A Simplified Kinetic Modeling of CO2 Absorption into Water and Monoethanolamine Solution in Hollow-Fiber Membrane Contactors
Abstract
:1. Introduction
2. Kinetic Modeling
2.1. Determination of Overall Mass-Transfer Coefficient
2.2. Model Development
3. Materials and Methods
3.1. Materials
3.2. Absorption Experiments
4. Results and Discussion
4.1. Effect of Fluid Velocity on KL without Absorbent Recycling
4.2. Effect of Operation Parameters on CO2 Removal with Absorbent Recycling
4.3. Validity of the Proposed Kinetic Model
4.4. Determination of Effective Fiber Length
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Symbols
AT = effective contact area (m2) |
C = concentration of components (mol m−3) |
C0 = initial CO2 concentration in gas phase (mol m−3) |
H = Henry’s law constant of CO2 (m3 Pa mol−1) |
JA = flux of CO2 (mol m−2 s−1) |
KL = overall mass-transfer coefficient based on liquid phase (m s−1) |
k-1 = first-order rate constant for the reverse reaction defined in Equation (8) (m3 mol−1 s−1) |
k2 = second-order rate constant for the forward reaction defined in Equation (8) (m3 mol−1 s−1) |
k2,MEA = second-order rate constant defined in Equation (8) (m3 mol−1 s−1) |
kB = second-order rate constant for base B defined in Equation (9) (m3 mol−1 s−1) |
kw = kB when B is water (m3 mol−1 s−1) |
kMEA = kB when B is MEA (m3 mol−1 s−1) |
L = fiber length (mm) |
Leff = effective fiber length for CO2 absorption (mm) |
Nz = the number of grids in the computational domain in the axial direction |
QL = volumetric flow rate of liquid phase (m3 s−1) |
rA = rate of reaction between CO2 and MEA defined in Equation (10) (mol m−3 s−1) |
RA = overall rate of CO2 absorption (mol s−1) |
R = gas constant (=8.314 J mol−1 K−1) |
SD = standard deviation defined in Equation (13) (%) |
ug = linear flow velocity of gas phase (m s−1) |
uL = linear flow velocity of liquid phase (m s−1) |
Vshell = volume of shell side (m−3) |
z = axial direction of the fiber (m) |
Subscripts |
A = CO2 gas |
B = base (amine, H2O, etc.) |
g = CO2 in gas phase |
in = inlet |
L = CO2 in liquid phase |
lm = logarithm mean |
out = outlet |
w = water |
References
- Desideri, U.; Paolucci, A. Performance modeling of a carbon dioxide removal system for power plants. Energy Convers. Manag. 1999, 40, 1899–1915. [Google Scholar] [CrossRef]
- Scholes, C.A.; Kentish, S.E.; Stevens, G.W.; de Montigny, D. Comparison of thin film composite and microporous membrane contactors for CO2 absorption into monoethanolamine. Int. J. Greenhouse Gas Control 2015, 42, 66–74. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Kim, K.; Lee, J.; Koh, D.Y.; Bae, T.H. CO2 absorption using membrane contactors: Recent progress and future perspective. Ind. Eng. Chem. Res. 2019, 59, 6773–6794. [Google Scholar] [CrossRef]
- Rangwala, H.A. Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors. J. Membr. Sci. 1996, 112, 229–240. [Google Scholar] [CrossRef]
- Gabelman, A.; Hwang, S.T. Hollow fiber membrane contactors. J. Membr. Sci. 1999, 159, 61–106. [Google Scholar] [CrossRef]
- Li, J.L.; Chen, B.H. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep. Purif. Technol. 2005, 41, 109–122. [Google Scholar] [CrossRef]
- Mansourizadeh, A.; Ismail, A.F. Hollow fiber gas-liquid membrane contactors for acid gas capture: A review. J. Hazard. Mater. 2009, 171, 38–53. [Google Scholar] [CrossRef]
- Hoff, K.A.; Svendsen, H.F. Membrane contactors for CO2 absorption–Application, modeling and mass transfer effects. Chem. Eng. Sci. 2014, 116, 331–341. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, Y.; Zhang, L.; Chen, Y.; Ran, J.; Pu, G.; Qin, C. Theoretical study on CO2 absorption from biogas by membrane contactors: Effect of operating parameters. Ind. Eng. Chem. Res. 2014, 53, 14075–14083. [Google Scholar] [CrossRef]
- Li, M.H.; Lie, Y.C. Densities and viscosities of solutions monoethanolamine + N-methyldiethanolamine + water and monoethanolamine + 2-amino-2-methyl-1-propanol + water. J. Chem. Eng. Data 1994, 39, 444–447. [Google Scholar] [CrossRef]
- Versteeg, G.F.; van Swaaij, W.P.M. Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions. J. Chem. Eng. Data 1988, 33, 29–34. [Google Scholar] [CrossRef]
- Song, J.H.; Park, S.B.; Yoon, J.H.; Lee, H. Densities and viscosities of monoethanolamine + ethylene glycol + water. J. Chem. Eng. Data 1996, 41, 1152–1154. [Google Scholar] [CrossRef]
- Liao, C.H.; Li, M.H. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + N-methyldiethanolamine. Chem. Eng. Sci. 2002, 57, 4569–4582. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y.W.; Otto, F.D.; Mather, A.E. Kinetics of the reaction of CO2 with 2-amino-2-methyl-1-propanol solutions. Chem. Eng. Sci. 1996, 51, 841–850. [Google Scholar] [CrossRef]
- Yeon, S.H.; Sea, B.; Park, Y.I.; Lee, K.H. Determination of mass transfer rates in PVDF and PTFE hollow fiber membranes for CO2 absorptions. Sep. Sci. Technol. 2003, 38, 271–293. [Google Scholar] [CrossRef]
- Wang, R.; Li, D.F.; Liang, D.T. Modeling of CO2 capture by three typical amine solutions in hollow fiber membrane contactors. Chem. Eng. Process. 2004, 43, 849–856. [Google Scholar] [CrossRef]
- Yeon, S.H.; Sea, B.; Park, Y.I.; Lee, K.S.; Lee, K.H. Adsorption of carbon dioxide characterized by using the absorbent composed of piperazine and triethanolamine. Sep. Sci. Technol. 2004, 39, 3281–3300. [Google Scholar] [CrossRef]
- Kim, Y.S.; Yang, S.M. Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents. Sep. Purif. Technol. 2000, 21, 101–109. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, H.Y.; Feron, P.H.M.; Liang, D.T. Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Sep. Sci. Technol. 2005, 46, 33–40. [Google Scholar] [CrossRef]
- Mavroudi, M.; Kaldis, S.P.; Sakellaropoulos, G.P. Reduction of CO2 emission by a membrane contacting process. Fuel 2003, 82, 2153–2159. [Google Scholar] [CrossRef]
- Chun, M.S.; Lee, K.H. Analysis on a hydrophobic hollow fiber membrane absorber and experimental observations of CO2 removal by enhanced absorption. Sep. Sci. Technol. 1997, 32, 2445–2466. [Google Scholar] [CrossRef]
- Li, K.; Teo, W.K. Use of permeation and absorption method for removal in hollow fiber membrane modules. Sep. Purif. Technol. 1998, 13, 79–88. [Google Scholar] [CrossRef]
- Astarita, G. Carbon dioxide absorption in aqueous monoethanolamine solutions. Chem. Eng. Sci. 1961, 16, 202–207. [Google Scholar] [CrossRef]
- Barth, D.; Tondre, C.; Delpuech, J.J. Stopped-flow investigations of the reaction kinetics of carbon dioxide with some primary and secondary alkanolamines in aqueous solutions. Int. J. Chem. Kinetics 1986, 18, 445–457. [Google Scholar] [CrossRef]
- Paul, S.; Ghoshal, A.K.; Mandal, B. Removal of CO2 by single and blended aqueous alkanolamine solvents in hollow-fiber membrane contactor: Modeling and simulation. Ind. Eng. Chem. Res. 2007, 46, 2576–2588. [Google Scholar] [CrossRef]
- Al-Marzouqi, M.H.; El-Naas, M.H.; Marzouk, S.A.M.; Al-Zarooni, M.A.; Abdullatif, N.; Faiz, R. Modeling of chemical absorption of CO2 in membrane contactors. Sep. Purif. Technol. 2008, 59, 286–293. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Wang, R.; Liang, D.T.; Tay, J.H. Modeling and experimental study of CO2 absorption in a hollow fiber membrane contactor. J. Membr. Sci. 2006, 279, 301–310. [Google Scholar] [CrossRef]
- Penttila, A.; Dell’Era, C.; Uusi-Kyyny, P.; Alopaeus, V. The Henry’s law constant of N2O and CO2 in aqueous binary and ternary amine solutions (MEA, DEA, DIPA, MDEA, and AMP). Fluid Phase Equil. 2011, 311, 59–66. [Google Scholar] [CrossRef]
- Li, L.; Maeder, M.; Burns, R.; Puxty, G.; Clifford, S.; Yu, H. The Henry coefficient of CO2 in the MEA-CO2-H2O system. Energy Procedia 2017, 114, 1841–1847. [Google Scholar] [CrossRef]
- Happel, L. Viscous flow relative to arrays of cylinders. AIChE J. 1959, 5, 174–177. [Google Scholar] [CrossRef]
- Versteeg, G.F.; Swaaij, W.P.M. On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solution I. Primary and secondary amines. Chem. Eng. J. 1988, 43, 573–585. [Google Scholar] [CrossRef]
- Blauwhoff, P.M.M.; Versteeg, G.F.; van Swaaij, W.P.M. A study on the reaction between CO2 and alkanolamines in aqueous solutions. Chem. Eng. Sci. 1984, 39, 207–225. [Google Scholar] [CrossRef]
- Barth, D.; Tondre, C.; Delpuech, J.J. Kinetics and mechanisms of the reactions of carbon dioxide with alkanolamines: A discussion concerning the cases of MDEA and DEA. Chem. Eng. Sci. 1984, 39, 1753–1760. [Google Scholar] [CrossRef]
- Danckwerts, P.V. The reaction of CO2 with ethanolamines. Chem. Eng. Sci. 1979, 34, 443–446. [Google Scholar] [CrossRef]
Description | Extra-Flow 2.5 × 8 Module | Extra-Flow 4 × 28 Module |
---|---|---|
Shell material | Polypropylene | Polypropylene |
Shell length (mm) | 203 | 704 |
Shell outer diameter (mm) | 77 | 127 |
Shell inner diameter (mm) | 63 | 111 |
Shell hydraulic diameter (mm) | 4.7 | -- |
Fiber material | Celgard X-50 polypropylene | Celgard X-50 polypropylene |
Number of fibers | ~10,200 | -- |
Fiber length, L (mm) | 190 | 620 |
Fiber inner diameter (μm) | 220 | 220 |
Fiber outer diameter (μm) | 300 | 300 |
Fiber membrane surface area, AT (m2) | 1.4 | 20 |
Fiber membrane pore size (μm) | 0.04 | 0.04 |
Fiber membrane porosity | 0.4 | 0.4 |
Effective area/volume (cm2 cm−3) | 25.5 | 36.4 |
uL (m s−1) | ug = 0.041 m s−1 | ug = 0.062 m s−1 | ug = 0.124 m s−1 | ||||||
---|---|---|---|---|---|---|---|---|---|
0.005 M | 0.01 M | 0.1 M | 0.005 M | 0.01 M | 0.1 M | 0.005 M | 0.01 M | 0.1 M | |
7.96 × 10−3 | 192.3 | 189.3 | 5.0 | 232.0 | 228.2 | 8.3 | 257.4 | 252.0 | 29.4 |
1.10 × 10−2 | 153.9 | 146.9 | 2.6 | 196.3 | 193.4 | 4.0 | 241.8 | 238.2 | 12.0 |
1.59 × 10−2 | 146.1 | 135.8 | 2.1 | 184.0 | 180.5 | 3.0 | 229.4 | 225.6 | 8.2 |
2.00 × 10−2 | 141.9 | 126.6 | 1.8 | 177.8 | 174.9 | 2.4 | 225.0 | 221.9 | 6.1 |
uL (m s−1) | ug = 0.041 m s−1 | ug = 0.062 m s−1 | ug = 0.124 m s−1 | |||
---|---|---|---|---|---|---|
0.005 M | 0.1 M | 0.005 M | 0.1 M | 0.005 M | 0.1 M | |
7.96 × 10−3 | 54.6 | 1.3 | 58.4 | 6.2 | 64.7 | 9.1 |
1.10 × 10−2 | 43.7 | 0.7 | 48.8 | 1.2 | 61.0 | 3.1 |
1.59 × 10−2 | 41.8 | 0.6 | 45.2 | 1.2 | 57.7 | 2.1 |
2.00 × 10−2 | 41.0 | 0.5 | 43.5 | 1.2 | 56.6 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, M.L.; Nguyen, C.H.; Chu, K.-Y.; Juang, R.-S. A Simplified Kinetic Modeling of CO2 Absorption into Water and Monoethanolamine Solution in Hollow-Fiber Membrane Contactors. Membranes 2023, 13, 494. https://doi.org/10.3390/membranes13050494
Tran ML, Nguyen CH, Chu K-Y, Juang R-S. A Simplified Kinetic Modeling of CO2 Absorption into Water and Monoethanolamine Solution in Hollow-Fiber Membrane Contactors. Membranes. 2023; 13(5):494. https://doi.org/10.3390/membranes13050494
Chicago/Turabian StyleTran, Mai Lien, Chi Hieu Nguyen, Kuan-Yan Chu, and Ruey-Shin Juang. 2023. "A Simplified Kinetic Modeling of CO2 Absorption into Water and Monoethanolamine Solution in Hollow-Fiber Membrane Contactors" Membranes 13, no. 5: 494. https://doi.org/10.3390/membranes13050494
APA StyleTran, M. L., Nguyen, C. H., Chu, K. -Y., & Juang, R. -S. (2023). A Simplified Kinetic Modeling of CO2 Absorption into Water and Monoethanolamine Solution in Hollow-Fiber Membrane Contactors. Membranes, 13(5), 494. https://doi.org/10.3390/membranes13050494