Life Cycle Assessment of Innovative Carbon Dioxide Selective Membranes from Low Carbon Emission Sources: A Comparative Study
Abstract
:1. Introduction
2. Methods
2.1. Goal and Scope
2.2. Processes Studied
2.3. System Boundary
2.4. Life Cycle Inventory
2.5. Impact Assessment
3. Results and Discussion
3.1. Life Cycle Assessment: Single-Stage Process
3.2. Life Cycle Assessment: Two-Stage Process
3.3. Life Cycle Assessment: Three-Stage Process
3.4. Comparison to Other Membrane Processes
3.5. Comparison to Other Separation Processes
3.6. Sensitivity Analysis ᷇
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hereher, M.E. Climate Change during the Third Millennium—The Gulf Cooperation Council Countries. Sustainability 2022, 14, 14181. [Google Scholar] [CrossRef]
- Monforte, I.; Evangelista, G.; Claps, P. Flooding Risk from Global Warming in Alpine Basins: An Estimate along a Stream Network. Environ. Sci. Proc. 2022, 21, 22. [Google Scholar]
- Fazzini, M.; Cordeschi, M.; Carabella, C.; Paglia, G.; Esposito, G.; Miccadei, E. Snow Avalanche Assessment in Mass Movement-Prone Areas: Results from Climate Extremization in Relationship with Environmental Risk Reduction in the Prati di Tivo Area (Gran Sasso Massif, Central Italy). Land 2021, 10, 1176. [Google Scholar] [CrossRef]
- Editorial Board. News. Mar. Pollut. Bull. 2020, 156, 111308. [Google Scholar] [CrossRef]
- Diaz, L.A.; Gao, N.; Adhikari, B.; Lister, T.E.; Dufek, E.J.; Wilson, A.D. Electrochemical production of syngas from CO2 captured in switchable polarity solvents. Green Chem. 2018, 20, 620–626. [Google Scholar] [CrossRef]
- Florides, G.A.; Christodoulides, P. Global warming and carbon dioxide through sciences. Environ. Int. 2009, 35, 390–401. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. Carbon Dioxide Now More than 50% Higher than Pre-Industrial Levels. Available online: https://www.noaa.gov/news-release/carbon-dioxide-now-more-than-50-higher-than-pre-industrial-levels (accessed on 16 January 2023).
- U.S. Environmental Protection Agency. Global Greenhouse Gas Emissions Data. Available online: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data (accessed on 16 January 2023).
- Althor, G.; Watson, J.E.M.; Fuller, R.A. Global mismatch between greenhouse gas emissions and the burden of climate change. Sci. Rep. 2016, 6, 20281. [Google Scholar] [CrossRef]
- Adhikari, B.; Chowdhury, N.A.; Diaz, L.A.; Jin, H.; Saha, A.K.; Shi, M.; Klaehn, J.R.; Lister, T.E. Electrochemical leaching of critical materials from lithium-ion batteries: A comparative life cycle assessment. Resour. Conserv. Recycl. 2023, 193, 106973. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Hua, H.; Lund, P.D.; Wang, J. Exergo-environmental cost optimization of a solar-based cooling and heating system considering equivalent emissions of life-cycle chain. Energy Convers. Manag. 2022, 258, 115534. [Google Scholar] [CrossRef]
- Marocco, P.; Gandiglio, M.; Audisio, D.; Santarelli, M. Assessment of the role of hydrogen to produce high-temperature heat in the steel industry. J. Clean. Prod. 2023, 388, 135969. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Song, C.; Guo, X. Catalytic Conversion of Carbon Dioxide to Methanol: Current Status and Future Perspective. Front. Energy Res. 2021, 8, 621119. [Google Scholar] [CrossRef]
- Dowson, G.R.M.; Styring, P. Demonstration of CO2 Conversion to Synthetic Transport Fuel at Flue Gas Concentrations. Front. Energy Res. 2017, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Zevenhoven, R.; Fagerlund, J. 16—Mineralisation of carbon dioxide (CO2). In Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology; Maroto-Valer, M.M., Ed.; Woodhead Publishing: Sawston, UK, 2010; Volume 2, pp. 433–462. [Google Scholar]
- Naraharisetti, P.K.; Yeo, T.Y.; Bu, J. New classification of CO2 mineralization processes and economic evaluation. Renew. Sustain. Energy Rev. 2019, 99, 220–233. [Google Scholar] [CrossRef]
- Núñez-López, V.; Moskal, E. Potential of CO2-EOR for Near-Term Decarbonization. Front. Clim. 2019, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Perera, M.S.A.; Gamage, R.P.; Rathnaweera, T.D.; Ranathunga, A.S.; Koay, A.; Choi, X. A Review of CO2-Enhanced Oil Recovery with a Simulated Sensitivity Analysis. Energies 2016, 9, 481. [Google Scholar] [CrossRef]
- Folger, P.F. Carbon Capture and Sequestration (CCS) in the United States; Congressional Research Service 2017. In Carbon Capture and Sequestration (CCS) in the United States; Congressional Research Service: Washington, DC, USA, 2017. [Google Scholar]
- Cui, Z.; deMontigny, D. Part 7: A review of CO2capture using hollow fiber membrane contactors. Carbon Manag. 2014, 4, 69–89. [Google Scholar] [CrossRef]
- Oko, E.; Wang, M.; Joel, A.S. Current status and future development of solvent-based carbon capture. Int. J. Coal Sci. Technol. 2017, 4, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Heldebrant, D.J.; Kothandaraman, J.; Mac Dowell, N.; Brickett, L. Next steps for solvent-based CO2 capture; integration of capture, conversion, and mineralisation. Chem. Sci. 2022, 13, 6445–6456. [Google Scholar] [CrossRef]
- Siqueira, R.M.; Freitas, G.R.; Peixoto, H.R.; Nascimento, J.F.d.; Musse, A.P.S.; Torres, A.E.B.; Azevedo, D.C.S.; Bastos-Neto, M. Carbon Dioxide Capture by Pressure Swing Adsorption. Energy Procedia 2017, 114, 2182–2192. [Google Scholar] [CrossRef]
- Font-Palma, C.; Cann, D.; Udemu, C. Review of Cryogenic Carbon Capture Innovations and Their Potential Applications. C 2021, 7, 58. [Google Scholar] [CrossRef]
- Song, C.; Liu, Q.; Deng, S.; Li, H.; Kitamura, Y. Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges. Renew. Sustain. Energy Rev. 2019, 101, 265–278. [Google Scholar] [CrossRef]
- Machida, H.; Hashiride, R.; Niinomi, R.; Yanase, K.; Hirayama, M.; Umeda, Y.; Norinaga, K. An Alternative CO2 Capture with a Pressure Swing Amine Process Driven by Cryogenic Pumping with the Unused Cold Energy of Liquefied Natural Gas. ACS Sustain. Chem. Eng. 2021, 9, 15908–15914. [Google Scholar] [CrossRef]
- Giordano, L.; Roizard, D.; Favre, E. Life cycle assessment of post-combustion CO2 capture: A comparison between membrane separation and chemical absorption processes. Int. J. Greenh. Gas Control 2018, 68, 146–163. [Google Scholar] [CrossRef]
- Stewart, F.F.; Orme, C.J.; Klaehn, J.R.; Adhikari, B.; Shenderova, O.A.; Nunn, N.A.; Torelli, M.D.; McGuire, G.E.; Lee, T.H.; Balachandran, U. Mixed Matrix Membranes, and related gas separation membrane apparatuses, gaseous fluid treatment Systems, and Methods. U.S. Patent Application 17/174,796, 12 August 2021. [Google Scholar]
- Pellegrino, J.J.; Nassimbene, R.; Noble, R.D. Facilitated transport of CO2 through highly swollen ion-exchange membranes: The effect of hot glycerine pretreatment. Gas Sep. Purif. 1988, 2, 126–130. [Google Scholar] [CrossRef]
- Khalilpour, R.; Mumford, K.; Zhai, H.; Abbas, A.; Stevens, G.; Rubin, E.S. Membrane-based carbon capture from flue gas: A review. J. Clean. Prod. 2015, 103, 286–300. [Google Scholar] [CrossRef]
- Adhikari, B.; Orme, C.J.; Jones, M.G.; Wendt, D.S.; Mines, G.L.; Wilson, A.D. Diffusion membrane generation of 1-cyclohexylpiperidinium bicarbonate. J. Membr. Sci. 2019, 583, 258–266. [Google Scholar] [CrossRef]
- Pellegrino, J.J.; Giarratano, P. Ion-exchange membranes for bulk separation of H2S and CO2. In Proceedings of the US Department of Energy Contractors Review Meeting on Fuel Cells, Morgantown, WV, USA, 14–15 July 1992. [Google Scholar]
- Mores, P.L.; Arias, A.M.; Scenna, N.J.; Mussati, M.C.; Mussati, S.F. Cost-based comparison of multi-stage membrane configurations for carbon capture from flue gas of power plants. Int. J. Greenh. Gas Control 2019, 86, 177–190. [Google Scholar] [CrossRef]
- Zhao, L.; Menzer, R.; Riensche, E.; Blum, L.; Stolten, D. Concepts and investment cost analyses of multi-stage membrane systems used in post-combustion processes. Energy Procedia 2009, 1, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Yeo, Z.Y.; Chew, T.L.; Zhu, P.W.; Mohamed, A.R.; Chai, S.-P. Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review. J. Nat. Gas Chem. 2012, 21, 282–298. [Google Scholar] [CrossRef]
- Tong, Z.; Ho, W.S.W. Facilitated transport membranes for CO2 separation and capture. Sep. Sci. Technol. 2017, 52, 156–167. [Google Scholar] [CrossRef]
- Ozkan, M.; Nayak, S.P.; Ruiz, A.D.; Jiang, W. Current status and pillars of direct air capture technologies. iScience 2022, 25, 103990. [Google Scholar] [CrossRef]
- Sabatino, F.; Grimm, A.; Gallucci, F.; van Sint Annaland, M.; Kramer, G.J.; Gazzani, M. A comparative energy and costs assessment and optimization for direct air capture technologies. Joule 2021, 5, 2047–2076. [Google Scholar] [CrossRef]
- Fujikawa, S.; Selyanchyn, R.; Kunitake, T. A new strategy for membrane-based direct air capture. Polym. J. 2021, 53, 111–119. [Google Scholar] [CrossRef]
- Fennell, P.; Driver, J.; Bataille, C.; Davis, S. Cement and steel—nine steps to net zero. Nature 2022, 603, 574–577. [Google Scholar] [CrossRef]
- Lee, J.W.; Ahn, H.; Kim, S.; Kang, Y.T. Low-concentration CO2 capture system with liquid-like adsorbent based on monoethanolamine for low energy consumption. J. Clean Prod. 2023, 390, 136141. [Google Scholar] [CrossRef]
- Adhikari, B.; Jones, M.G.; Orme, C.J.; Wendt, D.S.; Wilson, A.D. Compatibility study of nanofiltration and reverse osmosis membranes with 1-cyclohexylpiperidenium bicarbonate solutions. J. Membr. Sci. 2017, 527, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.D.; Wendt, D.S.; Orme, C.J.; Adhikari, B.; Ginosar, D.M. Methods and Systems for Treating an Aqueous Solution. U.S. Patent 11,261,111, 1 March 2022. [Google Scholar]
- Stewart, F.F.; Harrup, M.K.; Orme, C.J.; Luther, T.A. Phosphazene membranes for gas separations. U.S. Patent 7,074,256 B2, 11 July 2006. [Google Scholar]
- Wilson, A.D.; Orme, C.J.; Klaehn, J.R.; Adhikari, B.; Stewart, F.F.; Snyder, S.W. Methods, Systems, and Apparatuses for Treating Fluids Using Thermal Gradient Osmosis. U.S. Patent Application 17/009,360, 4 March 2021. [Google Scholar]
- Wilson, A.D.; Wendt, D.S.; Orme, C.J.; Mines, G.L.; Jones, M.G.; Adhikari, B. Methods and Systems for Treating a Switchable Polarity Material, and Related Methods of Liquid Treatment. U.S. Patent 10,195,543, 5 February 2019. [Google Scholar]
- Ghasemzadeh, K.; Tilebon, S.M.S.; Basile, A. Chapter 5—Membrane technologies for exhaust gas cleaning and carbon capture and sequestration. In Current Trends and Future Developments on (Bio-) Membranes; Basile, A., Spazzafumo, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 97–123. [Google Scholar]
- Orme, C.J.; McNally, J.S.; Klaehn, J.R.; Stewart, F.F. Mixed substituent ether-containing polyphosphazene/poly(bis-phenoxyphosphazene) blends as membranes for CO2 separation from N-2. J. Appl. Polym. Sci. 2021, 138, 50207. [Google Scholar] [CrossRef]
- Kusuma, V.A.; McNally, J.S.; Baker, J.S.; Tong, Z.; Zhu, L.X.; Orme, C.J.; Stewart, F.F.; Hopkinson, D.P. Cross-Linked Polyphosphazene Blends as Robust CO2 Separation Membranes. ACS Appl. Mater. Interfaces 2020, 12, 30787–30795. [Google Scholar] [CrossRef]
- Orme, C.J.; Klaehn, J.R.; Harrup, M.K.; Luther, T.A.; Peterson, E.S.; Stewart, F.F. Gas permeability in rubbery polyphosphazene membranes. J. Membr. Sci. 2006, 280, 175–184. [Google Scholar] [CrossRef]
- Orme, C.J.; Stewart, F.F. Mixed gas hydrogen sulfide permeability and separation using supported polyphosphazene membranes. J. Membr. Sci. 2005, 253, 243–249. [Google Scholar] [CrossRef]
- Luther, T.A.; Stewart, F.F.; Budzien, J.L.; LaViolette, R.A.; Bauer, W.F.; Harrup, M.K.; Allen, C.W.; Elayan, A. On the mechanism of ion transport through polyphosphazene solid polymer electrolytes: NMR, IR, and Raman spectroscopic studies and computational analysis of N-15-labeled polyphosphazenes. J. Phys. Chem. B 2003, 107, 3168–3176. [Google Scholar] [CrossRef]
- Orme, C.J.; Harrup, M.K.; McCoy, J.D.; Weinkauf, D.H.; Stewart, F.F. Pervaporation of water-dye, alcohol-dye, and water-alcohol mixtures using a polyphosphazene membrane. J. Membr. Sci. 2002, 197, 89–101. [Google Scholar] [CrossRef]
- Stewart, F.F.; Orme, C.J.; Harrup, M.K.; Lash, R.P.; Weinkauf, D.H.; McCoy, J.D. Membrane separations using functionalized polyphosphazene materials. Abstr. Pap. Am. Chem. S 2001, 222, U393. [Google Scholar]
- Orme, C.J.; Harrup, M.K.; Luther, T.A.; Lash, R.P.; Houston, K.S.; Weinkauf, D.H.; Stewart, F.F. Characterization of gas transport in selected rubbery amorphous polyphosphazene membranes. J. Membr. Sci. 2001, 186, 249–256. [Google Scholar] [CrossRef]
- Lister, T.E.; Dufek, E.J.; Wilson, A.D.; Aldana, L.A.D.; Adhikari, B.; Gao, N. Methods and Systems for the Electrochemical Reduction of Carbon Dioxide Using Switchable Polarity Materials. U.S. Patent 10,975,477, 13 April 2021. [Google Scholar]
- Klaehn, J.R.; Orme, C.J.; Wilson, A.D.; Adhikari, B.; Stewart, F.F.; Snyder, S.W. Thermally Reflective Membrane Apparatuses, and Related Fluid Treatment Systems and Methods. U.S. Patent Application 17/009,421, 4 March 2021. [Google Scholar]
- Wendt, L.M.; Wahlen, B.D.; Adhikari, B. Methods of Producing Succinic Acid from a Biomass. U.S. Patent Application 17/652,835, 1 September 2022. [Google Scholar]
- Sekizkardes, A.K.; Budhathoki, S.; Zhu, L.; Kusuma, V.; Tong, Z.; McNally, J.S.; Steckel, J.A.; Yi, S.; Hopkinson, D. Molecular design and fabrication of PIM-1/polyphosphazene blend membranes with high performance for CO2/N2 separation. J. Membr. Sci. 2021, 640, 119764. [Google Scholar] [CrossRef]
- Ge, Z.; Li, Q.; Wang, Y. Free Energy Calculation of Nanodiamond-Membrane Association—The Effect of Shape and Surface Functionalization. J. Chem. Theory Comput. 2014, 10, 2751–2758. [Google Scholar] [CrossRef]
- Adhikari, B.; Orme, C.J.; Klaehn, J.R. Techno-economic analysis of carbon dioxide enrichment from low carbon sources using membranes. J. Clean. Prod. 2023, 36, 35. [Google Scholar]
- Ayres, R.U. Life cycle analysis: A critique. Resour. Conserv. Recycl. 1995, 14, 199–223. [Google Scholar] [CrossRef]
- Wang, M.Q. GREET 1.0—Transportation Fuel Cycles Model: Methodology and Use; Argonne National Lab.(ANL): Argonne, IL, USA, 1996. [Google Scholar]
- Sutar, D.D.; Jadhav, S.V. Life cycle assessment of methanol production by natural gas route. Mater. Today Proc. 2022, 57, 1559–1566. [Google Scholar] [CrossRef]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef]
- Adhikari, B.; Lister, T.E.; Reddy, R.G. Techno-economic and life cycle assessment of aluminum electrorefining from mixed scraps using ionic liquid. Sustain. Prod. Consum. 2022, 33, 932–941. [Google Scholar] [CrossRef]
- Neupane, G.; Adhikari, B.; Wiggins, A. Assessment of Economic Impact of Permitting Timelines on Produced Geothermal Power in Imperial County, California. In Proceedings of the Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 7 February 2022–9 February 2022; p. Medium: ED. [Google Scholar]
- Adhikari, B.; Orme, C.J.; Klaehn, J.R.; Stewart, F.F. Technoeconomic analysis of oxygen-nitrogen separation for oxygen enrichment using membranes. Sep. Purif. Technol. 2021, 268, 118703. [Google Scholar] [CrossRef]
- Wendt, D.; Adhikari, B.; Orme, C.; Wilson, A. Produced water treatment using the switchable polarity solvent forward osmosis (SPS FO) desalination process: Preliminary engineering design basis. In Proceedings of the Geothermal Resources Council Annual Meeting, Sacramento, CA, USA, 23–26 October 2016. [Google Scholar]
- Adhikari, B.; Pellegrino, J. Life-cycle assessment of five microalgae-to-biofuels processes of varying complexity. J. Renew. Sustain. Energy 2015, 7, 043136. [Google Scholar] [CrossRef]
- Adhikari, B.; Pellegrino, J. Separation Challenges and Optimizations of Sustainable Algal and Lignocellulose Based Biofuels; University of Colorado Boulder: Boulder, CO, USA, 2015. [Google Scholar]
- Amer, L.; Adhikari, B.; Pellegrino, J. Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresour. Technol. 2011, 102, 9350–9359. [Google Scholar] [CrossRef] [PubMed]
- Diaz, L.A.; Strauss, M.L.; Adhikari, B.; Klaehn, J.R.; McNally, J.S.; Lister, T.E. Electrochemical-assisted leaching of active materials from lithium ion batteries. Resour. Conserv. Recycl. 2020, 161, 104900. [Google Scholar] [CrossRef]
- Diaz, L.A.; Strauss, M.L.; Adhikari, B.; Klaehn, J.R.; McNally, J.S.; Lister, T.E. Electrochemical-assisted leaching of active materials from lithium ion batteries. Resour. Conserv. Recycl. 2021, 175, 105857. [Google Scholar] [CrossRef]
- Khoo, H.H.; Tan, R.B.H. Life Cycle Investigation of CO2 Recovery and Sequestration. Environ. Sci. Technol. 2006, 40, 4016–4024. [Google Scholar] [CrossRef]
Membrane | Membrane Thickness (µm) | Feed Gas (CO2 vol%/N2 vol%) | Separation Condition (Temperature °C/Pressure Bar) | Permeability (Barrer) | CO2/N2 Selectivity |
---|---|---|---|---|---|
Pebax LE | 1 | pure gas | 25/1 | 55.0 | 40.0 |
Pebax HE | 1 | pure gas | 25/1 | 100.0 | 70.0 |
Pebax/ZIF-8 | 105 | pure gas | 23/1 | 105.0 | 34.8 |
Pebax/ZIF-8(90 nm) | 55 | pure gas | 25/1 | 154.0 | 40.5 |
Pebax/ZIF-8–90(50) | 75 | pure gas | 35/-- | 217.5 | 54.1 |
Pebax/NH2-ZIF-8 | - | pure gas | 25/1 | 163.8 | 62.0 |
Pebax/UiO-66 | 18 | 50/50 | 25/3 | 97.2 | 56.6 |
Pebax/NH2-MIL-53 | 75 | pure gas | 35/10 | 120.0 | 55.5 |
Pebax/MoS2 nanosheet | 28 | pure gas | 30/1 | 52.3 | 90.6 |
Pebax/NaY | 23 | pure gas | 30/2 | 82.8 | 35.0 |
Pebax/NOTT300 | 38 | pure gas | 25/10 | 395.2 | 61.2 |
Pebax/MCM-41 | 88 | pure gas | 25/2 | 122.5 | 53.0 |
Pebax/GO | 83 | 20/80 | 35/2 | 105.0 | 41.2 |
Pebax/aminosilane-GO | 83 | 20/80 | 35/2 | 166.3 | 45.2 |
Pebax/PEI-ZIF-8 | 1 | 50/50 | 25/1 | 13.0 | 49.0 |
MEEP | 0.1 | 99/1 | 15/1 | 100.0 | 40.0 |
MEEP/CND | 0.1 | 99/1 | 15/1 | 100.0 | 35.0 |
Input Parameters | CO2 (kg) | CH4 (g) | N2O (g) | PM2.5 (mg) | SO2 (g) | Fossil Fuel Depletion (MJ) |
---|---|---|---|---|---|---|
US Mix (electricity) | 0.390 | 0.854 | 0.008 | 24.5 | 0.247 | 5.46 |
Capital equipment | 0.792 | 1.88 | 0.017 | 563.1 | 0.997 | 12 |
Membrane material | 1.55 | 21.4 | 33.6 | 120.8 | 22.1 | 73 |
Impact Category | Global Warming | Respiratory Effects | Acidification Potential | Fossil Fuel Depletion |
---|---|---|---|---|
Unit | kg CO2 eq/kg CO2 avoided | kg PM2.5 eq/kg CO2 avoided | kg SO2 eq/kg CO2 avoided | MJ surplus/kg CO2 avoided |
MEEP only | 4.40 × 10−2 | 5.22 × 10−6 | 5.70 × 10−5 | 0.566 |
MEEP/CN | 4.42 × 10−2 | 5.48 × 10−6 | 5.55 × 10−5 | 0.592 |
Pebax LE | 0.163 | 1.15 × 10−5 | 2.69 × 10−4 | 1.35 |
Pebax HE | 7.53 × 10−2 | 6.10 × 10−6 | 1.19 × 10−4 | 0.698 |
Pebax/ZIF-8 | 8.42 | 4.18 × 10−4 | 1.5 × 10−2 | 55.3 |
Pebax/ZIF-8 (90 nm) | 2.49 | 1.35 × 10−4 | 4.42 × 10−4 | 1.66 |
Pebax/ZIF-9 90 (50) | 1.98 | 1.07 × 10−4 | 3.51 × 10−3 | 13.2 |
Pebax/NH2-ZIF-8 | 6.04 × 10−2 | 5.45 × 10−6 | 9.12 × 10−5 | 0.613 |
Pebax/UiO-66 | 1.04 | 5.77 × 10−5 | 1.85 × 10−3 | 7.1 |
Pebax/NH2-MIL-53 | 3.5 | 1.88 × 10−4 | 6.23 × 10−3 | 23.2 |
Pebax/MoS2 nanosheet | 2.26 | 1.21 × 10−4 | 4.01 × 10−3 | 15.0 |
Pebax/NaY | 2.16 | 1.17 × 10−4 | 3.83 × 10−3 | 14.5 |
Pebax/NOTT300 | 0.531 | 3.04 × 10−5 | 9.30 × 10−4 | 3.71 |
Pebax/MCM-41 | 4.14 | 2.21 × 10−4 | 7.37 × 10−3 | 37.5 |
Pebax/GO | 5.4 | 2.89 × 10−4 | 9.61 × 10−3 | 35.8 |
Pebax/aminosilane-GO | 3.21 | 1.72 × 10−4 | 5.71 × 10−3 | 21.4 |
Pebax/PEI-ZIF-8 | 0.496 | 2.88 × 10−5 | 8.66 × 10−4 | 3.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nilkar, A.S.; Orme, C.J.; Klaehn, J.R.; Zhao, H.; Adhikari, B. Life Cycle Assessment of Innovative Carbon Dioxide Selective Membranes from Low Carbon Emission Sources: A Comparative Study. Membranes 2023, 13, 410. https://doi.org/10.3390/membranes13040410
Nilkar AS, Orme CJ, Klaehn JR, Zhao H, Adhikari B. Life Cycle Assessment of Innovative Carbon Dioxide Selective Membranes from Low Carbon Emission Sources: A Comparative Study. Membranes. 2023; 13(4):410. https://doi.org/10.3390/membranes13040410
Chicago/Turabian StyleNilkar, Amit S., Christopher J. Orme, John R. Klaehn, Haiyan Zhao, and Birendra Adhikari. 2023. "Life Cycle Assessment of Innovative Carbon Dioxide Selective Membranes from Low Carbon Emission Sources: A Comparative Study" Membranes 13, no. 4: 410. https://doi.org/10.3390/membranes13040410
APA StyleNilkar, A. S., Orme, C. J., Klaehn, J. R., Zhao, H., & Adhikari, B. (2023). Life Cycle Assessment of Innovative Carbon Dioxide Selective Membranes from Low Carbon Emission Sources: A Comparative Study. Membranes, 13(4), 410. https://doi.org/10.3390/membranes13040410