. Eng. 2022, 23, 1–13. [Google Scholar] [CrossRef]
- Al-Araji, D.D.; Al-Ani, F.H.; Alsalhy, Q.F. Modification of polyethersulfone membranes by Polyethyleneimine (PEI) grafted Silica nanoparticles and their application for textile wastewater treatment. Environ. Technol. 2022, 1–17. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Al-Ani, F.H.; Al-Najar, A.E.; Jabuk, S.I.A. A study of the effect of embedding ZnO-NPs on PVC membrane performance use in actual hospital wastewater treatment by membrane bioreactor. Chem. Eng. Process.-Process Intensif. 2018, 130, 262–274. [Google Scholar] [CrossRef]
- Amini, M.; Seifi, M.; Akbari, A.; Hosseinifard, M. Polyamide-zinc oxide-based thin film nanocomposite membranes: Towards improved performance for forward osmosis. Polyhedron 2020, 179, 114362. [Google Scholar] [CrossRef]
- Wang, Y.; Ou, R.; Ge, Q.; Wang, H.; Xu, T. Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane. Desalination 2013, 330, 70–78. [Google Scholar] [CrossRef]
- Rastgar, M.; Shakeri, A.; Bozorg, A.; Salehi, H.; Saadattalab, V. Highly-efficient forward osmosis membrane tailored by magnetically responsive graphene oxide/Fe3O4 nanohybrid. Appl. Surf. Sci. 2018, 441, 923–935. [Google Scholar] [CrossRef]
- Suwaileh, W.; Pathak, N.; Shon, H.; Hilal, N. Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook. Desalination 2020, 485, 114455. [Google Scholar] [CrossRef]
- Achilli, A.; Cath, T.Y.; Childress, A.E. Selection of inorganic-based draw solutions for forward osmosis applications. J. Membr. Sci. 2010, 364, 233–241. [Google Scholar] [CrossRef]
- Ge, Q.; Ling, M.; Chung, T.-S. Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future. J. Membr. Sci. 2013, 442, 225–237. [Google Scholar] [CrossRef]
- Johnson, D.J.; Suwaileh, W.A.; Mohammed, A.W.; Hilal, N. Osmotic’s potential: An overview of draw solutes for forward osmosis. Desalination 2018, 434, 100–120. [Google Scholar] [CrossRef] [Green Version]
- Chanukya, B.S.; Patil, S.; Rastogi, N.K. Influence of concentration polarization on flux behavior in forward osmosis during desalination using ammonium bicarbonate. Desalination 2013, 312, 39–44. [Google Scholar] [CrossRef]
- Nematzadeh, M.; Samimi, A.; Shokrollahzadeh, S. Application of sodium bicarbonate as draw solution in forward osmosis desalination: Influence of temperature and linear flow velocity. Desalinat. Water Treat. 2016, 57, 20784–20791. [Google Scholar] [CrossRef]
- Phuntsho, S.; Vigneswaran, S.; Kandasamy, J.; Hong, S.; Lee, S.; Shon, H.K. Influence of temperature and temperature difference in the performance of forward osmosis desalination process. J. Membr. Sci. 2012, 415, 734–744. [Google Scholar] [CrossRef]
- Zhao, P.; Yue, Q.; Gao, B.; Kong, J.; Rong, H.; Liu, P.; Shon, H.K.; Li, Q. Influence of different ion types and membrane orientations on the forward osmosis performance. Desalination 2014, 344, 123–128. [Google Scholar] [CrossRef]
- Shakeri, A.; Salehi, H.; Rastgar, M. Chitosan-based thin active layer membrane for forward osmosis desalination. Carbohydr. Polym. 2017, 174, 658–668. [Google Scholar] [CrossRef]
- Volpin, F.; Chekli, L.; Phuntsho, S.; Cho, J.; Ghaffour, N.; Vrouwenvelder, J.S.; Shon, H.K. Simultaneous phosphorous and nitrogen recovery from source-separated urine: A novel application for fertiliser drawn forward osmosis. Chemosphere 2018, 203, 482–489. [Google Scholar] [CrossRef] [Green Version]
- Phuntsho, S.; Shon, H.K.; Hong, S.; Lee, S.; Vigneswaran, S. A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions. J. Membr. Sci. 2011, 375, 172–181. [Google Scholar] [CrossRef]
- Gulied, M.; Al Momani, F.; Khraisheh, M.; Bhosale, R.; Al Nouss, A. Influence of draw solution type and properties on the performance of forward osmosis process: Energy consumption and sustainable water reuse. Chemosphere 2019, 233, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Chung, T.-S.; Helmer, B.J.; de Wit, J.S. Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using Sucrose as draw solute. J. Membr. Sci. 2012, 396, 92–100. [Google Scholar] [CrossRef]
- Tan, C.H.; Ng, H.Y. Revised external and internal concentration polarization models to improve flux prediction in forward osmosis process. Desalination 2013, 309, 125–140. [Google Scholar] [CrossRef]
- Long, Q.; Huang, J.; Xiong, S.; Shen, L.; Wang, Y. Exploration of oligomeric sodium carboxylates as novel draw solutes for forward osmosis. Chem. Eng. Res. Des. 2018, 138, 77–86. [Google Scholar] [CrossRef]
- Cui, Y.; Ge, Q.; Liu, X.-Y.; Chung, T.-S. Novel forward osmosis process to effectively remove heavy metal ions. J. Membr. Sci. 2014, 467, 188–194. [Google Scholar] [CrossRef]
- Ge, Q.; Chung, T.-S. Hydroacid complexes: A new class of draw solutes to promote forward osmosis (FO) processes. Chem. Commun. 2013, 49, 8471–8473. [Google Scholar] [CrossRef] [PubMed]
- Gwak, G.; Kim, D.I.; Hong, S. New industrial application of forward osmosis (FO): Precious metal recovery from printed circuit board (PCB) plant wastewater. J. Membr. Sci. 2018, 552, 234–242. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, S.; Wang, P.; Zhao, Q.; Lu, X. A dendrimer-based forward osmosis draw solute for seawater desalination. Ind. Eng. Chem. Res. 2014, 53, 16170–16175. [Google Scholar] [CrossRef]
- Tian, E.; Hu, C.; Qin, Y.; Ren, Y.; Wang, X.; Wang, X.; Xiao, P.; Yang, X. A study of poly (sodium 4-styrenesulfonate) as draw solute in forward osmosis. Desalination 2015, 360, 130–137. [Google Scholar] [CrossRef]
- Kumar, R.; Al-Haddad, S.; Al-Rughaib, M.; Salman, M. Evaluation of hydrolyzed poly (isobutylene-alt-maleic anhydride) as a polyelectrolyte draw solution for forward osmosis desalination. Desalination 2016, 394, 148–154. [Google Scholar] [CrossRef]
- Zhang, K.; Li, F.; Wu, Y.; Feng, L.; Zhang, L. Construction of ionic thermo-responsive PNIPAM/γ-PGA/PEG hydrogel as a draw agent for enhanced forward-osmosis desalination. Desalination 2020, 495, 114667. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Cui, H.; Li, H.; Yang, F. Forward osmosis using electric-responsive polymer hydrogels as draw agents: Influence of freezing–thawing cycles, voltage, feed solutions on process performance. Chem. Eng. J. 2015, 259, 814–819. [Google Scholar] [CrossRef]
- Bian, L.; Fang, Y.; Wang, X. Experimental investigation into the transmembrane electrical potential of the forward osmosis membrane process in electrolyte solutions. Membranes 2014, 4, 275–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majeed, T.; Phuntsho, S.; Sahebi, S.; Kim, J.E.; Yoon, J.K.; Kim, K.; Shon, H.K. Influence of the process parameters on hollow fiber-forward osmosis membrane performances. Desalinat. Water Treat. 2015, 54, 817–828. [Google Scholar] [CrossRef]
- Wang, H.; Gao, B.; Hou, L.; Shon, H.K.; Yue, Q.; Wang, Z. Fertilizer drawn forward osmosis as an alternative to 2nd pass seawater reverse osmosis: Estimation of boron removal and energy consumption. Front. Environ. Sci. Eng. 2021, 15, 1–13. [Google Scholar] [CrossRef]
- Zou, S.; He, Z. Enhancing wastewater reuse by forward osmosis with self-diluted commercial fertilizers as draw solutes. Water Res. 2016, 99, 235–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, X.; Zou, S.; He, Z. Energy consumption of water recovery from wastewater in a submerged forward osmosis system using commercial liquid fertilizer as a draw solute. Sep. Purif. Technol. 2017, 174, 432–438. [Google Scholar] [CrossRef] [Green Version]
- Akther, N.; Sodiq, A.; Giwa, A.; Daer, S.; Arafat, H.; Hasan, S. Recent advancements in forward osmosis desalination: A review. Chem. Eng. J. 2015, 281, 502–522. [Google Scholar] [CrossRef]
- Razmjou, A.; Simon, G.P.; Wang, H. Effect of particle size on the performance of forward osmosis desalination by stimuli-responsive polymer hydrogels as a draw agent. Chem. Eng. J. 2013, 215–216, 913–920. [Google Scholar] [CrossRef]
- Razmjou, A.; Liu, Q.; Simon, G.P.; Wang, H. Bifunctional Polymer Hydrogel Layers As Forward Osmosis Draw Agents for Continuous Production of Fresh Water Using Solar Energy. Environ. Sci. Technol. 2013, 47, 13160–13166. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, H.; Jin, B.; Yun, S.; Dai, S. O2/N2-responsive microgels as functional draw agents for gas-triggering forward osmosis desalination. J. Membr. Sci. 2020, 595, 117584. [Google Scholar] [CrossRef]
- Hartanto, Y.; Zargar, M.; Cui, X.; Jin, B.; Dai, S. Non-ionic copolymer microgels as high-performance draw materials for forward osmosis desalination. J. Membr. Sci. 2019, 572, 480–488. [Google Scholar] [CrossRef]
- Hartanto, Y.; Zargar, M.; Cui, X.; Shen, Y.; Jin, B.; Dai, S. Thermoresponsive cationic copolymer microgels as high performance draw agents in forward osmosis desalination. J. Membr. Sci. 2016, 518, 273–281. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Liu, Y.; Xiao, Q.; Xu, S. Quantitative evaluation of concentration polarization under different operating conditions for forward osmosis process. Desalination 2016, 398, 106–113. [Google Scholar] [CrossRef]
- Hawari, A.H.; Kamal, N.; Altaee, A. Combined influence of temperature and flow rate of feeds on the performance of forward osmosis. Desalination 2016, 398, 98–105. [Google Scholar] [CrossRef]
- Akther, N.; Daer, S.; Hasan, S.W. Effect of flow rate, draw solution concentration and temperature on the performance of TFC FO membrane, and the potential use of RO reject brine as a draw solution in FO–RO hybrid systems. Desalin. Water Treat. 2018, 136, 65–71. [Google Scholar] [CrossRef]
- Zou, S.; Gu, Y.; Xiao, D.; Tang, C.Y. The role of physical and chemical parameters on forward osmosis membrane fouling during algae separation. J. Membr. Sci. 2011, 366, 356–362. [Google Scholar] [CrossRef]
- Phuntsho, S.; Sahebi, S.; Majeed, T.; Lotfi, F.; Kim, J.E.; Shon, H.K. Assessing the major factors affecting the performances of forward osmosis and its implications on the desalination process. Chem. Eng. J. 2013, 231, 484–496. [Google Scholar] [CrossRef]
- Al-Musawy, W.K.; Al-Furaiji, M.H.; Alsalhy, Q.F. Synthesis and characterization of PVC-TFC hollow fibers for forward osmosis application. J. Appl. Polym. Sci. 2021, 138, 50871. [Google Scholar] [CrossRef]
- Zhao, P.; Gao, B.; Yue, Q.; Liu, S.; Shon, H.K. Effect of high salinity on the performance of forward osmosis: Water flux, membrane scaling and removal efficiency. Desalination 2016, 378, 67–73. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.; Shon, H.K.; Hong, S. Organic fouling mechanisms in forward osmosis membrane process under elevated feed and draw solution temperatures. Desalination 2015, 355, 169–177. [Google Scholar] [CrossRef]
- Wang, C.; Wang, M.; Li, Y. Effects of sodium dodecyl sulfate on forward osmosis membrane fouling and its cleaning. Chemosphere 2020, 257, 127180. [Google Scholar] [CrossRef]
- Jung, D.H.; Lee, J.; Lee, Y.G.; Park, M.; Lee, S.; Yang, D.R.; Kim, J.H. Simulation of forward osmosis membrane process: Effect of membrane orientation and flow direction of feed and draw solutions. Desalination 2011, 277, 83–91. [Google Scholar] [CrossRef]
- Jaafer, M.J.; Al-Najar, J.A.; Alsalhy, Q.F. Poly (phenyl sulfone) hollow fiber forward osmosis membrane for saline water desalination. Chem. Eng. Process.-Process Intensif. 2020, 157, 108119. [Google Scholar] [CrossRef]
- Lambrechts, R.; Sheldon, M.S. Performance and energy consumption evaluation of a fertiliser drawn forward osmosis (FDFO) system for water recovery from brackish water. Desalination 2019, 456, 64–73. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Y.; Song, X.; Yu, J. Forward osmosis for multi-effect distillation brine treatment: Performance and concentration polarization evaluation. Can. J. Chem. Eng. 2021, 99, S114–S125. [Google Scholar] [CrossRef]
- Heo, J.; Chu, K.H.; Her, N.; Im, J.; Park, Y.-G.; Cho, J.; Sarp, S.; Jang, A.; Jang, M.; Yoon, Y. Organic fouling and reverse solute selectivity in forward osmosis: Role of working temperature and inorganic draw solutions. Desalination 2016, 389, 162–170. [Google Scholar] [CrossRef]
- Jin, X.; She, Q.; Ang, X.; Tang, C.Y. Removal of boron and arsenic by forward osmosis membrane: Influence of membrane orientation and organic fouling. J. Membr. Sci. 2012, 389, 182–187. [Google Scholar] [CrossRef]
- Pan, S.-F.; Zhu, M.-P.; Chen, J.P.; Yuan, Z.-H.; Zhong, L.-B.; Zheng, Y.-M. Separation of tetracycline from wastewater using forward osmosis process with thin film composite membrane—Implications for antibiotics recovery. Sep. Purif. Technol. 2015, 153, 76–83. [Google Scholar] [CrossRef]
- Honda, R.; Rukapan, W.; Komura, H.; Teraoka, Y.; Noguchi, M.; Hoek, E.M.V. Effects of membrane orientation on fouling characteristics of forward osmosis membrane in concentration of microalgae culture. Bioresour. Technol. 2015, 197, 429–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yangali-Quintanilla, V.; Li, Z.; Valladares, R.; Li, Q.; Amy, G. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse. Desalination 2011, 280, 160–166. [Google Scholar] [CrossRef]
- Suh, C.; Lee, S. Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution. J. Membr. Sci. 2013, 427, 365–374. [Google Scholar] [CrossRef]
- Ibrar, I.; Naji, O.; Sharif, A.; Malekizadeh, A.; Alhawari, A.; Alanezi, A.A.; Altaee, A. A review of fouling mechanisms, control strategies and real-time fouling monitoring techniques in forward osmosis. Water 2019, 11, 695. [Google Scholar] [CrossRef] [Green Version]
- Arkhangelsky, E.; Wicaksana, F.; Tang, C.; Al-Rabiah, A.A.; Al-Zahrani, S.M.; Wang, R. Combined organic–inorganic fouling of forward osmosis hollow fiber membranes. Water Res. 2012, 46, 6329–6338. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Elimelech, M.; Shon, H.K.; Hong, S. Combined organic and colloidal fouling in forward osmosis: Fouling reversibility and the role of applied pressure. J. Membr. Sci. 2014, 460, 206–212. [Google Scholar] [CrossRef]
- Sun, Y.; Tian, J.; Zhao, Z.; Shi, W.; Liu, D.; Cui, F. Membrane fouling of forward osmosis (FO) membrane for municipal wastewater treatment: A comparison between direct FO and OMBR. Water Res. 2016, 104, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Li, M.; Xiao, K.; Huang, X. The role shifting of organic, inorganic and biological foulants along different positions of a two-stage nanofiltration process. J. Membr. Sci. 2020, 602, 117979. [Google Scholar] [CrossRef]
- Li, R.; Lou, Y.; Xu, Y.; Ma, G.; Liao, B.-Q.; Shen, L.; Lin, H. Effects of surface morphology on alginate adhesion: Molecular insights into membrane fouling based on XDLVO and DFT analysis. Chemosphere 2019, 233, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Elimelech, M.; Zhu, X.; Childress, A.E.; Hong, S. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J. Membr. Sci. 1997, 127, 101–109. [Google Scholar] [CrossRef]
- Emadzadeh, D.; Lau, W.J.; Matsuura, T.; Hilal, N.; Ismail, A.F. The potential of thin film nanocomposite membrane in reducing organic fouling in forward osmosis process. Desalination 2014, 348, 82–88. [Google Scholar] [CrossRef]
- Perreault, F.; Jaramillo, H.; Xie, M.; Ude, M.; Nghiem, L.D.; Elimelech, M. Biofouling Mitigation in Forward Osmosis Using Graphene Oxide Functionalized Thin-Film Composite Membranes. Environ. Sci. Technol. 2016, 50, 5840–5848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, S.; Yao, L.; Yang, R.; Zhou, Y. Organic fouling in forward osmosis (FO): Membrane flux behavior and foulant quantification. Membr. Water Treat. 2015, 6, 161–172. [Google Scholar] [CrossRef]
- Zhang, M.; She, Q.; Yan, X.; Tang, C.Y. Effect of reverse solute diffusion on scaling in forward osmosis: A new control strategy by tailoring draw solution chemistry. Desalination 2017, 401, 230–237. [Google Scholar] [CrossRef]
- Ali, S.M.; Kim, Y.; Qamar, A.; Naidu, G.; Phuntsho, S.; Ghaffour, N.; Vrouwenvelder, J.S.; Shon, H.K. Dynamic feed spacer for fouling minimization in forward osmosis process. Desalination 2021, 515, 115198. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, Y.; Li, D.; Wang, X.-m.; Huang, X. Roles and performance enhancement of feed spacer in spiral wound membrane modules for water treatment: A 20-year review on research evolvement. Water Res. 2021, 198, 117146. [Google Scholar] [CrossRef]
- Lee, C.; Nguyen, T.-T.; Adha, R.S.; Shon, H.K.; Kim, I.S. Influence of hydrodynamic operating conditions on organic fouling of spiral-wound forward osmosis membranes: Fouling-induced performance deterioration in FO-RO hybrid system. Water Res. 2020, 185, 116154. [Google Scholar] [CrossRef]
- Cao, D.-Q.; Sun, X.-Z.; Zhang, W.-Y.; Ji, Y.-T.; Yang, X.-X.; Hao, X.-D. News on alginate recovery by forward osmosis: Reverse solute diffusion is useful. Chemosphere 2021, 285, 131483. [Google Scholar] [CrossRef]
- Kahrizi, M.; Lin, J.; Ji, G.; Kong, L.; Song, C.; Dumée, L.F.; Sahebi, S.; Zhao, S. Relating forward water and reverse salt fluxes to membrane porosity and tortuosity in forward osmosis: CFD modelling. Sep. Purif. Technol. 2020, 241, 116727. [Google Scholar] [CrossRef]
- Huang, L.; McCutcheon, J.R. Impact of support layer pore size on performance of thin film composite membranes for forward osmosis. J. Membr. Sci. 2015, 483, 25–33. [Google Scholar] [CrossRef]
- Oh, S.-H.; Im, S.-J.; Jeong, S.; Jang, A. Nanoparticle charge affects water and reverse salt fluxes in forward osmosis process. Desalination 2018, 438, 10–18. [Google Scholar] [CrossRef]
- Baniasadi, J.; Shabani, Z.; Mohammadi, T.; Sahebi, S. Enhanced performance and fouling resistance of cellulose acetate forward osmosis membrane with the spatial distribution of TiO2 and Al2O3 nanoparticles. J. Chem. Technol. Biotechnol. 2021, 96, 147–162. [Google Scholar] [CrossRef]
- Shokrgozar Eslah, S.; Shokrollahzadeh, S.; Jazani, O.M.; Samimi, A. Forward osmosis water desalination: Fabrication of graphene oxide-polyamide/polysulfone thin-film nanocomposite membrane with high water flux and low reverse salt diffusion. Sep. Sci. Technol. 2018, 53, 573–583. [Google Scholar] [CrossRef]
- Wan, C.F.; Chung, T.-S. Techno-economic evaluation of various RO + PRO and RO+FO integrated processes. Appl. Energy 2018, 212, 1038–1050. [Google Scholar] [CrossRef]
- Zaviska, F.; Chun, Y.; Heran, M.; Zou, L. Using FO as pre-treatment of RO for high scaling potential brackish water: Energy and performance optimization. J. Membr. Sci. 2015, 492, 430–438. [Google Scholar] [CrossRef]
- Seo, J.; Kim, Y.M.; Chae, S.H.; Lim, S.J.; Park, H.; Kim, J.H. An optimization strategy for a forward osmosis-reverse osmosis hybrid process for wastewater reuse and seawater desalination: A modeling study. Desalination 2019, 463, 40–49. [Google Scholar] [CrossRef]
- Xie, M.; Zheng, M.; Cooper, P.; Price, W.E.; Nghiem, L.D.; Elimelech, M. Osmotic dilution for sustainable greenwall irrigation by liquid fertilizer: Performance and implications. J. Membr. Sci. 2015, 494, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Sahebi, S.; Phuntsho, S.; Kim, J.E.; Hong, S.; Shon, H.K. Pressure assisted fertiliser drawn osmosis process to enhance final dilution of the fertiliser draw solution beyond osmotic equilibrium. J. Membr. Sci. 2015, 481, 63–72. [Google Scholar] [CrossRef]
- Jamil, S.; Jeong, S.; Vigneswaran, S. Application of pressure assisted forward osmosis for water purification and reuse of reverse osmosis concentrate from a water reclamation plant. Sep. Purif. Technol. 2016, 171, 182–190. [Google Scholar] [CrossRef]
- Guo, J.; Yang, Q.; Meng, Q.-W.; Lau, C.H.; Ge, Q. Membrane surface functionalization with imidazole derivatives to benefit dye removal and fouling resistance in forward osmosis. ACS Appl. Mater. Interfaces 2021, 13, 6710–6719. [Google Scholar] [CrossRef]
- Dong, X.; Ge, Q. Metal ion-bridged forward osmosis membranes for efficient pharmaceutical wastewater reclamation. ACS Appl. Mater. Interfaces 2019, 11, 37163–37171. [Google Scholar] [CrossRef] [PubMed]
- Arjmandi, M.; Peyravi, M.; Chenar, M.P.; Jahanshahi, M. A new concept of MOF-based PMM by modification of conventional dense film casting method: Significant impact on the performance of FO process. J. Membr. Sci. 2019, 579, 253–265. [Google Scholar] [CrossRef]
- Wen, H.; Soyekwo, F.; Liu, C. Highly permeable forward osmosis membrane with selective layer “hooked” to a hydrophilic Cu-Alginate intermediate layer for efficient heavy metal rejection and sludge thickening. J. Membr. Sci. 2022, 647, 120247. [Google Scholar] [CrossRef]
- You, S.; Lu, J.; Tang, C.Y.; Wang, X. Rejection of heavy metals in acidic wastewater by a novel thin-film inorganic forward osmosis membrane. Chem. Eng. J. 2017, 320, 532–538. [Google Scholar] [CrossRef]
- Bayrami, A.; Bagherzadeh, M.; Navi, H.; Nikkhoo, M.; Amini, M. Zwitterion-functionalized MIL-125-NH 2-based thin-film nanocomposite forward osmosis membranes: Towards improved performance for salt rejection and heavy metal removal. New J. Chem. 2022, 46, 15205–15218. [Google Scholar] [CrossRef]
- Husnain, T.; Mi, B.; Riffat, R. Fouling and long-term durability of an integrated forward osmosis and membrane distillation system. Water Sci. Technol. 2015, 72, 2000–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minier-Matar, J.; Al-Maas, M.; Hussain, A.; Nasser, M.S.; Adham, S. Pilot-scale evaluation of forward osmosis membranes for volume reduction of industrial wastewater. Desalination 2022, 531, 115689. [Google Scholar] [CrossRef]
- Ahmed, M.; Kumar, R.; Garudachari, B.; Thomas, J.P. Assessment of pilot scale forward osmosis system for Arabian Gulf seawater desalination using polyelectrolyte draw solution. Desalin. Water Treat. 2019, 157, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Corzo, B.; de la Torre, T.; Sans, C.; Escorihuela, R.; Navea, S.; Malfeito, J.J. Long-term evaluation of a forward osmosis-nanofiltration demonstration plant for wastewater reuse in agriculture. Chem. Eng. J. 2018, 338, 383–391. [Google Scholar] [CrossRef]
- Phuntsho, S.; Kim, J.E.; Johir, M.A.; Hong, S.; Li, Z.; Ghaffour, N.; Leiknes, T.; Shon, H.K. Fertiliser drawn forward osmosis process: Pilot-scale desalination of mine impaired water for fertigation. J. Membr. Sci. 2016, 508, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.G.; Zhan, M.; Shin, K.; Lee, S.; Hong, S. Pilot-scale evaluation of FO-RO osmotic dilution process for treating wastewater from coal-fired power plant integrated with seawater desalination. J. Membr. Sci. 2017, 540, 78–87. [Google Scholar] [CrossRef]
- Al-Zuhairi, A.; Merdaw, A.A.; Al-Aibi, S.; Hamdan, M.; Nicoll, P.; Monjezi, A.A.; Al-ASwad, S.; Mahood, H.B.; Aryafar, M.; Sharif, A.O. "Forward osmosis desalination from laboratory to market. Water Sci. Technol. Water Supply 2015, 15, 834–844. [Google Scholar] [CrossRef]
- Kim, T.; Park, S.; Lee, Y.; Kim, J.; Kim, K. Thin Film Biocomposite Membrane for Forward Osmosis Supported by Eggshell Membrane. Membranes 2022, 12, 166. [Google Scholar] [CrossRef]
- Wibisono, Y.; Noviani, V.; Ramadhani, A.T.; Devianto, L.A.; Sulianto, A.A. Eco-friendly forward osmosis membrane manufacturing using dihydrolevoglucosenone. Results Eng. 2022, 16, 100712. [Google Scholar] [CrossRef]
- Hartanto, Y.; Corvilain, M.; Mariën, H.; Janssen, J.; Vankelecom, I.F.J. Interfacial polymerization of thin-film composite forward osmosis membranes using ionic liquids as organic reagent phase. J. Membr. Sci. 2020, 601, 117869. [Google Scholar] [CrossRef]
- Mahat, N.A.; Shamsudin, S.A.; Jullok, N.; Ma’Radzi, A.H. Carbon quantum dots embedded polysulfone membranes for antibacterial performance in the process of forward osmosis. Desalination 2020, 493, 114618. [Google Scholar] [CrossRef]
- Saleem, H.; Goh, P.S.; Saud, A.; Khan, M.A.W.; Munira, N.; Ismail, A.F.; Zaidi, S.J. Graphene Quantum Dot-Added Thin-Film Composite Membrane with Advanced Nanofibrous Support for Forward Osmosis. Nanomaterials 2022, 12, 4154. [Google Scholar] [CrossRef] [PubMed]
- Hafiz, M.; Hassanein, A.; Talhami, M.; Al-Ejji, M.; Hassan, M.K.; Hawari, A.H. Magnetic nanoparticles draw solution for forward osmosis: Current status and future challenges in wastewater treatment. J. Environ. Chem. Eng. 2022, 10, 108955. [Google Scholar] [CrossRef]
- Suwaileh, W.; Johnson, D.; Jones, D.; Hilal, N. An integrated fertilizer driven forward osmosis-renewables powered membrane distillation system for brackish water desalination: A combined experimental and theoretical approach. Desalination 2019, 471, 114126. [Google Scholar] [CrossRef]
Support Layer Polyamide Active Layer Nanomaterial | Experimental Operating Conditions | FO Performance | Intrinsic Properties | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Feed Solution | Draw Solution | Temp. | Flow Rate | FS–AL (FO Mode) | DS–AL (PRO Mode) | |||||
Jw; LMH | Js; gMH | Jw; LMH | Js; gMH | |||||||
14% PSF/1% PVP 2% MPD/0.1% TMC 0.04% MOF in organic solution | DI water | 2M NaCl | 25 °C | 21 cm/s | 46 | 102.3 | — | — | A = 4.7 LMH/bar B = 0.6 LMH S = 238 μm | [42] |
16% PSF 2% MPD/0.15% TMC 0.25% GO in dope solution | DI water | 0.5M NaCl | 25 °C | 1.8 L/min | 19.77 | 3.4 | 40.5 | 6.5 | A = 1.76 LMH/bar B = 0.19 LMH R (NaCl) = 98.71% S = 191 μm | [68] |
18% PSF 2% MPD/0.1% TMC 0.25% GO in dope solution | DI water | 1M NaCl | 24 °C | 1.5 L/min | 14.65 | 3.62 | 30.95 | 6.6 | A = 1.91 LMH/bar B = 0.24 LMH R (NaCl) = 98.67% S = 726 μm | [69] |
12% PSF 4% MPD/0.1% TMC 0.01% GO-8h in aqueous solution | DI water | 0.5M NaCl | 22 °C | 12.6 cm/s | 24.7 | 5.19 | 41.9 | 8 | A = 3.71 LMH/bar B = 0.89 LMH | [70] |
16% PSF/4% PEG-400 2% MPD/0.1% TMC 0.008% GO in aqueous solution | DI water | 2M NaCl | — | 12 L/h | 34.3 | 1.1 | — | — | B = 3.9 LMH/bar A = 1.1 LMH R (NaCl) = 96.7% S = 119 μm | [71] |
15.5% PSF/0.5% PVP/3% LiCl 1% MPD/0.05% TMC 0.02% zeolite in organic solution | DI water | 1M NaCl | — | 0.5 L/min | 13.8 | 7.08 | 28.8 | 13.76 | A = 5.27 × 10−12 m/s.Pa B = 15.1 × 10−8 m/s R (NaCl) = 88.1% | [72] |
15.5% PSF/0.5% PVP/3% LiCl 1% MPD/0.05% TMC 0.5% zeolite in dope solution | DI water | 2M NaCl | — | 0.5 L/min | 40 | 29 | 86 | 57 | A = 3.3 LMH/bar R (NaCl) = 91.3% S = 340 μm | [73] |
15.5% PSF/2% PVP 2% MPD/0.1% TMC 0.4% zeolite in dope solution | 10 mM NaCl | 2M NaCl | room | 0.8 L/min | 24.61 | 14.6 | 33.1 | 20 | A = 6.86 × 10−12 m/s.Pa B = 9.6 × 10−8 m/s R (NaCl) = 94.7% S = 480 μm | [74] |
16.5% PSF/0.5% PVP 2% MPD/0.15% TMC 0.6% TiO2 in dope solution | DI water | 2M NaCl | ambient | 0.35 L/min | 33 | 15.7 | 59.4 | 31 | A = 7.3 × 10−12 m/s.Pa B = 12.4 × 10−8 m/s R (NaCl) = 93.6% S = 390 μm | [75] |
17.41% PSF/0.5% PVP 2% MPD/0.1% TMC 0.5% TiO2 in dope solution | 10 mM NaCl | 2M NaCl | ambient | 32.72 cm/s | 29.7 | 7.3 | 56.27 | 14.14 | A = 5.45 × 10−12 m/s.Pa B = 10.66 × 10−8 m/s R (NaCl) = 92.7% S = 420 μm | [76] |
16% PSF 2% MPD/2% TEA/0.2% TMC 0.1% TiO2 in aqueous solution | 10 mM NaCl | 2M NaCl | — | 0.8 L/min | 40 | 12.3 | 26 | 13 | A = 12.26 × 10−12 m/s.Pa B = 49.9 × 10−8 m/s R (NaCl) = 86% S = 650 μm | [77] |
16% PEF/1% PVP/2.5% PEG-200 2% MPD/0.1% TMC 0.05% SiO2 in aqueous solution | DI water | 2M NaCl | 30 °C | 10 L/h | 15.22 | 7.53 | 23.93 | 16.15 | A = 3.10 LMH/bar B = 0.31 LMH R (NaCl) = 91% S = 362 μm | [78] |
16% PSF/1% PVP 2% MPD/0.1% TMC 0.05% SiO2 in aqueous solution | 10 mM NaCl | 2M NaCl | 30 °C | 0.8 L/min | 15 | 1.6 | 25.28 | 3.44 | A = 9.52 × 10−12 m/s.Pa B = 28.4 × 10−8 m/s R (NaCl) = 89% S = 368 μm | [79] |
14% PSF/0.5% PVP 1% MPD/0.05% TMC 1% SiO2 in dope solution | DI water | 2M NaCl | 25 °C | 0.25 L/min | 14.60 | 9.00 | 23.50 | 20.06 | A = 2.96 × 10−12 m/s.Pa B = 4.79 × 10−8 m/s R (NaCl) = 86.18% | [80] |
E.Spun N6/20% SiO2 1% MPD/0.15% TMC 4% SiO2 in aqueous solution | DI water | 1M NaCl | 24 °C | 26.3 cm/s | 27.10 | 9.35 | — | — | A = 45 LMH/MPa B = 1.24 LMH R (NaCl) = 98.5% S = 365 μm | [81] |
14% PSF/ 2%PVP 2% MPD/0.1% TMC 0.5% ZnO in dope solution | 10 mM NaCl | 2M NaCl | — | — | 30.06 | 17.31 | — | — | A = 7.39 × 10−12 m/s.Pa B = 20.55 × 10−8 m/s R (NaCl) = 89.99% S = 400 μm | [82] |
2g PSF 2% MPD/0.1% TMC 0.25% ZnO@PMMA in aqueous solution | DI water | 1M NaCl | ambient | 0.1 L/min | 14.6 | 2.2 | — | — | A = 2.32 LMH/bar B = 0.28 LMH R (NaCl) = 97.7% S = 693 μm | [83] |
16% PSF/6% PVP/2% LiCl 2% MPD/0.1% TMC 0.5% Al2O3 in dope solution 0.05% Al2O3 in organic solution | DI water | 1M NaCl | — | 18.5 cm/s | 27.6 | 7.1 | — | — | A = 8.43 LMH/bar B = 1.66 LMH | [84] |
14% PES/2% PVP
2% MPD/0.1% TMC 0.2% Fe3O4 in dope solution | 10 mM NaCl | 2M NaCl | room | 0.8 L/min | 28.8 | 14.7 | 38.08 | 20.1 | A = 8.55 × 10−12 m/s.Pa B = 15.6 × 10−8 m/s R (NaCl) = 93.2% S = 420 μm | [85] |
17.41% PSF/0.5% PVP/0.5% nano-filler 2% MPD/0.1% TMC 0.5% TiO2 and 0.5% GO in dope solution | DI water | 2M NaCl | — | 2.5 cm/s | 23.5 | 2.7 | 30.5 | 4.4 | A = 1.61 × 10−12 m/s.Pa B = 1.44 × 10−8 m/s R (NaCl) = 91.1% S = 200 μm | [86] |
18% PES/2% PEG-200 2% MPD/0.1% TMC 0.2% ZnO/SiO2 in dope solution | DI water | 1M NaCl | 25 °C | 8.3 cm/s | 33.5 | 12.23 | 50.1 | 18.22 | A = 3.47 LMH/bar B = 4.01 LMH R (NaCl) = 78.6% S = 297 μm | [87] |
18% PVDF/3% PVP 2% MPD/0.1% TMC 0.75% SiO2@MWCNT in dope solution | DI water | 1M NaCl | — | 0.3 L/min | 22.1 | 4.1 | 28.6 | 8.05 | A = 1.21 LMH/bar B = 0.12 LMH R (NaCl) = 93.6% S = 240.5 μm | [88] |
14% PES/2% PVP 2% MPD/0.1% TMC 0.2% Fe3O4/ZnO in aqueous solution | 10 mM NaCl | 2M NaCl | 23 °C | 0.8 L/min | 29.3 | 5.6 | — | — | A = 8.24 × 10−12 m/s.Pa B = 7.88 × 10−8 m/sR (NaCl) = 98.5%S = 400 μm | [89] |
Type of Membrane | Type of Draw Agent | Concentration | Osmotic Pressure | Configuration | FO Performance | Regeneration Methods | Application | Advantages | Disadvantages | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|
Jw; LMH | Js; gMH | ||||||||||
CA | Polyacrylic acid sodium salt (PAA-Na (Mw = 1200)) | 0.72 g/mL | 44 atm | AL–DS | 22 | 0.17 | UF | Wastewater treatment | High water flux, low RSF, and high water solubility | High viscosity, low solute diffusion, expensive precursors, and UF requires energy | [10] |
CTA | Sodium alginate sulfonate | 600 gNaLS/kg | 78 bar | AL–FS AL–DS | 8.5 15 | 12.3 27 | NF | Desert Restoration | High osmotic pressure | Limited applications and relatively low water flux | [11] |
TFC | Na3PO4 | 0.2 M | 580 mOsm/kg | AL–FS AL–DS | 9.02 16.2 | 0.95 1.3 | MD | Activated sludge | Low RSF and high water solubility | Relatively low FO performances, complicated and energy-intensive recovery | [22] |
CTA | EDTA sodium (pH = 8) | 0.8 M | — | AL–DS | 12.9 | 0.32 | NF | Sludge dewatering | Low energy consumption, high water flux, and low RSF | Expensive solute and low solute rejection with NF recovery | [25] |
CTA–non-woven | MgCl2 | 1 M | — | AL–FS | 6.3 | — | — | Secondary treated effluents | High water flux and high rejection for nutrients up to 97% | High viscosity, high ICP, low diffusion coefficient, and contain scale precursor ions () | [26] |
CTA–woven | Triethylenetetramine hexapropionic acid sodium (TTHP-Na (pH = 8)) | 0.5 g/mL | 165 bar | AL–FS AL–DS | 12.87 23.07 | 0.7 0.75 | NF | Dye wastewater treatment | High osmotic pressure and average water flux | NF requires energy | [47] |
CTA | KHCO3 | 1.4 M | 2.8 MPa | AL–FS | 5.54 | 1.2 | RO | Desalination | Low RSF | Limited applications, and contain scale precursor ions () and not easily recovered by RO | [102] |
CTA | KBr | 0.6 M | 2.8 MPa | AL–FS | 10.22 | 22 | RO | Desalination | — | Very high RSF and high replenishment cost | [102] |
CTA–nylon mesh | NH4HCO3 | 3.6 M | — | AL–FS AL–DS | 7 9 | — | Moderate heating | Desalination | High osmotic pressure capable of desalinating seawater and high FO performances | Low solubility and ammonia smell in water, high RSF, contain scale precursor ions (), high replenishment cost, and not thermally stable | [105] |
CTA–polyester screen | NaCl | 0.6 M | 27.44 bar | AL–FS | 6.3 | 7.25 | — | Desalination | High osmotic pressure, high solubility, low viscosity, and low cost | High RSF and high fouling tendency | [106] |
CTA–polyester screen | NaHCO3 | 0.72 M | 26.91 bar | AL–FS | 5.81 | 2.85 | — | Desalination | Low cost | Low water solubility and contain scale precursor ions () | [106] |
CTA | KCl | 2 M | 89.3 bar | AL–FS | 15.2 | 26.8 | Direct fertigation | Fertilizer | High osmotic pressure, high solubility, low viscosity, and low cost | High RSF and high fouling tendency | [107] |
TFC–polyamide | NH4Cl | 0.5 M | 21.881 atm | AL–FS AL–DS | 9.87 15.37 | — | — | Desalination | Diluted draw solution could be directly used in irrigation | High RSF | [108] |
TFC–polyamide | NaNO3 | 0.5 M | 21.3 atm | AL–FS AL–DS | 7.97 14.26 | — | — | Desalination | Diluted draw solution could be directly used in irrigation | High RSF and high biofouling tendency | [108] |
TFC–polyamide | KNO3 | 0.5 M | 20.125 atm | AL–FS AL–DS | 9 13.83 | — | — | Desalination | Diluted draw solution could be directly used in irrigation | High RSF, high biofouling tendency, toxic and energy-intensive | [108] |
TFC–polyamide | NH4NO3 | 0.5 M | 17.764 atm | AL–FS AL–DS | 7.9 11.88 | — | — | Desalination | Diluted draw solution could be directly used in irrigation | High RSF and contain scale precursor ions () | [108] |
TFC–polyamide | Ca(NO3)2 | 0.5 M | 26.491 atm | AL–FS AL–DS | 8.21 15.41 | — | — | Desalination | Diluted draw solution could be directly used in irrigation | Contain scale precursor ions (), high replenishment cost, and poor water extraction capacity | [108] |
TFC–polyamide | CaCl2 | 0.5 M | 34.983 atm | AL–FS AL–DS | 8.8 16.32 | — | — | Desalination | High water flux and diluted draw solution could be directly used in irrigation | High RSF and contains scale precursor ions () | [108] |
TFC | Na2SO4 | 1 M | — | AL–FS AL–DS | 15.7 23.26 | 4.9 7.1 | — | Desalination | High water flux | High RSF and contain scale precursor ions () | [109] |
TFC–polyamide | MgSO4 | 1 M | — | AL–FS | 11 | 1.32 | Direct fertigation | Fertilizer | Higher diffusivity and does not require energy for recovery | Low FO performances, high viscosity, low water solubility, contain scale precursor ions () and reaction products are toxic and expensive reagents | [110] |
TFC–polyamide | Mg(NO3)2 | 1 M | 84 bar | AL–FS | 30.8 | 24.18 | Direct fertigation | Fertilizer | High osmotic pressure, high water flux, and does not require energy for recovery | High RSF | [110] |
CA–polyester woven | (NH4)2SO4 | 2 M | 92.1 atm | AL–FS | 19.41 | 2.6 | Direct fertigation | Fertilizer | High osmotic pressure and does not require energy for recovery | Contains scale precursor ions () and high replenishment cost | [111] |
CA–polyester woven | NH4H2PO4 | 2 M | 86.3 atm | AL–FS | 16.65 | 28.7 | Direct fertigation | Fertilizer | Diluted draw solution could be directly used | Low water flux and high biofouling tendency | [111] |
CA–polyester woven | (NH4)2HPO4 | 2 M | 95 atm | AL–FS | 14.01 | 4.6 | Direct fertigation | Fertilizer | Diluted draw solution could be directly used | Low water flux and high biofouling tendency | [111] |
CTA | NaH2PO4 | 22 g/L | 23.73 bar | AL–FS | 2.63 | 0.12 | Direct fertigation | Fertilizer | Low RSF and does not require energy for recovery | Low water flux | [112] |
CA | Sucrose | 1 M | 26.7 atm | AL–FS | 12.9 | — | NF | Wastewater treatment | Large molecule and high water solubility | Low osmotic pressure, low water flux, NF requires energy and relatively low FO performances | [113] |
CA | Glucose | — | — | — | — | — | — | — | Large molecule and high water solubility | Low osmotic pressure, high ICP effect, and used only for emergency water supply | [114] |
TFC | Poly(maleic acid) sodium (PMAS) | 0.5 mol/kg | 143 bar | AL–FS AL–DS | 23.5 30.6 | 0.6 0.68 | NF | Desalination | High osmotic pressure, big molecular size, high FO performance, and negligible RSF | NF requires energy | [115] |
TFC–polyamide | Cobaltic complex (Na-Co-CA) | 1 M | — | AL–FS | 11.5 | — | MD or NF | Heavy metal wastewater treatment | High osmotic pressure, high water flux, low RSF, low replenishment cost, minimize TDS in FS, and efficiency of waste water treatment | Recovery requires energy | [116] |
CA | Cu complex (Cu-CA) | 1 M | — | AL–FS AL–DS | 8.53 15.16 | 0.08 0.11 | — | Seawater desalination | High FO performance and negligible RSF | Complicated preparation | [117] |
CA | Fe complex (Fe-CA) | 1 M | — | AL–FS AL–DS | 10.78 21 | 0.12 0.14 | — | Seawater desalination | High FO performance and negligible RSF | Complicated preparation | [117] |
TFC | Poly(aspartic acid sodium salt) (PAsp-Na) | 0.3 g/mL | 51.5 atm | AL–FS AL–DS | 8.13 16.62 | 1.64 2.28 | MD and NF | Wastewater reclamation Brackish water desalination | Low RSF, inhibits the scaling formation, and nontoxic | Average FO performances and recovery require energy | [118] |
TFC | Polyamidoamine with terminal carboxyl groups (PAMAM-COONa (2.5 G)) | 0.5 g/mL | 3603 mOsm/kg | AL–DS | 29.7 | 7.5 | MD | Wastewater treatment and protein enrichment | High osmotic pressure, low viscosity, relatively large molecular size, and low RSF | Low water flux tested only in AL–DS mode and not feasible | [119] |
TFC | Poly(sodium4-styrene sulfonate) (PSS (Mw = 1200)) | 0.24 g/mL | — | AL–DS | 18.2 | 5.5 | UF | — | High osmotic pressure, low viscosity and high water flux | High RSF, lower diffusion coefficient, more severe CP, 40% water flux reduces after the regeneration and requires energy for UF | [120] |
CTA | Poly(isobutylene-alt-maleic acid) sodium salt (PIMA-Na) | 0.375 g/mL | — | AL–DS | 34 | 0.196 | MD | Seawater desalination | Low RSF and nontoxic | Relatively low FO performances, high viscosity, and low water flux when tested with seawater | [121] |
CTA | Thermo-responsive PNIPAM/γ-PGA/PEG hydrogel | — | — | AL–FS | 1.99 | — | Heat in a water bath at 40 °C | Desalination | Low energy consumption and negligible RSF | Poor water flux | [122] |
CTA-polyester mesh | Electric-responsive HA/PVA hydrogel (6 V) | — | — | AL–FS | 25.49 | — | Electric field at 6 V | Desalination | High water flux, negligible RSF, and more safe and efficient when regenerating drinking water | ___ | [123] |
The Effect of DS and FS Flow Rate on the Performance of the FO Process | ||||||
Type of Membrane | Temperature | Feed Solution | Draw Solution | Flow Rate | Water Flux | Reference |
CTA flat sheet | 25 °C | DI water | 0.3 M EDTA-Na | 62–384 cm/min counter-current mode | 6.13–7.12 LMH (PRO mode) | [25] |
CTA flat sheet | 25 °C | Nutrients | 1 M MgCl2 | 0.5–1 L/min counter-current mode | 6.3–11.3 LMH (FO mode) | [26] |
CTA flat sheet | 25 ± 2 °C | Seawater | 200 g/L multicomponent fertilizer | 1.6–3.2 L/min in FS 1.6 L/min in DS counter-current mode | 9.63–9.87 LMH (FO mode) | [112] |
CTA flat sheet | 25 ± 2 °C | Seawater | 200 g/L multicomponent fertilizer | 1.6–2.4 L/min in DS 1.6 L/min in FS counter-current mode | 9.63–8.87 LMH (FO mode) | [112] |
TFC flat sheet | 25 ± 1 °C | 0.1 M NaCl | 0.6 M NaCl | 0.4–0.8 L/min counter-current mode | 6.85–7.21 LMH (FO mode) | [135] |
TFC flat sheet | 20 °C | Distilled water | 0.5 M NaCl | 1.2–3.4 L/min counter-current mode | 27.5–42 LMH (PRO mode) | [136] |
TFC flat sheet | 20 °C | Distilled water | 0.5 M NaCl | 1.2–3.4 L/min in FS 1.2 L/min in DS counter-current mode | 27.45–38.02 LMH (PRO mode) | [136] |
TFC–ES flat sheet | 40 °C | DI water | 3.5 wt% NaCl | 14.4–48 mL/min co-current mode | 5.1–9.4 LMH (PRO mode) | [137] |
The Effect of DS and FS Concentration on the Performance of the FO Process | ||||||
Type of Membrane | Temperature | Feed Solution | Draw Solution | Flow Rate | Water Flux | Reference |
CTA flat sheet | 25 ± 1 °C | DI water | 0.1–0.5 M TTHP-Na | 0.3 L/min co-current mode | 9.38–12.87 LMH (FO mode) 17.64–23.07 LMH (PRO mode) | [8] |
CTA flat sheet | 25 °C | DI water | 0.1–1.0 M EDTA-Na | 384 cm/min counter-current mode | 4.02–13.08 LMH (PRO mode) | [25] |
TFC flat sheet | 25 °C | Ethanol | 1–4 M LiCl in ethanol | 0.2 L/min counter-current mode | 1.5–5.6 LMH (FO mode) 2–7.9 LMH (PRO mode) | [29] |
TFC flat sheet | 25 °C | 1000–10,000 ppm Tetracycline | 2 M LiCl in ethanol | 0.2 L/min counter-current mode | 2.7–1 LMH (FO mode) | [29] |
TFC flat sheet | 25 °C | 1000–5000 ppm heavy metal ions | 1 M cobaltic complex (Na–Co–CA) | 0.2 L/min co-current mode | 11.5–10.5 LMH (FO mode) | [116] |
CA flat sheet | 25 °C | 0–8000 ppm NaCl | HA-PVA-5 polymer hydrogels | 0.4 L/min | 25.49–12.44 LMH (FO mode) | [123] |
TFC-ES flat sheet | 40 °C | DI water | 2.5–7.7 wt% NaCl | 48 mL/min co-current mode | 7.5–11.4 LMH (PRO mode) | [137] |
CTA flat sheet | 23 °C | DI water | 0.5–4 M NaCl | 22.5 cm/s co-current mode | 10.1–28.8 LMH (FO mode) 16.9–48.1 LMH (PRO mode) | [138] |
CTA flat sheet | 25 °C | Brackish water | 3–4 M CaCl2 | 8.5 cm/s counter-current mode | 12–14 LMH (FO mode) | [139] |
TFC hollow fiber | 25 °C | DI water | 1–4 M NaCl | 0.2 L/min co-current mode | 18–49 LMH (FO mode) | [140] |
The Effect of DS and FS Temperature on the Performance of the FO Process | ||||||
Type of Membrane | Temperature | Feed Solution | Draw Solution | Flow Rate | Water Flux | Reference |
CTA flat sheet | 25–45 °C | DI water | 3 M KCl | 0.4 L/min counter-current mode | 5.3–7.6 μm/s (FO mode) | [105] |
CTA flat sheet | 25 ± 2 °C in FS 30–45 °C in DS | Pure water | 4M NH4HCO3 | 0.15 L/min co-current mode | 1.95–2.4 μm/s (FO mode) 2.5–3.17 μm/s (PRO mode) | [105] |
TFC flat sheet | 25–45 °C | Distilled water | 0.6 M NaCl | 10 cm/s counter-current mode | 6.3–7.14 μm/s (FO mode) | [106] |
TFC flat sheet | 25 °C in FS 25–60 °C in DS | 2000 ppm heavy metal ions | 1 M cobaltic complex (Na–Co–CA) | 0.2 L/min co-current mode | 11–16.5 LMH (FO mode) | [116] |
TFC flat sheet | 20 °C in FS 20–32 °C in DS | Distilled water | 0.5 M NaCl | 1.2 L/min counter-current mode | 25.1–32.9 LMH (PRO mode) | [136] |
TFC flat sheet | 20–32 °C in FS 20 °C in DS | Distilled water | 0.5 M NaCl | 1.2 L/min counter-current mode | 26.4–35.6 LMH (PRO mode) | [136] |
TFC–ES flat sheet | 25 °C in FS 23–60 °C in DS | DI water | 3.5 wt% NaCl | 48 mL/min co-current mode | 9.2–9.8 LMH (PRO mode) | [137] |
CTA flat sheet | 20 ± 1 °C in FS 20–50 °C in DS | DI water | 3 M NaCl | 8.5 cm/s co-current mode | 18.8–26.8 LMH (FO mode) | [141] |
CTA flat sheet | 25–45 °C | Salinity | 117 g/L NaCl | 10 cm/s counter-current mode | 14.47–18.82 LMH (FO mode) | [141] |
CTA flat sheet | 20 ± 1 °C in DS 20–50 °C in FS | DI water | 3 M NaCl | 8.5 cm/s co-current mode | 18.8–27.1 LMH (FO mode) | [142] |
Analysis Method | Feed Solution NaCl (M) | Draw Solution NaCl (M) | Flow Rate (L/min) | Temp. (°C) | Δπeff% | DICP% | DECP% | CECP% | Water Flux (L/m2 h) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Analytical using TFC membrane | 0.1 | 0.6 | 0.5–1 | 25 | 29.66–30.41 | 46.94–49.97 | 19–16.02 | 4.4–3.61 | 6.98–7.32 | [135] |
0.1 | 0.6 | 0.5–1 FS/0.5 DS | 25 | 29.66–30.24 | 46.94–47.16 | 19–19.14 | 4.4–3.46 | 6.98–7.18 | ||
0.1 | 0.6 | 0.5–1 DS/0.5 FS | 25 | 29.66–30.33 | 46.94–49.4 | 19–15.73 | 4.4–4.53 | 6.98–7.02 | ||
Analytical using TFC membrane | 0 | 1–5 | 10 cm/s | 25 | 23.5–6.2 | 39–44.7 | 21.7–40.3 | 15.7–8.8 | 3.55–24.04 | [147] |
0 | 3 | 5–25 cm/s | 25 | 12.2–13.9 | 39.2–50 | 36.7–27.8 | 12–8.3 | 13.3–18 | ||
0 | 3 | 10 cm/s | 25–45 | 13.6–17.5 | 43.7–39.3 | 32.5–32.9 | 10.2–10.3 | 15.25–22.08 | ||
MATLAB software | 0 | 1–4 | 0.1 | – | 41.7–19.1 | 46.8–60.4 | 11.3–20.4 | 0.0747–0.154 | 8.8–17 | [153] |
0–3 | 1–4 | 0.1 | – | 41.7–10.7 | 46.8–67.6 | 11.3–12.2 | 0–9.44 | 9–2.3 | ||
0 | 3 | 0.1–1.7 | – | – | 46–60.6 | 32.5–15.5 | negligible | 13.6–15.1 | ||
3 | 6 | 0.1–1.7 | – | – | 54.9–71.6 | 24.3–12.6 | 13.8–6.76 | 4.5–5.8 |
Groups | Draw Solution | Reverse Solute Flux | Findings | Reference |
---|---|---|---|---|
Different membrane properties | ||||
Tortuosity (1.07–2.5) | 2 M NaCl | 0.155–0.1 mol/m2h | High tortuosity leads to declining both water flux and RSF since lengthens the mass transfer path and reduces the mass transfer coefficient, which would amplify ICP. | [169] |
Porosity (0.15–0.95) | 2 M NaCl | 0.065–0.18 mol/m2h | High porosity (ε) leads to increasing both water flux and RSF since enhances the concentration gradient and reduces the resistance to solute diffusion (i.e., dilutive ICP). When ε > 0.8, the enhancement of water flux becomes less significant but RSF enhancement is still significant. Thus, higher ε does not always mean better performance. | [169] |
Pore size (0.025–0.45 nm) | 1.5 M NaCl | 0.93–8.30 g/m2h | The pore size of about 0.2 μm promoted both high water flux and low RSF due to its open, highly porous structure and reduced tortuosity creating less resistance to water transport and solute diffusion (i.e., lower S value = 1220 ± 380). It also helped the selective layer to avoid defects, resulting in a higher cross-linking degree and hence higher selectivity. | [170] |
Different salt solutions with the same ion | ||||
Na+ | 0.6 M NaCl 0.72 M NaHCO3 | 8.17 g/m2h 3.22 g/m2h | NaCl is higher in water flux and 2.5 times larger than NaHCO3 in reverse diffusion. Although identical in the osmotic pressure (28 bar) and the presence of in both solutions, the size of the hydrated anion is what causes this difference, i.e., (0.45 nm) > (0.3 nm). | [106] |
Mg2+ | 1 M MgSO4 1 M Mg(NO3)2 | 1.32 g/m2h 24.18 g/m2h | is completely soluble in water as Mg(NO3)2 produces the highest osmotic pressure (84 bar at 1 M) and the highest diffusion (3.31 × 10−6 m2/h) (i.e., reducing dilute ICP) this will ensure three times higher water flux compared to MgSO4 (1.7 × 10−6 m2/h). Thus, RSF typically increases as water flux increases. | [110] |
Different ions | 22 g/L NH4Cl 22 g/L KCl 22 g/L (NH4)2SO4 22 g/L NaH2PO4 | 3.71 g/m2h 1.98 g/m2h 0.82 g/m2h 0.12 g/m2h | showed the highest RSF, followed by , and . It has been noted that cations paired with anion have high RSF than those that pair with the sulfate group. While, multivalent negatively charged anions, such as and , have RSF lower than that of monovalent anions because of higher electrostatic repulsion via the negatively charged CTA membrane. Then, KCl exhibited the highest water flux followed by NH4Cl, (NH4)2SO4, and NaH2PO4. | [112] |
Different operating conditions | ||||
Concentration | 0.5–3 M CaCl2 | 2.55–11.45 g/m2h | Increased viscosity and osmotic pressure, and low diffusion coefficient are all effects of higher DS concentration, which also increases water flux and RSF, but it will not be beneficial as it may cause FS contamination. | [139] |
Flow rate | 1 M NaCl at 0.2–1 L/min | 4.3–2.8 g/m2h | Decreased concentrative ECP and increased dilutive ICP are all effects of a higher DS flow rate, which results in decreases in the water flux and RSF since it reduced the residence time of liquid in the FO unit. | [140] |
Temperature | 3 M NaCl at 20–50 °C | 0.21–0.3 mol/m2h | Reduced viscosity (1.3408–0.7574 mPa.s), CP, increased osmotic pressure (162.95–173.61 bar), diffusion coefficient (1.067–2.063 nm2/s), and water permeability are all effects of higher temperature, which also increases the water flux and RSF. However, it may raise the risk of membrane fouling brought on by an increase in ion permeability and membrane clogging (i.e., larger hydrated ion size). | [142] |
Different nanoparticles (NPs) | ||||
SiO2 (negative), TiO2 (neutral) and ZnO (positive) in feed solution | 0.5 M NaCl | 16.8 mol/m2h 16.5 mol/m2h 15.7 mol/m2h | ZnO (29.7 mV) and TiO2 (0.6 mV) showed higher RSF because they carried a positive charge opposite to the membrane charge (−12 mV), which forms a fouling layer on the surface that attracts ions in the DS and impedes water flux. Whereas SiO2 (−20.2 mV) formed a relatively thin film of fouling, which facilitates water transport. After the aggregation of NPs with NaCl for 30 min, a size increase in less than 20% was observed for SiO2 (42–49 nm) and ZnO (41–50 nm). While it increases by 40% for TiO2 (38–54 nm). Thus, the aggregation of NPs may not significantly impact FO performance. | [171] |
TiO2 and Al2O3 in the support layer | 1 M NaCl | 7. 1 g/m2h 5.4 g/m2h | 1% TiO2 in the support layer leads to high water flux and lower RSF due to increased porosity and hydrophilicity (80.72%, 61.85°) compared to the CA membrane (71.81, 67.86°). However, we notice a further decrease in RSF by adding 0.1% Al2O3 to the TiO2-modified membrane (80.96%, 56.7°). However, a further increase in NPs loading can lead to lower water flux and higher RSF due to NPs aggregation in the sublayer. | [172] |
GO in the active layer | 1 M NaCl | 2.6 g/m2h | 0.1% GO in the active layer leads to high water flux and lower RSF due to increased roughness and hydrophilicity (54.1 nm, 64°) compared to the control membrane (31.7 nm, 82°). However, a further increase in GO loading leads to agglomeration of the nanostructure, which limits the formation of the ideal thin film of the polyamide layer and consequently to lower water flux and higher RSF. | [173] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibraheem, B.M.; Aani, S.A.; Alsarayreh, A.A.; Alsalhy, Q.F.; Salih, I.K. Forward Osmosis Membrane: Review of Fabrication, Modification, Challenges and Potential. Membranes 2023, 13, 379. https://doi.org/10.3390/membranes13040379
Ibraheem BM, Aani SA, Alsarayreh AA, Alsalhy QF, Salih IK. Forward Osmosis Membrane: Review of Fabrication, Modification, Challenges and Potential. Membranes. 2023; 13(4):379. https://doi.org/10.3390/membranes13040379
Chicago/Turabian StyleIbraheem, Bakr M., Saif Al Aani, Alanood A. Alsarayreh, Qusay F. Alsalhy, and Issam K. Salih. 2023. "Forward Osmosis Membrane: Review of Fabrication, Modification, Challenges and Potential" Membranes 13, no. 4: 379. https://doi.org/10.3390/membranes13040379
APA StyleIbraheem, B. M., Aani, S. A., Alsarayreh, A. A., Alsalhy, Q. F., & Salih, I. K. (2023). Forward Osmosis Membrane: Review of Fabrication, Modification, Challenges and Potential. Membranes, 13(4), 379. https://doi.org/10.3390/membranes13040379