Innovative Membrane Technologies for the Treatment of Wastewater Polluted with Heavy Metals: Perspective of the Potential of Electrodialysis, Membrane Distillation, and Forward Osmosis from a Bibliometric Analysis
Abstract
:1. Introduction
2. Data Sources and Methodology
3. Results and Discussion
3.1. Bibliometric Analysis of Research Trends on Innovative Membrane Technologies for Heavy Metal Removal (1956–2021)
3.1.1. Publication Year, Document Type, and Language of Publications
3.1.2. Publication Distribution of Countries and Institutions
3.1.3. Distribution of Output in Subject Categories and Journals
3.1.4. Most Frequently Cited Papers
3.1.5. Distribution Analysis of Author Keywords and Trending Topics of the Research
3.2. Review of the Potential of Treatment Alternatives for Heavy Metal Removal from Wastewater
3.2.1. Electrodialysis
3.2.2. Membrane Distillation
3.2.3. Forward Osmosis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Urquiza, A.; Billi, M. Water Markets and Social–Ecological Resilience to Water Stress in the Context of Climate Change: An Analysis of the Limarí Basin, Chile. Environ. Dev. Sustain. 2020, 22, 1929–1951. [Google Scholar] [CrossRef]
- World Resources Institute (WRI). Aqueduct Water Risk Atlas. 2022. Available online: https://www.wri.org/data/aqueduct-water-risk-atlas (accessed on 22 May 2022).
- Oppliger, A.; Hohl, J.; Fragkyou, M. Escasez de Agua: Develando Sus Orígenes Híbridos En La Cuenca Del Río Bueno, Chile. Rev. Geogr. Norte Gd. 2019, 73, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Alvez, A.; Aitken, D.; Rivera, D.; Vergara, M.; McIntyre, N.; Concha, F. At the Crossroads: Can Desalination Be a Suitable Public Policy Solution to Address Water Scarcity in Chile’s Mining Zones? J. Environ. Manag. 2020, 258, 110039. [Google Scholar] [CrossRef]
- Herrera-León, S.; Cruz, C.; Negrete, M.; Chacana, J.; Cisternas, L.A.; Kraslawski, A. Impact of Seawater Desalination and Wastewater Treatment on Water Stress Levels and Greenhouse Gas Emissions: The Case of Chile. Sci. Total Environ. 2022, 818, 151853. [Google Scholar] [CrossRef]
- Ribeiro, L.; Kretschmer, N.; Nascimento, J.; Buxo, A.; Rötting, T.S.; Soto, G.; Soto, M.; Oyarzún, J.; Maturana, H.; Oyarzún, R. Water Quality Assessment of the Mining-Impacted Elqui River Basin, Chile. Mine Water Environ. 2014, 33, 165–176. [Google Scholar] [CrossRef]
- Thomashausen, S.; Maennling, N.; Mebratu-Tsegaye, T. A Comparative Overview of Legal Frameworks Governing Water Use and Waste Water Discharge in the Mining Sector. Resour. Policy 2018, 55, 143–151. [Google Scholar] [CrossRef]
- Copaja, S.V.; Molina, X.; Tessada, R. Determination of Heavy Metals in Choapa River Sediments Using BCR Sequential Extraction Procedure. J. Chil. Chem. Soc. 2014, 59, 2353–2358. [Google Scholar] [CrossRef] [Green Version]
- Carkovic, A.B.; Calcagni, M.S.; Vega, A.S.; Coquery, M.; Moya, P.M.; Bonilla, C.A.; Pastén, P.A. Active and Legacy Mining in an Arid Urban Environment: Challenges and Perspectives for Copiapó, Northern Chile. Environ. Geochem. Health 2016, 38, 1001–1014. [Google Scholar] [CrossRef]
- Schalscha, E.; Ahumada, I. Heavy Metals in Rivers and Soils of Central Chile. Water Sci. Technol. 1998, 37, 251–255. [Google Scholar] [CrossRef]
- González, S.A.; Stotz, W.; Lancellotti, D. Effects of the Discharge of Iron Ore Tailings on Subtidal Rocky-Bottom Communities in Northern Chile. J. Coast. Res. 2014, 30, 500–514. [Google Scholar] [CrossRef] [Green Version]
- Valdés, J.; Tapia, J.S. Spatial Monitoring of Metals and As in Coastal Sediments of Northern Chile: An Evaluation of Background Values for the Analysis of Local Environmental Conditions. Mar. Pollut. Bull. 2019, 145, 624–640. [Google Scholar] [CrossRef]
- Chen, T.L.; Kim, H.; Pan, S.Y.; Tseng, P.C.; Lin, Y.P.; Chiang, P.C. Implementation of Green Chemistry Principles in Circular Economy System towards Sustainable Development Goals: Challenges and Perspectives. Sci. Total Environ. 2020, 716, 136998. [Google Scholar] [CrossRef]
- Ruiz-Rosa, I.; García-Rodríguez, F.J.; Mendoza-Jiménez, J. Development and Application of a Cost Management Model for Wastewater Treatment and Reuse Processes. J. Clean. Prod. 2016, 113, 299–310. [Google Scholar] [CrossRef]
- Petrinic, I.; Korenak, J.; Povodnik, D.; Hélix-Nielsen, C. A Feasibility Study of Ultrafiltration/Reverse Osmosis (UF/RO)-Based Wastewater Treatment and Reuse in the Metal Finishing Industry. J. Clean. Prod. 2015, 101, 292–300. [Google Scholar] [CrossRef]
- Ida, S.; Eva, T. Removal of Heavy Metals during Primary Treatment of Municipal Wastewater and Possibilities of Enhanced Removal: A Review. Water 2021, 13, 1121. [Google Scholar] [CrossRef]
- El Saidy, N.R.; El-Habashi, N.; Saied, M.M.; Abdel-Razek, M.A.S.; Mohamed, R.A.; Abozeid, A.M.; El-Midany, S.A.; Abouelenien, F.A. Wastewater Remediation of Heavy Metals and Pesticides Using Rice Straw and/or Zeolite as Bioadsorbents and Assessment of Treated Wastewater Reuse in the Culture of Nile Tilapia (Oreochromis Niloticus). Environ. Monit. Assess. 2020, 192, 1–21. [Google Scholar] [CrossRef]
- Kim, M.; Lee, H.; Kim, M.; Kang, D.; Kim, D.; Kim, Y.J.; Lee, S. Wastewater Retreatment and Reuse System for Agricultural Irrigation in Rural Villages. Water Sci. Technol. 2014, 70, 1961–1968. [Google Scholar] [CrossRef]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Sato, T. RO Applications in Wastewater Reclamation for Re-Use. Desalination 1977, 23, 65–76. [Google Scholar] [CrossRef]
- Johnston, H.K. Reverse Osmosis Rejection of Heavy Metal Cations. Desalination 1975, 16, 205–224. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Moffitt, M.; Grieves, R.B. Charged Membrane Ultrafiltration of Toxic Metal Oxyanions and Cations from Single- and Multisalt Aqueous Solutions. Sep. Sci. Technol. 1978, 13, 449–463. [Google Scholar] [CrossRef]
- Kabiri, S.; Meratizaman, M. Energy, Exergy, Exergoeconomic, and Environmental (4e) and Carbon Footprint Analysis of Coupling the Various Energy Recovery Devices with Seawater and Brackish Water Reverse Osmosis Desalination. Desalin. Water Treat. 2021, 210, 103–122. [Google Scholar] [CrossRef]
- Marques Lisboa, K.; Busson de Moraes, D.; Palma Naveira-Cotta, C.; Machado Cotta, R. Analysis of the Membrane Effects on the Energy Efficiency of Water Desalination in a Direct Contact Membrane Distillation (DCMD) System with Heat Recovery. Appl. Therm. Eng. 2021, 182, 116063. [Google Scholar] [CrossRef]
- Mei, Y.; Li, X.; Yao, Z.; Qing, W.; Fane, A.G.; Tang, C.Y. Simulation of an Energy Self-Sufficient Electrodialysis Desalination Stack for Salt Removal Efficiency and Fresh Water Recovery. J. Memb. Sci. 2020, 598, 117771. [Google Scholar] [CrossRef]
- Hermosilla, D.; Merayo, N.; Ordóñez, R.; Blanco, Á. Optimization of Conventional Fenton and Ultraviolet-Assisted Oxidation Processes for the Treatment of Reverse Osmosis Retentate from a Paper Mill. Waste Manag. 2012, 32, 1236–1243. [Google Scholar] [CrossRef] [Green Version]
- Havelka, J.; Fárová, H.; Jiríček, T.; Kotala, T.; Kroupa, J. Electrodialysis-Based Zero Liquid Discharge in Industrial Wastewater Treatment. Water Sci. Technol. 2019, 79, 1580–1586. [Google Scholar] [CrossRef]
- Abdullah, N.; Yusof, N.; Lau, W.J.; Jaafar, J.; Ismail, A.F. Recent Trends of Heavy Metal Removal from Water/Wastewater by Membrane Technologies. J. Ind. Eng. Chem. 2019, 76, 17–38. [Google Scholar] [CrossRef]
- Moura Bernardes, A.; Rodrigues, M.A.S. Electrodialysis in Water Treatment. In Electrodialysis and Water Reuse; Moura Bernardes, A., Siqueira Rodrigues, M.A., Zoppas Ferreira, J., Eds.; Springer: New York, NY, USA, 2014. [Google Scholar]
- Mir, N.; Bicer, Y. Integration of Electrodialysis with Renewable Energy Sources for Sustainable Freshwater Production: A Review. J. Environ. Manag. 2021, 289, 112496. [Google Scholar] [CrossRef]
- Wang, P.; Chung, T.S. Recent Advances in Membrane Distillation Processes: Membrane Development, Configuration Design and Application Exploring. J. Memb. Sci. 2015, 474, 39–56. [Google Scholar] [CrossRef]
- Foureaux, A.F.S.; Moreira, V.R.; Lebron, Y.A.R.; Santos, L.V.S.; Amaral, M.C.S. Direct Contact Membrane Distillation as an Alternative to the Conventional Methods for Value-Added Compounds Recovery from Acidic Effluents: A Review. Sep. Purif. Technol. 2020, 236, 116251. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X. Forward Osmosis Technology for Water Treatment: Recent Advances and Future Perspectives. J. Clean. Prod. 2021, 280, 124354. [Google Scholar] [CrossRef]
- Van Der Bruggen, B.; Luis, P. Forward Osmosis: Understanding the Hype. Rev. Chem. Eng. 2015, 31, 1–12. [Google Scholar] [CrossRef]
- Pritchard, A. Statistical Bibliography or Bibliometrics? J. Doc. 1969, 25, 348–349. [Google Scholar]
- Abejón, R. A Bibliometric Study of Scientific Publications Regarding Hemicellulose Valorization during the 2000–2016 Period : Identification of Alternatives and Hot Topics. ChemEngineering 2018, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Abejón, R. An Overview to Technical Solutions for Molybdenum Removal: Perspective from the Analysis of the Scientific Literature on Molybdenum and Drinking Water (1990–2019). Water 2022, 14, 2108. [Google Scholar] [CrossRef]
- Abejón, R. A Bibliometric Analysis of Research on Selenium in Drinking Water during the 1990–2021 Period: Treatment Options for Selenium Removal. Int. J. Environ. Res. Public Health 2022, 19, 5834. [Google Scholar] [CrossRef]
- Abejón, R.; Garea, A. A Bibliometric Analysis of Research on Arsenic in Drinking Water during the 1992–2012 Period: An Outlook to Treatment Alternatives for Arsenic Removal. J. Water Process Eng. 2015, 6, 105–119. [Google Scholar] [CrossRef]
- Hu, X.; Ji, Z.; Gu, S.; Ma, Z.; Yan, Z.; Liang, Y.; Chang, H.; Liang, H. Mapping the Research on Desulfurization Wastewater: Insights from a Bibliometric Review (1991–2021). Chemosphere 2023, 314, 137678. [Google Scholar] [CrossRef]
- Marcal, J.; Bishop, T.; Hofman, J.; Shen, J. From Pollutant Removal to Resource Recovery: A Bibliometric Analysis of Municipal Wastewater Research in Europe. Chemosphere 2021, 284, 131267. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, T.; Qiao, Z.; Sun, P.; Hao, J.; Yang, Y. Application of Artificial Intelligence to Wastewater Treatment: A Bibliometric Analysis and Systematic Review of Technology, Economy, Management, and Wastewater Reuse. Process Saf. Environ. Prot. 2020, 133, 169–182. [Google Scholar] [CrossRef]
- Ding, M.; Zeng, H. A Bibliometric Analysis of Research Progress in Sulfate-Rich Wastewater Pollution Control Technology. Ecotoxicol. Environ. Saf. 2022, 238, 113626. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Garrido, A.; Limaico, M.; Villamar-Ayala, C.A. Influence of Wastewater Treatment Technologies on Virus Removal under a Bibliometric-Statistical Analysis. J. Water Process Eng. 2022, 47, 102642. [Google Scholar] [CrossRef]
- Mao, G.; Hu, H.; Liu, X.; Crittenden, J.; Huang, N. A Bibliometric Analysis of Industrial Wastewater Treatments from 1998 to 2019. Environ. Pollut. 2021, 275, 115785. [Google Scholar] [CrossRef] [PubMed]
- Halepoto, H.; Gong, T.; Memon, H. Current Status and Research Trends of Textile Wastewater Treatments—A Bibliometric-Based Study. Front. Environ. Sci. 2022, 10, 1–18. [Google Scholar] [CrossRef]
- Başhan, V.; Çetinkaya, A.Y. Influential Publications and Bibliometric Approach to Heavy Metal Removals for Water. Water. Air. Soil Pollut. 2022, 233, 1–17. [Google Scholar] [CrossRef]
- Han, R.; Zhou, B.; Huang, Y.; Lu, X.; Li, S.; Li, N. Bibliometric Overview of Research Trends on Heavy Metal Health Risks and Impacts in 1989–2018. J. Clean. Prod. 2020, 276, 123249. [Google Scholar] [CrossRef]
- Rajeswari, S.; Saravanan, P.; Linkesver, M.; Rajeshkannan, R.; Rajasimman, M. Identifying Global Status and Research Hotspots of Heavy Metal Remediation: A Phase Upgrade Study. J. Environ. Manag. 2022, 324, 116265. [Google Scholar] [CrossRef]
- Nazaripour, M.; Reshadi, M.A.M.; Mirbagheri, S.A.; Nazaripour, M.; Bazargan, A. Research Trends of Heavy Metal Removal from Aqueous Environments. J. Environ. Manag. 2021, 287, 112322. [Google Scholar] [CrossRef]
- Yu, G.; Wang, G.; Chi, T.; Du, C.; Wang, J.; Li, P.; Zhang, Y.; Wang, S.; Yang, K.; Long, Y.; et al. Enhanced Removal of Heavy Metals and Metalloids by Constructed Wetlands: A Review of Approaches and Mechanisms. Sci. Total Environ. 2022, 821, 153516. [Google Scholar] [CrossRef]
- Yan, J.; Qu, Z.; Li, F.; Li, H. Heavy Metals in the Water Environment of Yangtze River Economic Belt: Status, Fuzzy Environmental Risk Assessment and Management. Urban Clim. 2021, 40, 100981. [Google Scholar] [CrossRef]
- SCOPUS: Your Brilliance, Connected. Scopus Fact-Sheet; Elsevier: Amsterdam, The Netherlands, 2022.
- Nicolau, C.S.; Draganescu, N. Behavior of Some Colloid Systems in Electrodialysis. I. Effect of Various Heavy Metals on Viruses. Stud. Cercet. Inframicrobiol. 1956, 7, 413–421. [Google Scholar]
- Hu, J.; Ma, Y.; Zhang, L.; Gan, F.; Ho, Y.S. A Historical Review and Bibliometric Analysis of Research on Lead in Drinking Water Field from 1991 to 2007. Sci. Total Environ. 2010, 408, 1738–1744. [Google Scholar] [CrossRef]
- Yi, H.; Jie, W. A Bibliometric Study of the Trend in Articles Related to Eutrophication Published in Science Citation Index. Scientometrics 2011, 89, 919–927. [Google Scholar] [CrossRef]
- Wambu, E.W.; Ho, Y.-S. A Bibliometric Analysis of Drinking Water Research in Africa. Water SA 2016, 42, 612. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Acebo, H.; Linares-Unamunzaga, A.; Abejón, R.; Rojí, E. Research Trends in Pavement Management during the First Years of the 21st Century : A Bibliometric Analysis during the 2000–2013 Period. Appl. Sci. 2018, 8, 1041. [Google Scholar] [CrossRef] [Green Version]
- Abejón, R.; Moya, L. Cross-Laminated Timber: Perspectives from a Bibliometric Analysis (2006–2018). Wood Mater. Sci. Eng. 2021, 17, 429–450. [Google Scholar] [CrossRef]
- Abejón, R.; Pérez-Acebo, H.; Clavijo, L. Alternatives for Chemical and Biochemical Lignin Valorization: Hot Topics from a Bibliometric Analysis of the Research Published During the 2000–2016 Period. Processes 2018, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Mao, G.; Liu, X.; Du, H.; Zuo, J.; Wang, L. Way Forward for Alternative Energy Research: A Bibliometric Analysis during 1994–2013. Renew. Sustain. Energy Rev. 2015, 48, 276–286. [Google Scholar] [CrossRef]
- Hamel, R.E. The Dominance of English in the International Scientific Periodical Literature and the Future of Language Use in Science. AILA Rev. 2007, 20, 53–71. [Google Scholar] [CrossRef]
- Jin, B. English Language Requirements in the Current International Scientific Publishing World: A Content Analysis of Submission Guidelines in Chemical Engineering. Iberica 2021, 2021, 59–74. [Google Scholar]
- Guziurová, T. Discourse Reflexivity in Written Academic English as Lingua Franca: Code Glosses in Research Articles. Discourse Interact. 2020, 13, 36–54. [Google Scholar] [CrossRef]
- Taghinia Hejabi, A.; Basavarajappa, H.T.; Karbassi, A.R.; Monavari, S.M. Heavy Metal Pollution in Water and Sediments in the Kabini River, Karnataka, India. Environ. Monit. Assess. 2011, 182, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sany, S.B.T.; Salleh, A.; Sulaiman, A.H.; Sasekumar, A.; Rezayi, M.; Tehrani, G.M. Heavy Metal Contamination in Water and Sediment of the Port Klang Coastal Area, Selangor, Malaysia. Environ. Earth Sci. 2013, 69, 2013–2025. [Google Scholar] [CrossRef]
- Prasanna, M.V.; Praveena, S.M.; Chidambaram, S.; Nagarajan, R.; Elayaraja, A. Evaluation of Water Quality Pollution Indices for Heavy Metal Contamination Monitoring: A Case Study from Curtin Lake, Miri City, East Malaysia. Environ. Earth Sci. 2012, 67, 1987–2001. [Google Scholar] [CrossRef]
- Chakarvorty, M.; Dwivedi, A.K.; Shukla, A.D.; Kumar, S.; Niyogi, A.; Usmani, M.; Pati, J.K. Geochemistry and Magnetic Measurements of Suspended Sediment in Urban Sewage Water Vis-à-Vis Quantification of Heavy Metal Pollution in Ganga and Yamuna Rivers, India. Environ. Monit. Assess. 2015, 187, 604. [Google Scholar] [CrossRef]
- Kamari, A.; Yusof, N.; Abdullah, H.; Haraguchi, A.; Abas, M.F. Assessment of Heavy Metals in Water, Sediment, Anabas Testudineus and Eichhornia Crassipes in a Former Mining Pond in Perak, Malaysia. Chem. Ecol. 2017, 33, 637–651. [Google Scholar] [CrossRef]
- QS World University Ranking. 2022. Available online: https://www.topuniversities.com/university-rankings/world-university-rankings/2022 (accessed on 2 December 2022).
- Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Barakat, M.A. New Trends in Removing Heavy Metals from Industrial Wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Fakhru’l-Razi, A.; Pendashteh, A.; Abdullah, L.C.; Biak, D.R.A.; Madaeni, S.S.; Abidin, Z.Z. Review of Technologies for Oil and Gas Produced Water Treatment. J. Hazard. Mater. 2009, 170, 530–551. [Google Scholar] [CrossRef]
- Jiménez, S.; Micó, M.M.; Arnaldos, M.; Medina, F.; Contreras, S. State of the Art of Produced Water Treatment. Chemosphere 2018, 192, 186–208. [Google Scholar] [CrossRef]
- Hardi, M.; Siregar, Y.I.; Anita, S.; Ilza, M. Determination of Heavy Metals Concentration in Produced Water of Oil Field Exploration in Siak Regency. J. Phys. Conf. Ser. 2019, 1156, 012009. [Google Scholar] [CrossRef] [Green Version]
- Marques, I.M.; Oliveira, A.C.V.; de Oliveira, O.M.C.; Sales, E.A.; Moreira, Í.T.A. A Photobioreactor Using Nannochloropsis Oculata Marine Microalgae for Removal of Polycyclic Aromatic Hydrocarbons and Sorption of Metals in Produced Water. Chemosphere 2021, 281, 130775. [Google Scholar] [CrossRef]
- Bilal, M.; Shah, J.A.; Ashfaq, T.; Gardazi, S.M.H.; Tahir, A.A.; Pervez, A.; Haroon, H.; Mahmood, Q. Waste Biomass Adsorbents for Copper Removal from Industrial Wastewater—A Review. J. Hazard. Mater. 2013, 263, 322–333. [Google Scholar] [CrossRef]
- Al-Saydeh, S.A.; El-Naas, M.H.; Zaidi, S.J. Copper Removal from Industrial Wastewater: A Comprehensive Review. J. Ind. Eng. Chem. 2017, 56, 35–44. [Google Scholar] [CrossRef]
- Litter, M.I.; Morgada, M.E.; Bundschuh, J. Possible Treatments for Arsenic Removal in Latin American Waters for Human Consumption. Environ. Pollut. 2010, 158, 1105–1118. [Google Scholar] [CrossRef]
- Coman, V.; Robotin, B.; Ilea, P. Nickel Recovery/Removal from Industrial Wastes: A Review. Resour. Conserv. Recycl. 2013, 73, 229–238. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Surfactant-Enhanced Remediation of Contaminated Soil: A Review. Eng. Geol. 2001, 60, 371–380. [Google Scholar] [CrossRef]
- Vasudevan, S.; Oturan, M.A. Electrochemistry: As Cause and Cure in Water Pollution—An Overview. Environ. Chem. Lett. 2014, 12, 97–108. [Google Scholar] [CrossRef]
- Jensen, P.E.; Ahring, B.K.; Ottosen, L.M. Organic Acid Enhanced Electrodialytic Extraction of Lead from Contaminated Soil Fines in Suspension. J. Chem. Technol. Biotechnol. 2007, 82, 920–928. [Google Scholar] [CrossRef] [Green Version]
- Ottosen, L.M.; Jensen, P.E.; Hansen, H.K.; Ribeiro, A.; Allard, B. Electrodialytic Remediation of Soil Slurry-Removal of Cu, Cr, and As. Sep. Sci. Technol. 2009, 44, 2245–2268. [Google Scholar] [CrossRef]
- Jensen, P.E.; Ferreira, C.M.D.; Hansen, H.K.; Rype, J.U.; Ottosen, L.M.; Villumsen, A. Electroremediation of Air Pollution Control Residues in a Continuous Reactor. J. Appl. Electrochem. 2010, 40, 1173–1181. [Google Scholar] [CrossRef]
- Lima, A.T.; Hofmann, A.; Reynolds, D.; Ptacek, C.J.; Van Cappellen, P.; Ottosen, L.M.; Pamukcu, S.; Alshawabekh, A.; O’Carroll, D.M.; Riis, C.; et al. Environmental Electrokinetics for a Sustainable Subsurface. Chemosphere 2017, 181, 122–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurreri, L.; Tamburini, A.; Cipollina, A.; Micale, G. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. Membranes 2020, 10, 146. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Xu, Y.; Zhang, C.; Rong, H.; Zeng, G. New Trends in Removing Heavy Metals from Wastewater. Appl. Microbiol. Biotechnol. 2016, 100, 6509–6518. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Min, X.; Tang, C.J.; Sillanpää, M.; Zhao, F. Recent Advances in Membrane Filtration for Heavy Metal Removal from Wastewater: A Mini Review. J. Water Process Eng. 2022, 49, 103023. [Google Scholar] [CrossRef]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Kim, H.Y.; Joshi, M.K. Technological Trends in Heavy Metals Removal from Industrial Wastewater: A Review. J. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Benalla, S.; Bachiri, B.; Touir, J.; Tahaikt, M.; Taky, M.; Ebn Touhami, M.; Elmidaoui, A. Feasibility of Electrodialysis in Heavy Metals Removal from Brassware Wastewaters. Desalin. Water Treat. 2021, 240, 106–114. [Google Scholar] [CrossRef]
- Park, Y.-M.; Choi, S.-Y.; Park, K.-Y.; Kweon, J. Electrodialysis of Metal Plating Wastewater with Neutralization Pretreatment: Separation Efficiency and Organic Removal. Membr. Water Treat. 2020, 11, 179–187. [Google Scholar]
- Oh, E.; Kim, J.; Ryu, J.H.; Min, K.J.; Shin, H.G.; Park, K.Y. Influence of Counter Anions on Metal Separation and Water Transport in Electrodialysis Treating Plating Wastewater. Membr. Water Treat. 2020, 11, 231–237. [Google Scholar]
- Gherasim, C.V.; Křivčík, J.; Mikulášek, P. Investigation of Batch Electrodialysis Process for Removal of Lead Ions from Aqueous Solutions. Chem. Eng. J. 2014, 256, 324–334. [Google Scholar] [CrossRef]
- Shestakov, K.V.; Firpo, R.; Bottino, A.; Comite, A. Preliminary Study of Electrodialysis with Model Salt Solutions and Industrial Wastewater. Lect. Notes Civ. Eng. 2017, 4, 656–661. [Google Scholar] [CrossRef]
- Mohammadi, T.; Razmi, A.; Sadrzadeh, M. Effect of Operating Parameters on Pb2+ Separation from Wastewater Using Electrodialysis. Desalination 2004, 167, 379–385. [Google Scholar] [CrossRef]
- Min, K.J.; Kim, J.H.; Park, K.Y. Characteristics of Heavy Metal Separation and Determination of Limiting Current Density in a Pilot-Scale Electrodialysis Process for Plating Wastewater Treatment. Sci. Total Environ. 2021, 757, 143762. [Google Scholar] [CrossRef] [PubMed]
- Min, K.J.; Kim, J.H.; Oh, E.J.; Ryu, J.H.; Park, K.Y. Flow Velocity and Cell Pair Number Effect on Current Efficiency in Plating Wastewater Treatment through Electrodialysis. Environ. Eng. Res. 2021, 26, 190502. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Yoon, S.; Choi, M.; Min, K.J.; Park, K.Y.; Chon, K.; Bae, S. Metal Ion Recovery from Electrodialysis-Concentrated Plating Wastewater via Pilot-Scale Sequential Electrowinning/Chemical Precipitation. J. Clean. Prod. 2022, 330, 129879. [Google Scholar] [CrossRef]
- Altin, S.; Altin, A. Separation of Cd(II) from Aqueous Solutions by a New Consecutive Process Consisting of Supported Liquid Membrane and Electrodialysis. J. Electrochem. Sci. Technol. 2019, 10, 14–21. [Google Scholar] [CrossRef]
- Seidypoor, A.; Joudaki, E.; Hosseini, S.M.; Bandehali, S. Double-Layer Electrodialysis Cation Exchange Membrane by Introducing Chitosan/TiO2 Thin-Film Nanocomposite on PVC-Based Substrate for Cu Removal from Water. Ionics 2022, 28, 3037–3048. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Askari, M.; Koranian, P.; Madaeni, S.S.; Moghadassi, A.R. Fabrication and Electrochemical Characterization of PVC Based Electrodialysis Heterogeneous Ion Exchange Membranes Filled with Fe3O4 Nanoparticles. J. Ind. Eng. Chem. 2014, 20, 2510–2520. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Sohrabnejad, S.; Nabiyouni, G.; Jashni, E.; Van der Bruggen, B.; Ahmadi, A. Magnetic Cation Exchange Membrane Incorporated with Cobalt Ferrite Nanoparticles for Chromium Ions Removal via Electrodialysis. J. Memb. Sci. 2019, 583, 292–300. [Google Scholar] [CrossRef]
- Caprarescu, S.; Ianchis, R.; Radu, A.L.; Sarbu, A.; Somoghi, R.; Trica, B.; Alexandrescu, E.; Spataru, C.I.; Fierascu, R.C.; Ion-Ebrasu, D.; et al. Synthesis, Characterization and Efficiency of New Organically Modified Montmorillonite Polyethersulfone Membranes for Removal of Zinc Ions from Wastewasters. Appl. Clay Sci. 2017, 137, 135–142. [Google Scholar] [CrossRef]
- Zeid, A.U.; Elshazly, A.H.; Elkady, M.F. PVDF/UIO-66 Hybrid Membrane for Cation Separation in Electrodialysis System. Key Eng. Mater. 2022, 932, 139–144. [Google Scholar] [CrossRef]
- Căprărescu, S.; Zgârian, R.G.; Tihan, G.T.; Purcar, V.; Totu, E.E.; Modrogan, C.; Chiriac, A.L.; Nicolae, C.A. Biopolymeric Membrane Enriched with Chitosan and Silver for Metallic Ions Removal. Polymers 2020, 12, 1792. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Alibakhshi, H.; Jashni, E.; Parvizian, F.; Shen, J.N.; Taheri, M.; Ebrahimi, M.; Rafiei, N. A Novel Layer-by-Layer Heterogeneous Cation Exchange Membrane for Heavy Metal Ions Removal from Water. J. Hazard. Mater. 2020, 381, 120884. [Google Scholar] [CrossRef]
- Nemati, M.; Hosseini, S.M.; Shabanian, M. Novel Electrodialysis Cation Exchange Membrane Prepared by 2-Acrylamido-2-Methylpropane Sulfonic Acid; Heavy Metal Ions Removal. J. Hazard. Mater. 2017, 337, 90–104. [Google Scholar] [CrossRef]
- Onorato, C.; Banasiak, L.J.; Schäfer, A.I. Inorganic Trace Contaminant Removal from Real Brackish Groundwater Using Electrodialysis. Sep. Purif. Technol. 2017, 187, 426–435. [Google Scholar] [CrossRef]
- Chang, J.H.; Ellis, A.V.; Tung, C.H.; Huang, W.C. Copper Cation Transport and Scaling of Ionic Exchange Membranes Using Electrodialysis under Electroconvection Conditions. J. Memb. Sci. 2010, 361, 56–62. [Google Scholar] [CrossRef]
- Guo, H.; Kim, Y. Membrane Scaling in Electrodialysis Fed with High-Strength Wastewater. Environ. Eng. Sci. 2021, 38, 832–840. [Google Scholar] [CrossRef]
- Ye, B.; Lan, J.; Nong, Z.; Qin, C.; Ye, M.; Liang, J.; Li, J.; Bi, J.; Huang, W. Efficiently Combined Technology of Precipitation, Bipolar Membrane Electrodialysis, and Adsorption for Salt-Containing Soil Washing Wastewater Treatment. Process Saf. Environ. Prot. 2022, 165, 205–216. [Google Scholar] [CrossRef]
- Yang, H.R.; Li, B.; Zhang, C.Q.; Yang, J.C.; Zheng, Y.M.; Younas, M.; Jiang, Y.H.; Yuan, Z.H. Bipolar Membrane Electrodialysis for Sustainable Utilization of Inorganic Salts from the Reverse Osmosis Concentration of Real Landfill Leachate. Sep. Purif. Technol. 2023, 308, 122898. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Hakami, M.; Zacharof, M.P.; Homod, H.A.; Alsadun, A. Mercury, Arsenic and Lead Removal by Air Gap Membrane Distillation: Experimental Study. Water 2020, 12, 1574. [Google Scholar] [CrossRef]
- Asif, M.B.; Price, W.E.; Fida, Z.; Tufail, A.; Ren, T.; Hai, F.I. Acid Mine Drainage and Sewage Impacted Groundwater Treatment by Membrane Distillation: Organic Micropollutant and Metal Removal and Membrane Fouling. J. Environ. Manag. 2021, 291, 112708. [Google Scholar] [CrossRef] [PubMed]
- Moradi, R.; Monfared, S.M.; Amini, Y.; Dastbaz, A. Vacuum Enhanced Membrane Distillation for Trace Contaminant Removal of Heavy Metals from Water by Electrospun PVDF/TiO2 Hybrid Membranes. Korean J. Chem. Eng. 2016, 33, 2160–2168. [Google Scholar] [CrossRef]
- Carmona, B. Tecnologías Innovadoras de Membranas Para El Tratamiento de Aguas Contaminadas Con Metales Pesados: Perspectiva Del Potencial de Electrodiálisis, Ósmosis Directa y Destilación Con Membranas Desde Un Análisis Bibliométrico. Bachelor’s Thesis, Universidad de Santiago de Chile, Santiago, Chile, 2022. [Google Scholar]
- Zoungrana, A.; Cakmakci, M.; Zengin, I.H.; Inoglu, O.; Elcik, H. Treatment of Metal-Plating Waste Water by Modified Direct Contact Membrane Distillation. Chem. Pap. 2016, 70, 1185–1195. [Google Scholar] [CrossRef]
- Pal, P.; Manna, A.K.; Linnanen, L. Arsenic Removal by Solar-Driven Membrane Distillation: Modeling and Experimental Investigation with a New Flash Vaporization Module. Water Environ. Res. 2013, 85, 63–76. [Google Scholar] [CrossRef]
- Attia, H.; Osman, M.S.; Johnson, D.J.; Wright, C.; Hilal, N. Modelling of Air Gap Membrane Distillation and Its Application in Heavy Metals Removal. Desalination 2017, 424, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Zolotarev, P.P.; Ugrozov, V.V.; Volkina, I.B.; Nikulin, V.N. Treatment of Wasstewater for Removing Heavy Metals by Membrane Distillation. J. Hazard. Mater. 1994, 37, 77–82. [Google Scholar] [CrossRef]
- Parani, S.; Oluwafemi, O.S. Membrane Distillation: Recent Configurations, Membrane Surface Engineering, and Applications. Membranes 2021, 11, 934. [Google Scholar] [CrossRef]
- Eykens, L.; De Sitter, K.; Dotremont, C.; Pinoy, L.; Van der Bruggen, B. Membrane Synthesis for Membrane Distillation: A Review. Sep. Purif. Technol. 2017, 182, 36–51. [Google Scholar] [CrossRef]
- Hou, D.; Wang, J.; Qu, D.; Luan, Z.; Zhao, C.; Ren, X. Preparation of Hydrophobic PVDF Hollow Fiber Membranes for Desalination through Membrane Distillation. Water Sci. Technol. 2009, 59, 1219–1226. [Google Scholar] [CrossRef]
- Pagliero, M.; Comite, A.; Soda, O.; Costa, C. Effect of Support on PVDF Membranes for Distillation Process. J. Memb. Sci. 2021, 635, 119528. [Google Scholar] [CrossRef]
- Lu, K.J.; Zuo, J.; Chung, T.S. Novel PVDF Membranes Comprising N-Butylamine Functionalized Graphene Oxide for Direct Contact Membrane Distillation. J. Memb. Sci. 2017, 539, 34–42. [Google Scholar] [CrossRef]
- Li, J.; Guo, S.; Xu, Z.; Li, J.; Pan, Z.; Du, Z.; Cheng, F. Preparation of Omniphobic PVDF Membranes with Silica Nanoparticles for Treating Coking Wastewater Using Direct Contact Membrane Distillation: Electrostatic Adsorption vs. Chemical Bonding. J. Memb. Sci. 2019, 574, 349–357. [Google Scholar] [CrossRef]
- Grasso, G.; Galiano, F.; Yoo, M.J.; Mancuso, R.; Park, H.B.; Gabriele, B.; Figoli, A.; Drioli, E. Development of Graphene-PVDF Composite Membranes for Membrane Distillation. J. Memb. Sci. 2020, 604, 118017. [Google Scholar] [CrossRef]
- Rahmaniyan, B.; Mohammadi, T.; Tofighy, M.A. Development of High Flux PVDF/Modified TNTs Membrane with Improved Properties for Desalination by Vacuum Membrane Distillation. J. Environ. Chem. Eng. 2021, 9, 106730. [Google Scholar] [CrossRef]
- Khan, A.A.; Maitlo, H.A.; Khan, I.A.; Lim, D.; Zhang, M.; Kim, K.H.; Lee, J.; Kim, J.O. Metal Oxide and Carbon Nanomaterial Based Membranes for Reverse Osmosis and Membrane Distillation: A Comparative Review. Environ. Res. 2021, 202, 111716. [Google Scholar] [CrossRef]
- Attia, H.; Alexander, S.; Wright, C.J.; Hilal, N. Superhydrophobic Electrospun Membrane for Heavy Metals Removal by Air Gap Membrane Distillation (AGMD). Desalination 2017, 420, 318–329. [Google Scholar] [CrossRef] [Green Version]
- Khraisheh, M.; AlMomani, F.; Al-Ghouti, M. Electrospun Al2O3 Hydrophobic Functionalized Membranes for Heavy Metal Recovery Using Direct Contact Membrane Distillation. Int. J. Energy Res. 2021, 45, 8151–8167. [Google Scholar] [CrossRef]
- Wu, R.; Tan, Y.; Meng, F.; Zhang, Y.; Huang, Y.X. PVDF/MAF-4 Composite Membrane for High Flux and Scaling-Resistant Membrane Distillation. Desalination 2022, 540, 116013. [Google Scholar] [CrossRef]
- Duong, H.C.; Pham, T.M.; Luong, S.T.; Nguyen, K.V.; Nguyen, D.T.; Ansari, A.J.; Nghiem, L.D. A Novel Application of Membrane Distillation to Facilitate Nickel Recovery from Electroplating Wastewater. Environ. Sci. Pollut. Res. 2019, 26, 23407–23415. [Google Scholar] [CrossRef]
- Gryta, M. Bilge Water Separation by Membrane Distillation. Sep. Purif. Technol. 2020, 237, 116332. [Google Scholar] [CrossRef]
- Hull, E.J.; Zodrow, K.R. Acid Rock Drainage Treatment Using Membrane Distillation: Impacts of Chemical-Free Pretreatment on Scale Formation, Pore Wetting, and Product Water Quality. Environ. Sci. Technol. 2017, 51, 11928–11934. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.Y.; Ji, Z.G.; Xu, Z.; Bai, A.P.; Resina-Gallego, M. Separation and Recycling of Concentrated Heavy Metal Wastewater by Tube Membrane Distillation Integrated with Crystallization. Membranes 2020, 10, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, S.; Naidu, G.; Hasan Johir, M.A.; Choi, Y.; Jeong, S.; Vigneswaran, S. Acid Mine Drainage Treatment by Integrated Submerged Membrane Distillation–Sorption System. Chemosphere 2019, 218, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.C.; Naidu, G.; Moon, H.; Vigneswaran, S. Selective Copper Recovery by Membrane Distillation and Adsorption System from Synthetic Acid Mine Drainage. Chemosphere 2020, 260, 127528. [Google Scholar] [CrossRef]
- Yakah, N.; Noor, I.; Martin, A.; Simons, A.; Samavati, M. Wet Flue Gas Desulphurization (FGD) Wastewater Treatment Using Membrane Distillation. Energies 2022, 15, 9439. [Google Scholar] [CrossRef]
- Silva, M.R.; Reis, B.G.; Grossi, L.B.; Amaral, M.C.S. Improving the Energetic Efficiency of Direct-Contact Membrane Distillation in Mining Effluent by Using the Waste-Heat-and-Water Process as the Cooling Fluid. J. Clean. Prod. 2020, 260, 121035. [Google Scholar] [CrossRef]
- Bahar, R.; Ng, K.C. Fresh Water Production by Membrane Distillation (MD) Using Marine Engine’s Waste Heat. Sustain. Energy Technol. Assess. 2020, 42, 100860. [Google Scholar] [CrossRef]
- Dow, N.; Gray, S.; Li, J.-D.; Zhang, J.; Ostarcevic, E.; Liubinas, A.; Atherton, P.; Roeszler, G.; Gibbs, A.; Duke, M. Pilot Trial of Membrane Distillation Driven by Low Grade Waste Heat: Membrane Fouling and Energy Assessment. Desalination 2016, 391, 30–42. [Google Scholar] [CrossRef]
- Li, Q.; Beier, L.J.; Tan, J.; Brown, C.; Lian, B.; Zhong, W.; Wang, Y.; Ji, C.; Dai, P.; Li, T.; et al. An Integrated, Solar-Driven Membrane Distillation System for Water Purification and Energy Generation. Appl. Energy 2019, 237, 534–548. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, X.; Ramadan, O.; Bai, H.; Su, Y.; Zheng, H.; Riffat, S. Performance Investigation of a Novel Solar Direct-Drive Sweeping Gas Membrane Distillation System with a Multi-Surface Concentrator. Desalination 2022, 537, 115848. [Google Scholar] [CrossRef]
- Pal, P.; Manna, A.K. Removal of Arsenic from Contaminated Groundwater by Solar-Driven Membrane Distillation Using Three Different Commercial Membranes. Water Res. 2010, 44, 5750–5760. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, A.; AlBadi, S.; Zhuman, B.; Taher, H.; Banat, F.; AlMarzooqi, F. Photothermal Air Gap Membrane Distillation for the Removal of Heavy Metal Ions from Wastewater. Chem. Eng. J. 2022, 431, 133909. [Google Scholar] [CrossRef]
- Meng, L.; Wu, M.; Chen, H.; Xi, Y.; Huang, M.; Luo, X. Rejection of Antimony in Dyeing and Printing Wastewater by Forward Osmosis. Sci. Total Environ. 2020, 745, 141015. [Google Scholar] [CrossRef] [PubMed]
- Akther, N.; Phuntsho, S.; Chen, Y.; Ghaffour, N.; Shon, H.K. Recent Advances in Nanomaterial-Modified Polyamide Thin-Film Composite Membranes for Forward Osmosis Processes. J. Memb. Sci. 2019, 584, 20–45. [Google Scholar] [CrossRef]
- Suwaileh, W.A.; Johnson, D.J.; Sarp, S.; Hilal, N. Advances in Forward Osmosis Membranes: Altering the Sub-Layer Structure via Recent Fabrication and Chemical Modification Approaches. Desalination 2018, 436, 176–201. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Liu, C. Efficient Removal of Heavy Metal Ions Based on the Optimized Dissolution-Diffusion-Flow Forward Osmosis Process. Chem. Eng. J. 2018, 334, 1128–1134. [Google Scholar] [CrossRef]
- Guo, H.; Yao, Z.; Wang, J.; Yang, Z.; Ma, X.; Tang, C.Y. Polydopamine Coating on a Thin Film Composite Forward Osmosis Membrane for Enhanced Mass Transport and Antifouling Performance. J. Memb. Sci. 2018, 551, 234–242. [Google Scholar] [CrossRef]
- Saeedi-Jurkuyeh, A.; Jafari, A.J.; Kalantary, R.R.; Esrafili, A. A Novel Synthetic Thin-Film Nanocomposite Forward Osmosis Membrane Modified by Graphene Oxide and Polyethylene Glycol for Heavy Metals Removal from Aqueous Solutions. React. Funct. Polym. 2020, 146, 104397. [Google Scholar] [CrossRef]
- He, M.; Wang, L.; Zhang, Z.; Zhang, Y.; Zhu, J.; Wang, X.; Lv, Y.; Miao, R. Stable Forward Osmosis Nanocomposite Membrane Doped with Sulfonated Graphene Oxide@Metal-Organic Frameworks for Heavy Metal Removal. ACS Appl. Mater. Interfaces 2020, 12, 57102–57116. [Google Scholar] [CrossRef]
- Soo, K.W.; Wong, K.C.; Goh, P.S.; Ismail, A.F.; Othman, N. Efficient Heavy Metal Removal by Thin Film Nanocomposite Forward Osmosis Membrane Modified with Geometrically Different Bimetallic Oxide. J. Water Process Eng. 2020, 38, 101591. [Google Scholar] [CrossRef]
- Luo, F.; Wang, J.; Yao, Z.; Zhang, L.; Chen, H. Polydopamine Nanoparticles Modified Nanofiber Supported Thin Film Composite Membrane with Enhanced Adhesion Strength for Forward Osmosis. J. Memb. Sci. 2021, 618, 118673. [Google Scholar] [CrossRef]
- Muhamad, N.; Makhtar, S.N.N.M.; Abdullah, N.; Pauzi, M.Z.M.; Mahpoz, N.M.; Othman, M.H.D.; Jaafar, J.; Abas, K.H.; Fadil, N.A.; Rahman, M.A. Composite Zeolite Hollow Fiber Membrane for the Removal of Nickel Using Forward Osmosis. J. Water Process Eng. 2021, 40, 101806. [Google Scholar] [CrossRef]
- Hu, W.; Chen, Y.; Dong, X.; Meng, Q.W.; Ge, Q. Positively Charged Membranes Constructed via Complexation for Chromium Removal through Micellar-Enhanced Forward Osmosis. Chem. Eng. J. 2021, 420, 129837. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Xie, M.; Zhang, B.; Li, G.; Luo, W. Resource Recovery from Digested Manure Centrate: Comparison between Conventional and Aquaporin Thin-Film Composite Forward Osmosis Membranes. J. Memb. Sci. 2020, 593, 117436. [Google Scholar] [CrossRef]
- Nezami, M.M.; Khanjani, M.J. Quality Improvement of Water Resources by Removal of Mercury and Lead Contaminants through Forward Osmosis (FO) Technology with Vibrating Membrane. Int. J. Civ. Eng. Technol. 2017, 8, 937–950. [Google Scholar]
- Zhang, J.X.; Tian, T.; Du, W.J.; Guan, Y.F.; Wang, Y.J.; Li, Y.S.; Yu, H.Q. Adopting Vibration to Alleviate the Solute Buildup and Membrane Fouling in a Forward Osmosis System. J. Clean. Prod. 2021, 323, 129202. [Google Scholar] [CrossRef]
- Vital, B.; Bartacek, J.; Ortega-Bravo, J.C.; Jeison, D. Treatment of Acid Mine Drainage by Forward Osmosis: Heavy Metal Rejection and Reverse Flux of Draw Solution Constituents. Chem. Eng. J. 2018, 332, 85–91. [Google Scholar] [CrossRef]
- Abdullah, W.N.A.S.; Tiandee, S.; Lau, W.; Aziz, F.; Ismail, A.F. Potential Use of Nanofiltration Like-Forward Osmosis Membranes for Copper Ion Removal. Chin. J. Chem. Eng. 2020, 28, 420–428. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, W.; Ge, Q. Novel Multicharge Hydroacid Complexes That Effectively Remove Heavy Metal Ions from Water in Forward Osmosis Processes. Environ. Sci. Technol. 2018, 52, 4464–4471. [Google Scholar] [CrossRef]
- Cui, Y.; Ge, Q.; Liu, X.Y.; Chung, T.S. Novel Forward Osmosis Process to Effectively Remove Heavy Metal Ions. J. Memb. Sci. 2014, 467, 188–194. [Google Scholar] [CrossRef]
- Qiu, F.; Chen, R.; Chung, T.S.; Ge, Q. Forward Osmosis for Heavy Metal Removal: Multi-Charged Metallic Complexes as Draw Solutes. Desalination 2022, 539, 115924. [Google Scholar] [CrossRef]
- Hamid, M.F.; Abdullah, N.; Yusof, N.; Lau, W.J.; Ismail, A.F.; Salleh, W.N.W.; Jaafar, J.; Aziz, F. Innovative Polymer-Complex Draw Solution for Copper (II) Removal Using Forward Osmosis. J. Environ. Chem. Eng. 2021, 9, 104854. [Google Scholar] [CrossRef]
- Haupt, A.; Lerch, A. Forward Osmosis Application in Manufacturing Industries: A Short Review. Membranes 2018, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.Y.; Chen, S.S.; Zhang, D.Z.; Kobayashi, J. Hg Removal and the Effects of Coexisting Metals in Forward Osmosis and Membrane Distillation. Water Sci. Technol. 2017, 75, 2622–2630. [Google Scholar] [CrossRef] [Green Version]
Ranking | Country | WRI | Ranking | Country | WRI |
---|---|---|---|---|---|
1 | Qatar | 4.97 | 11 | San Marino | 4.14 |
2 | Israel | 4.82 | 12 | Bahrain | 4.13 |
3 | Lebanon | 4.82 | 13 | India | 4.12 |
4 | Iran | 4.57 | 14 | Pakistan | 4.05 |
5 | Jordan | 4.56 | 15 | Turkmenistan | 4.04 |
6 | Libya | 4.55 | 16 | Oman | 4.04 |
7 | Kuwait | 4.43 | 17 | Botswana | 4.02 |
8 | Saudi Arabia | 4.35 | 18 | Chile | 3.98 |
9 | Eritrea | 4.33 | 19 | Cyprus | 3.97 |
10 | UAE | 4.26 | 20 | Yemen | 3.97 |
Language | Publications | Contribution (%) |
---|---|---|
English | 345 | 95.30 |
Chinese | 7 | 1.93 |
Russian | 3 | 0.83 |
Japanese | 1 | 0.28 |
Lithuanian | 1 | 0.28 |
Moldavian | 1 | 0.28 |
Persian | 1 | 0.28 |
Romanian | 1 | 0.28 |
Undefined | 2 | 0.55 |
Country | Publications | Contribution (%) |
---|---|---|
Denmark | 70 | 19.34 |
China | 63 | 17.40 |
USA | 27 | 7.46 |
India | 23 | 6.35 |
Iran | 21 | 5.80 |
Portugal | 20 | 5.52 |
Australia | 18 | 4.97 |
South Korea | 14 | 3.87 |
Malaysia | 12 | 3.31 |
Spain | 12 | 3.31 |
Chile | 10 | 2.76 |
Canada | 9 | 2.49 |
France | 9 | 2.49 |
Saudi Arabia | 9 | 2.49 |
United Kingdom | 9 | 2.49 |
Institution | Publications | Contribution (%) |
---|---|---|
Technical University of Denmark (Denmark) | 69 | 19.06 |
Universidade Nova Lisboa (Portugal) | 16 | 4.42 |
Universiti Tekknologi Malaysia (Malaysia) | 9 | 2.49 |
University of Technology Sydney (Australia) | 9 | 2.49 |
Universidad Técnica Federico Santa María (Chile) | 8 | 2.21 |
Chinese Academy of Sciences (China) | 8 | 2.21 |
Arak University (Iran) | 7 | 1.93 |
Donghua University (China) | 7 | 1.93 |
Shenzhen University (China) | 6 | 1.66 |
KU Leuven (Belgium) | 6 | 1.66 |
Chinese Ministry of Education (China) | 5 | 1.38 |
Silesian University of Technology (Poland) | 5 | 1.38 |
Fuzhou University (China) | 5 | 1.38 |
Escola Superior Agraria de Coimbra (Portugal) | 5 | 1.38 |
Ranking | Subject | Publications | Contribution (%) |
---|---|---|---|
1 | Environmental Science | 199 | 54.97 |
2 | Chemical Engineering | 135 | 37.29 |
3 | Chemistry | 132 | 36.46 |
4 | Engineering | 93 | 25.69 |
5 | Materials Science | 65 | 17.96 |
6 | Biochemistry, Genetics and Molecular Biology | 32 | 8.84 |
7 | Energy | 21 | 5.80 |
8 | Earth and Planetary Sciences | 16 | 4.42 |
9 | Physics and Astronomy | 14 | 3.87 |
10 | Medicine | 13 | 3.59 |
Source | 2021 IF | Publications | Contribution (%) |
---|---|---|---|
Journal of Hazardous Materials | 14.22 | 29 | 14.57 |
Chemical Engineering Journal | 13.27 | 16 | 8.04 |
Desalination | 11.21 | 16 | 8.04 |
Journal of Membrane Science | 8.74 | 12 | 6.03 |
Desalination and Water Treatment | 1.72 | 11 | 5.53 |
Electrochimica Acta | 7.34 | 11 | 5.53 |
Chemosphere | 8.94 | 10 | 5.03 |
Separation Science and Technology | 2.79 | 10 | 5.03 |
Science of the Total Environment | 10.75 | 9 | 4.52 |
Waste Management | 8.81 | 7 | 3.52 |
Ranking | Articles | Times Cited |
---|---|---|
1 | Title: Removal of heavy metal ions from wastewaters: A review Authors: Fu, F., Wang, Q. Source: Journal of Environmental Management Published: 2011 | 5704 |
2 | Title: New trends in removing heavy metals from industrial wastewater Authors: Barakat, M.A. Source: Arabian Journal of Chemistry Published: 2011 | 1773 |
3 | Title: Review of technologies for oil and gas produced water treatment Authors: Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L.C., (...), Abidin, Z.Z. Source: Journal of Hazardous Materials Published: 2009 | 1421 |
4 | Title: Surfactant-enhanced remediation of contaminated soil: A review Authors: Mulligan, C.N, Yong, R.N, Gibbs, B. F Source: Engineering Geology Published: 2001 | 807 |
5 | Title: Waste biomass adsorbents for copper removal from industrial wastewater: A review Authors: Bilal, M., Shah, J.A., Ashfaq, T., Haroon, H., (...), Mahmood, Q. Source: Journal of Hazardous Materials Published: 2013 | 367 |
6 | Title: Electrochemistry: As cause and cure in water pollution—An overview Authors: Vasudevan, S., Oturan, M.A. Source: Environmental Chemistry Letters Published: 2014 | 255 |
7 | Title: Possible treatments for arsenic removal in Latin American waters for human consumption Authors: Litter, M.I., Morgada, M.E., Bundschuh, J. Source: Environmental Pollution Published: 2010 | 233 |
8 | Title: Copper removal from industrial wastewater: A comprehensive review Authors: Al-Saydeh, S.A., El-Naas, M.H., Zaidi, S.J. Source: Journal of Industrial and Engineering Chemistry Published: 2017 | 227 |
9 | Title: State of the art of produced water treatment Authors: Jiménez, S., Micó, M.M., Arnaldos, M., Medina, F., Contreras, S. Source: Chemosphere Published: 2018 | 210 |
10 | Title: Nickel recovery/removal from industrial wastes: A review Authors: Coman, V., Robotin, B., Ilea, P. Source: Resources, Conservation and Recycling Published: 2013 | 190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona, B.; Abejón, R. Innovative Membrane Technologies for the Treatment of Wastewater Polluted with Heavy Metals: Perspective of the Potential of Electrodialysis, Membrane Distillation, and Forward Osmosis from a Bibliometric Analysis. Membranes 2023, 13, 385. https://doi.org/10.3390/membranes13040385
Carmona B, Abejón R. Innovative Membrane Technologies for the Treatment of Wastewater Polluted with Heavy Metals: Perspective of the Potential of Electrodialysis, Membrane Distillation, and Forward Osmosis from a Bibliometric Analysis. Membranes. 2023; 13(4):385. https://doi.org/10.3390/membranes13040385
Chicago/Turabian StyleCarmona, Benjamín, and Ricardo Abejón. 2023. "Innovative Membrane Technologies for the Treatment of Wastewater Polluted with Heavy Metals: Perspective of the Potential of Electrodialysis, Membrane Distillation, and Forward Osmosis from a Bibliometric Analysis" Membranes 13, no. 4: 385. https://doi.org/10.3390/membranes13040385
APA StyleCarmona, B., & Abejón, R. (2023). Innovative Membrane Technologies for the Treatment of Wastewater Polluted with Heavy Metals: Perspective of the Potential of Electrodialysis, Membrane Distillation, and Forward Osmosis from a Bibliometric Analysis. Membranes, 13(4), 385. https://doi.org/10.3390/membranes13040385