Eco-Friendly Electroless Template Synthesis of Cu-Based Composite Track-Etched Membranes for Sorption Removal of Lead(II) Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composite TeMs Electroless Synthesis
2.3. Characterization of PET Template and Composites
2.4. Batch Absorption Experiments
3. Results and Discussions
3.1. Eco-Friendly Template Synthesis of Copper Microtubules (MTs)
3.1.1. Glyoxylic Acid
3.1.2. DMAB
3.1.3. Ascorbic Acid and Formaldehyde
3.2. Pb(II) Sorption by Composite TeMs
3.3. Study of the Sorption Kinetics
3.4. Study of the Sorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TeM | track-etched membrane |
CTeMs | composite track-etched membrane |
PET | polyethylene terephthalate |
AFM | atomic force microscopy |
XRD | X-ray diffraction |
Cu_CHOH@PET | composite membrane synthesized using formaldehyde as a reducing agent |
Cu_Asc@PET | composite membrane synthesized using ascorbic acid as a reducing agent |
Cu_DMAB@PET | composite membrane synthesized using a dimethylamine borane as a reducing agent |
Cu_Gly@PET | composite membrane synthesized using glyoxylic acid as a reducing agent |
MT | microtube |
SEM | scanning electron microscopy |
Qe | amount of Pb(II) adsorbed by the unit mass of copper (mg/g) |
C0 | feed Pb(II) concentration (mg/L) |
Ce | concentration of Pb(II) in aliquots (mg/L) |
DC | degree of crystallinity (%) |
L | average crystallite size (nm) |
adsorption capacity at time (mg/g) | |
initial rate of the adsorption process, mg/g×min | |
desorption constant (g·mmol−1) | |
Ra | roughness of the composite (nm) |
b | constant related to the energy of adsorption (i.e., Langmuir constant (L/µg)) |
Ce | equilibrium concentration of adsorbate (mg/L) |
maximum monolayer coverage capacity (mg/g) | |
Freundlich isotherm constant related to the adsorption capacity (µg/g) | |
adsorption capacity of the Dubinin–Radushkevich monolayer (µg/g) | |
constant associated with the free energy of sorption (mol2/kJ2) | |
free energy of adsorption (kJ/mol) |
References
- Panhwar, A.; Faryal, K.; Kandhro, A.; Bhutto, S.; Rashid, U.; Jalbani, N.; Sultana, R.; Solangi, A.; Ahmed, M.; Qaisar, S.; et al. Utilization of Treated Industrial Wastewater and Accumulation of Heavy Metals in Soil and Okra Vegetable. Environ. Chall. 2022, 6, 100447. [Google Scholar] [CrossRef]
- Kesari, K.K.; Soni, R.; Jamal, Q.M.S.; Tripathi, P.; Lal, J.A.; Jha, N.K.; Siddiqui, M.H.; Kumar, P.; Tripathi, V.; Ruokolainen, J. Wastewater Treatment and Reuse: A Review of Its Applications and Health Implications. Water Air Soil Pollut. 2021, 232, 208. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Yin, J.; Lin, H.; Shi, J.; Lin, Z.; Bao, J.; Wang, Y.; Lin, X.; Qin, Y.; Qiu, X.; Zhang, W. Lead-Carbon Batteries toward Future Energy Storage: From Mechanism and Materials to Applications. Electrochem. Energy Rev. 2022, 5, 2. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology; Springer International Publishing: Cham, Switzerland, 2012; pp. 133–164. [Google Scholar]
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of Lead: A Review with Recent Updates. Interdiscip. Toxicol. 2012, 5, 47–58. [Google Scholar] [CrossRef]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of Lead (Pb) and Its Effects on Human: A Review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Rezaei, M.; Pourang, N.; Moradi, A.M. Removal of Lead from Aqueous Solutions Using Three Biosorbents of Aquatic Origin with the Emphasis on the Affective Factors. Sci. Rep. 2022, 12, 751. [Google Scholar] [CrossRef]
- Yadav, M.; Singh, G.; Jadeja, R.N. Physical and Chemical Methods for Heavy Metal Removal. In Pollutants and Water Management; Singh, P., Ed.; John Wiley & Sons Ltd.: New York, NY, USA, 2021; pp. 377–397. [Google Scholar]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of Heavy Metal Ions from Wastewater: A Comprehensive and Critical Review. Npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Chowdhury, I.R.; Chowdhury, S.; Mazumder, M.A.J.; Al-Ahmed, A. Removal of Lead Ions (Pb2+) from Water and Wastewater: A Review on the Low-Cost Adsorbents; Springer International Publishing: Cham, Switzerland, 2022; Volume 12, ISBN 0123456789. [Google Scholar]
- Birniwa, A.H.; Kehili, S.; Ali, M.; Musa, H.; Ali, U.; Kutty, S.R.M.; Jagaba, A.H.; Abdullahi, S.S.; Tag-Eldin, E.M.; Mahmud, H.N.M.E. Polymer-Based Nano-Adsorbent for the Removal of Lead Ions: Kinetics Studies and Optimization by Response Surface Methodology. Separations 2022, 9, 356. [Google Scholar] [CrossRef]
- Esmaeili Bidhendi, M.; Parandi, E.; Mahmoudi Meymand, M.; Sereshti, H.; Rashidi Nodeh, H.; Joo, S.-W.; Vasseghian, Y.; Mahmoudi Khatir, N.; Rezania, S. Removal of Lead Ions from Wastewater Using Magnesium Sulfide Nanoparticles Caged Alginate Microbeads. Environ. Res. 2023, 216, 114416. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, S.; Shan, Y.; Qian, X.; Yang, Y.; Wang, J. Highly Effective Lead Ion Adsorption by Manganese-Dioxide-Supported Core-Shell Structured Magnetite. Front. Environ. Sci. 2022, 10, 925205. [Google Scholar] [CrossRef]
- Hassan, P.B.; Rasheed, R.O.; Zargoosh, K. Cadmium and Lead Removal from Aqueous Solution Using Magnetite Nanoparticles Biofabricated from Portulaca Oleracea Leaf Extract. J. Nanomater. 2022, 2022, 1024554. [Google Scholar] [CrossRef]
- Muench, F. Electroless Plating of Metal Nanomaterials. ChemElectroChem 2021, 8, 2993–3012. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Mashentseva, A.A.; Korolkov, I.V.; Gorin, Y.G.; Kozlovskiy, A.L.; Zdorovets, M.V. Copper Nanotube Composite Membrane as a Catalyst in Mannich Reaction. Chem. Pap. 2018, 72, 3189–3194. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Aimanova, N.A.; Parmanbek, N.; Altynbaeva, L.S.; Nurpeisova, D.T. Application of the Cu@PET Composite Track-Etched Membranes for Catalytic Removal of Cr(VI) Ions. Bull. Karaganda Univ. Chem. Ser. 2022, 107, 227–238. [Google Scholar] [CrossRef]
- Mashentseva, A.A. Effect of the Oxidative Modification and Activation of Templates Based on Poly(Ethylene Terephthalate) Track-Etched Membranes on the Electroless Deposition of Copper and the Catalytic Properties of Composite Membranes. Pet. Chem. 2019, 59, 1337–1344. [Google Scholar] [CrossRef]
- Russakova, A.V.; Altynbaeva, L.S.; Barsbay, M.; Zheltov, D.A.; Zdorovets, M.V.; Mashentseva, A.A. Kinetic and Isotherm Study of as(Iii) Removal from Aqueous Solution by Pet Track-Etched Membranes Loaded with Copper Microtubes. Membranes 2021, 11, 116. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Barsbay, M.; Zdorovets, M.V.; Zheltov, D.A.; Güven, O. Cu/CuO Composite Track-Etched Membranes for Catalytic Decomposition of Nitrophenols and Removal of As(III). Nanomaterials 2020, 10, 1552. [Google Scholar] [CrossRef] [PubMed]
- Parmanbek, N.; Sütekin, D.S.; Barsbay, M.; Mashentseva, A.A.; Zheltov, D.A.; Aimanova, N.A.; Jakupova, Z.Y.; Zdorovets, M.V. Hybrid PET Track-Etched Membranes Grafted by Well-Defined Poly(2-(Dimethylamino)Ethyl Methacrylate) Brushes and Loaded with Silver Nanoparticles for the Removal of As(III). Polymers 2022, 14, 4026. [Google Scholar] [CrossRef] [PubMed]
- Subasi, N.T. Formaldehyde Advantages and Disadvantages: Usage Areas and Harmful Effects on Human Beings. In Biochemical Toxicology—Heavy Metals and Nanomaterials; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Zhang, B. Amorphous and Nano Alloys Electroless Depositions; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780128026854. [Google Scholar]
- Altynbaeva, L.S.; Mendibaeva, A.Z.; Aimanova, N.A.; Nurmakhan, A.E.; Dzhakupova, Z.E.; Tuleuov, B.I.; Mashentseva, A.A. Kinetic and Thermodynamic Characteristics of the Potassium Hexationoferrate (III) Decomposition Catalytic Reaction in the Presence of Composite Track-Etched Membranes. NNC RK Bull. 2021, 1, 15–24. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Kozlovskiy, A.L.; Zdorovets, M. V Influence of Deposition Temperature on the Structure and Catalytic Properties of the Copper Nanotubes Composite Membranes. Mater. Res. Express 2018, 5, 065041. [Google Scholar] [CrossRef]
- Honma, H. Electroless Copper Deposition Process Using Glyoxylic Acid as a Reducing Agent. J. Electrochem. Soc. 1994, 141, 730. [Google Scholar] [CrossRef]
- Valenzuela, K.; Raghavan, S.; Deymier, P.A.; Hoying, J. Formation of Copper Nanowires by Electroless Deposition Using Microtubules as Templates. J. Nanosci. Nanotechnol. 2008, 8, 3416–3421. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, S.; Dryfe, R. Electroless Copper Plating Using Dimethylamine Borane as Reductant. Particuology 2012, 10, 487–491. [Google Scholar] [CrossRef]
- Mashentseva, A.; Borgekov, D.; Zdorovets, M.; Russakova, A. Synthesis, Structure, and Catalytic Activity of Au/Poly(Ethylene Terephthalate) Composites. Acta Phys. Pol. A 2014, 125, 1263–1266. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Barsbay, M.; Aimanova, N.A.; Zdorovets, M. V Application of Silver-Loaded Composite Track-Etched Membranes for Photocatalytic Decomposition of Methylene Blue under Visible Light. Membranes 2021, 11, 60. [Google Scholar] [CrossRef]
- Agrawal, S.; Singh, N.B. Removal of Arsenic from Aqueous Solution by an Adsorbent Nickel Ferrite-Polyaniline Nanocomposite. Indian J. Chem. Technol. 2016, 23, 374–383. [Google Scholar]
- Qin, W.; Guo, R. Metallization of Polyester Fabric by Autocatalytic Copper Plating Process Using Glyoxylic Acid as a Reducing Agent. Fibers Polym. 2015, 16, 1671–1675. [Google Scholar] [CrossRef]
- Sudagar, J.; Tamilarasan, R.; Sanjith, U.; Rajendran, R.; Kumar, R. Electroless Deposition of Nanolayered Metallic Coatings. In Nanoscaled Films and Layers; InTech: Singapore, 2017. [Google Scholar]
- Zhang, W.; Ding, D. Electroless Copper Plating on Liquid Crystal Polymer Films Using Dimethylamine Borane as Reducing Agent. J. Chinese Chem. Soc. 2016, 63, 222–228. [Google Scholar] [CrossRef]
- Babu Kalidindi, S.; Sanyal, U.; Jagirdar, B.R. Chemical Synthesis of Metal Nanoparticles Using Amine-Boranes. ChemSusChem 2011, 4, 317–324. [Google Scholar] [CrossRef]
- Altynbaeva, L.S.; Barsbay, M.; Aimanova, N.A.; Jakupova, Z.Y.; Nurpeisova, D.T.; Zdorovets, M.V.; Mashentseva, A.A. A Novel Cu2O/ZnO@PET Composite Membrane for the Photocatalytic Degradation of Carbendazim. Nanomaterials 2022, 12, 1724. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of Highly Stable Dispersions of Nanosized Copper Particles Using L-Ascorbic Acid. Green Chem. 2011, 13, 900. [Google Scholar] [CrossRef]
- Liu, Q.; Yasunami, T.; Kuruda, K.; Okido, M. Preparation of Cu Nanoparticles with Ascorbic Acid by Aqueous Solution Reduction Method. Trans. Nonferrous Met. Soc. China 2012, 22, 2198–2203. [Google Scholar] [CrossRef]
- Bhakya, S.; Muthukrishnan, S.; Sukumaran, M.; Muthukumar, M. Biogenic Synthesis of Silver Nanoparticles and Their Antioxidant and Antibacterial Activity. Appl. Nanosci. 2016, 6, 755–766. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Kozlovskiy, A.L.; Turapbay, K.O.; Temir, A.M.; Seytbaev, A.S.; Zdorovets, M.V. Determination of Optimal Conditions for Electoless Synthesis of Copper Nanotubes in the Polymer Matrix. Russ. J. Gen. Chem. 2018, 88, 1213–1218. [Google Scholar] [CrossRef]
- Yang, X.; Xu, G.; Yu, H. Removal of Lead from Aqueous Solutions by Ferric Activated Sludge-Based Adsorbent Derived from Biological Sludge. Arab. J. Chem. 2019, 12, 4142–4149. [Google Scholar] [CrossRef]
- Badruddoza, A.Z.M.; Shawon, Z.B.Z.; Tay, W.J.D.; Hidajat, K.; Uddin, M.S. Fe3O4/Cyclodextrin Polymer Nanocomposites for Selective Heavy Metals Removal from Industrial Wastewater. Carbohydr. Polym. 2013, 91, 322–332. [Google Scholar] [CrossRef]
- Elaigwu, S.E.; Rocher, V.; Kyriakou, G.; Greenway, G.M. Removal of Pb2+ and Cd2+ from Aqueous Solution Using Chars from Pyrolysis and Microwave-Assisted Hydrothermal Carbonization of Prosopis Africana Shell. J. Ind. Eng. Chem. 2014, 20, 3467–3473. [Google Scholar] [CrossRef]
- Mohan, D.; Kumar, H.; Sarswat, A.; Alexandre-Franco, M.; Pittman, C.U. Cadmium and Lead Remediation Using Magnetic Oak Wood and Oak Bark Fast Pyrolysis Bio-Chars. Chem. Eng. J. 2014, 236, 513–528. [Google Scholar] [CrossRef]
- Villabona-Ortíz, Á.; Figueroa-Lopez, K.J.; Ortega-Toro, R. Kinetics and Adsorption Equilibrium in the Removal of Azo-Anionic Dyes by Modified Cellulose. Sustainability 2022, 14, 3640. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Zdorovets, M.V. Accelerated Electron-Induced Regeneration of the Catalytic Properties of Composite Membranes with Embedded Copper Nanotubes. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 2020, 472, 53–58. [Google Scholar] [CrossRef]
- Radji, S.; Alem, H.; Demoustier-Champagne, S.; Jonas, A.M.; Cuenot, S. Investigation of Thermoresponsive Nano-Confined Polymer Brushes by AFM-Based Force Spectroscopy. Macromol. Chem. Phys. 2012, 213, 580–586. [Google Scholar] [CrossRef]
- Solovieva, A.B.; Timofeeva, V.A.; Erina, N.A.; Vstovsky, G.V.; Krivandin, A.V.; Shatalova, O.V.; Apel’, P.Y.; Mchedlishvili, B.V.; Timashev, S.F. Peculiarities of the Formation of Track-Etched Membranes by the Data of Atomic Force Microscopy and X-Ray Scattering. Colloid J. 2005, 67, 217–226. [Google Scholar] [CrossRef]
- Vazirian, M.M.; Charpentier, T.V.J.; de Oliveira Penna, M.; Neville, A. Surface Inorganic Scale Formation in Oil and Gas Industry: As Adhesion and Deposition Processes. J. Pet. Sci. Eng. 2016, 137, 22–32. [Google Scholar] [CrossRef]
- Plazinski, W.; Rudzinski, W.; Plazinska, A. Theoretical Models of Sorption Kinetics Including a Surface Reaction Mechanism: A Review. Adv. Colloid Interface Sci. 2009, 152, 2–13. [Google Scholar] [CrossRef]
- Sahoo, T.R.; Prelot, B. Adsorption Processes for the Removal of Contaminants from Wastewater. In Nanomaterials for the Detection and Removal of Wastewater Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 161–222. [Google Scholar]
- Largitte, L.; Pasquier, R. A Review of the Kinetics Adsorption Models and Their Application to the Adsorption of Lead by an Activated Carbon. Chem. Eng. Res. Des. 2016, 109, 495–504. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Initial Behavior of Intraparticle Diffusion Model Used in the Description of Adsorption Kinetics. Chem. Eng. J. 2009, 153, 42. [Google Scholar] [CrossRef]
- Manjuladevi, M.; Anitha, R.; Manonmani, S. Kinetic Study on Adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) Ions from Aqueous Solutions Using Activated Carbon Prepared from Cucumis Melo Peel. Appl. Water Sci. 2018, 8, 36. [Google Scholar] [CrossRef]
- Ho, Y.; Ofomaja, A. Pseudo-Second-Order Model for Lead Ion Sorption from Aqueous Solutions onto Palm Kernel Fiber. J. Hazard. Mater. 2006, 129, 137–142. [Google Scholar] [CrossRef]
- Robati, D. Pseudo-Second-Order Kinetic Equations for Modeling Adsorption Systems for Removal of Lead Ions Using Multi-Walled Carbon Nanotube. J. Nanostructure Chem. 2013, 3, 55. [Google Scholar] [CrossRef]
- Saravanakumar, R.; Muthukumaran, K.; Selvaraju, N. Enhanced Pb (II) Ions Removal by Using Magnetic NiO/Biochar Composite. Mater. Res. Express 2019, 6, 105504. [Google Scholar] [CrossRef]
- Chen, C.; Qiu, M. High Efficiency Removal of Pb(ii) in Aqueous Solution by a Biochar-Supported Nanoscale Ferrous Sulfide Composite. RSC Adv. 2021, 11, 953–959. [Google Scholar] [CrossRef]
- Verma, M.; Tyagi, I.; Chandra, R.; Gupta, V.K. Adsorptive Removal of Pb (II) Ions from Aqueous Solution Using CuO Nanoparticles Synthesized by Sputtering Method. J. Mol. Liq. 2017, 225, 936–944. [Google Scholar] [CrossRef]
- Telkhozhayeva, M.; Seilkhanova, G.; Rakhym, A.; Imangaliyeva, A.; Akbayeva, D. Sorption of Lead and Cadmium Ions from Aqueous Solutions Using Modified Zeolite. Chem. Bull. Kazakh Natl. Univ. 2018, 91, 16–22. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef]
- Dutta, P.K.; Ray, A.K.; Sharma, V.K.; Millero, F.J. Adsorption of Arsenate and Arsenite on Titanium Dioxide Suspensions. J. Colloid Interface Sci. 2004, 278, 270–275. [Google Scholar] [CrossRef]
- Mishra, P.C.; Patel, R.K. Removal of Lead and Zinc Ions from Water by Low Cost Adsorbents. J. Hazard. Mater. 2009, 168, 319–325. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Z. Application of Dubinin–Radushkevich Isotherm Model at the Solid/Solution Interface: A Theoretical Analysis. J. Mol. Liq. 2019, 277, 646–648. [Google Scholar] [CrossRef]
- Khan, T.A.; Chaudhry, S.A.; Ali, I. Equilibrium Uptake, Isotherm and Kinetic Studies of Cd(II) Adsorption onto Iron Oxide Activated Red Mud from Aqueous Solution. J. Mol. Liq. 2015, 202, 165–175. [Google Scholar] [CrossRef]
- Fu, P.; Lin, X.; Chen, Z. Porous Fe 0/C Ceramsites for Removal of Aqueous Pb(Ii) Ions: Equilibrium, Long-Term Performance and Mechanism Studies. RSC Adv. 2018, 8, 25445–25455. [Google Scholar] [CrossRef] [PubMed]
- Anitha, T.; Kumar, P.S.; Kumar, K.S.; Ramkumar, B.; Ramalingam, S. Adsorptive Removal of Pb(II) Ions from Polluted Water by Newly Synthesized Chitosan–Polyacrylonitrile Blend: Equilibrium, Kinetic, Mechanism and Thermodynamic Approach. Process Saf. Environ. Prot. 2015, 98, 187–197. [Google Scholar] [CrossRef]
- Raul, P.K.; Senapati, S.; Sahoo, A.K.; Umlong, I.M.; Devi, R.R.; Thakur, A.J.; Veer, V. CuO Nanorods: A Potential and Efficient Adsorbent in Water Purification. RSC Adv. 2014, 4, 40580–40587. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, C.; Lü, T. Removal of Pb (II) Ions from Wastewater by Using Magnetic Nanoparticles. Appl. Sci. 2020, 10, 948. [Google Scholar] [CrossRef]
- Al-Mur, B.A. Green Zinc Oxide (ZnO) Nanoparticle Synthesis Using Mangrove Leaf Extract from Avicenna Marina: Properties and Application for the Removal of Toxic Metal Ions (Cd2+ and Pb2+). Water 2023, 15, 455. [Google Scholar] [CrossRef]
- Sepehri, S.; Kanani, E.; Abdoli, S.; Rajput, V.D.; Minkina, T.; Asgari Lajayer, B. Pb(II) Removal from Aqueous Solutions by Adsorption on Stabilized Zero-Valent Iron Nanoparticles—A Green Approach. Water 2023, 15, 222. [Google Scholar] [CrossRef]
- Maslova, M.V.; Ivanenko, V.I.; Yanicheva, N.Y.; Mudruk, N.V. Comparison of the Sorption Kinetics of Lead(II) and Zinc(II) on Titanium Phosphate Ion-Exchanger. Int. J. Mol. Sci. 2020, 21, 447. [Google Scholar] [CrossRef]
Reducing Agent/Sample Code | Plating Bath Composition | Plating Conditions | Ref. | ||
---|---|---|---|---|---|
pH | T, °C | Plating Time, Min | |||
Glyoxylic acid/ Cu_Gly@PET | CuSO4×5H2O—7.63 g/L; EDTA—10.26 g/L; Sodium lauryl sulfate—4.0 mg/L; Gly—8.14 g/L | pH = 12.65–13.49 (12.0 M KOH) | 70 | 0.25–0.75 | [30] |
Ascorbic acid/ Cu_Asc@PET | CuSO4 × 5H2O—9.6 g/L; CH3COOH—10.0 ml/L; Asc—8.2 g/L | pH = 4.0 (9.0 M KOH) | 25 | 120 | [31] |
Dimethylamine borane/ Cu_DMAB@PET | CuSO4 × 5H2O—10 g/L; EDTA—14 g/L; DMAB—6 g/L | pH = 1.85 (9.0 M KOH) | 26–55 | 15 | [32] |
Formaldehyde/ Cu_CHOH@PET | KNaC4H4O6 × 4H2O—18 g/L; CuSO4 × 5H2O—5 g/L; NaOH—7 g/L, CHOH—0.13 M | pH = 12.45 (H2SO4) | 10 | 40 | [23] |
pH | Deposition Time, s | Cu MTs Wall Thickness, nm | R, mg/cm2 × h | L a, nm | DC b, % | d c Å | Cu Phase Content, % |
---|---|---|---|---|---|---|---|
12.65 | 15 | 18.4 | 1.92 | Amorphous | |||
30 | 20.2 | 13.75 | 46.9 | 3.607 | 100 | ||
60 | 41.6 | 24.7 ± 7 | 47.7 | 3.605 | 100 | ||
13.5 | 15 | 43.3 | 28.8 | 17.97 ± 5.1 | 53.0 | 3.594 | 100 |
30 | 84.6 | 22.61 ± 5.3 | 57.6 | 3.603 | 100 | ||
60 | 103.9 | 24.87 ± 6.9 | 61.7 | 3.613 | 100 |
Deposition Temperature, °C | Phase Content | (hkl) a | 2θ° | d, Å b | L, nm c | FWHM d | Cell Parameter, Å e | DC, % e | Copper MTs Wall Thickness l, nm | Deposition Rate, R, mg/cm2 × h |
---|---|---|---|---|---|---|---|---|---|---|
25 | Cu2O/55.1 | 211 | 53.94 | 1.70 | 7.76 | 1.28 | 4.241 | 53.0 | 11.53 | 0.62 |
220 | 63.12 | 1.47 | 162.49 | 0.06 | ||||||
310 | 71.72 | 1.31 | 242.19 | 0.05 | ||||||
111 | 43.50 | 2.08 | 13.51 | 0.70 | 3.611 | |||||
Cu/44.9 | 200 | 50.79 | 1.80 | 35.33 | 0.28 | |||||
220 | 74.63 | 1.27 | 588.1 | 0.19 | ||||||
311 | 90.27 | 1.09 | 189.51 | 0.07 | ||||||
35 | Cu2O/48.3 | 211 | 36.90 | 2.43 | 113.44 | 0.08 | 4.215 | 60.4 | 23.71 | 0.70 |
220 | 42.95 | 2.10 | 45.22 | 0.21 | ||||||
221 | 53.03 | 1.73 | 50.24 | 0.20 | ||||||
Cu/51.8 | 111 | 43.38 | 2.08 | 126.31 | 0.08 | 3.611 | ||||
200 | 50.41 | 1.81 | 145.28 | 0.07 | ||||||
311 | 90.04 | 1.09 | 82.29 | 0.15 | ||||||
45 | Cu2O/46.6 | 211 | 53.62 | 1.71 | 11.000 | 0.90 | 4.183 | 61.0 | 27.73 | 0.71 |
310 | 71.10 | 1.32 | 66.41 | 0.16 | ||||||
Cu/53.0 | 111 | 43.44 | 2.08 | 25.41 | 0.87 | 3.608 | ||||
220 | 74.23 | 1.28 | 37.46 | 0.30 | ||||||
50 | Cu2O/42.0 | 211 | 53.46 | 1.71 | 8.34 | 1.19 | 4.1980 | 56.3 | 29.39 | 0.73 |
220 | 62.48 | 1.49 | 61.37 | 0.17 | ||||||
221 | 66.71 | 1.40 | 47.78 | 0.22 | ||||||
310 | 70.97 | 1.33 | 62.59 | 0.17 | ||||||
Cu/58.0 | 111 | 43.41 | 2.09 | 163.85 | 0.06 | 3.607 | ||||
200 | 50.64 | 1.80 | 80.41 | 0.12 | ||||||
220 | 74.59 | 1.27 | 148.62 | 0.06 | ||||||
311 | 90.17 | 1.09 | 47.47 | 0.26 | ||||||
55 | Cu2O/37.4 | 211 | 53.64 | 1.71 | 5.57 | 1.78 | 4.205 | 67.0 | 33.80 | 0.78 |
220 | 62.37 | 1.49 | 84.55 | 0.12 | ||||||
221 | 66.61 | 1.40 | 56.54 | 0.19 | ||||||
Cu/62.6 | 111 | 43.49 | 2.08 | 21.7 | 0.44 | 3.598 | ||||
200 | 50.69 | 1.80 | 86.27 | 0.11 |
Kinetic Model | Linearized Equation | Model Parameters | Value | |||
---|---|---|---|---|---|---|
Cu_CHOH @PET | Cu_Asc @PET | Cu_DMAB @PET | Cu_Gly @PET | |||
Experimental data | - | , µg/g | 438.5 | 560.0 | 327.0 | 396.0 |
Pseudo-first-order | , min−1 | 0.01 | 0.009 | 0.009 | 0.009 | |
, µg/g | 926.86 | 726.69 | 252.30 | 511.07 | ||
R2 | 0.88 | 0.89 | 0.98 | 0.90 | ||
Pseudo-second-order | , g/µg × min | 0.09 | 0.14 | 0.55 | 0.23 | |
, µg/g | 588.2 | 666.7 | 357.1 | 454.5 | ||
R2 | 0.99 | 0.99 | 0.99 | 0.99 | ||
Elovich | α, mg/g·min | 5.89 | 18.28 | 1.24 | 7.85 | |
β, mg/min | 0.007 | 0.008 | 0.018 | 0.003 | ||
R2 | 0.99 | 0.98 | 0.94 | 0.99 | ||
Morris–Weber intraparticle diffusion model | + C | , mg/(g × h0.5) | 14.59 | 72.51 | 10.59 | 13.82 |
, mg/g | 197.9 | 487.9 | 100.8 | 76.6 | ||
R2 | 0.97 | 0.92 | 0.76 | 0.97 |
Isotherm Model | Linearized Equation | Model Parameters | Sample | |||
---|---|---|---|---|---|---|
Cu_CHOH @PET | Cu_Asc @PET | Cu_DMAB @PET | Cu_Gly @PET | |||
Langmuir | , µg/g | 77.52 | 212.57 | 204.08 | 91.74 | |
b, l/mg | 52.49 | 979.59 | 1216.94 | 67.19 | ||
R2 | 0.88 | 0.97 | 0.99 | 0.97 | ||
Freindlich | , mg/g | 2.88 | 4.55 | 3.0 | 3.26 | |
1.0 | 1.0 | 1.0 | 1.0 | |||
R2 | 1.0 | 1.0 | 1.0 | 1.0 | ||
Dubinin–Radushkevich | , mol2/kJ2 | 0.004 | 0.001 | 0.001 | 0.007 | |
, mg/g | 112.6 | 274.3 | 145.7 | 78.3 | ||
, kJ/mol | 11.18 | 28.87 | 22.36 | 8.39 | ||
R2 | 0.84 | 0.92 | 0.93 | 0.88 |
Adsorbent | Sorption Conditions | Qe, mg/g | Ref. | |||
---|---|---|---|---|---|---|
Initial Concentration of Adsorbate, ppm | Volume of Aliquote, mL | Amount of Adsorbent Utilized, mg | pH | |||
Chitosan/PAN composite | 10.0 | 100.0 | 2000 | 5.0 | 20.08 | [71] |
CuO nanorods | 1000.0 | 100.0 | 1000 | 8.5 | 3.31 | [72] |
Magnetic Fe3O4 NPs, modified with PEI | 50.0 | 1000 | 1000 | 5.0 | 33.65 | [73] |
CuO NPs | 1000 | 100.0 | 2000 | 6.0 | 37.03 | [63] |
ZnO NPs | 10.0 | 25.0 | 20.0 | 6.0 | 22.29 | [74] |
Stabilized zero-valent iron NPs | 50.0 | 10.0 | 100 | 6.0 | 140.8 | [75] |
TiO(OH)H2PO4 × 2H2O | 10.0 | 300.0 | 1000 | 4.1 | 0.55 | [76] |
Cu_CHOH@PET | 50.0 | 15.0 | 5.2 | 5.0 | 0.44 | This study |
Cu_Asc@PET | 50.0 | 15.0 | 3.3 | 5.0 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altynbaeva, L.S.; Mashentseva, A.A.; Aimanova, N.A.; Zheltov, D.A.; Shlimas, D.I.; Nurpeisova, D.T.; Barsbay, M.; Abuova, F.U.; Zdorovets, M.V. Eco-Friendly Electroless Template Synthesis of Cu-Based Composite Track-Etched Membranes for Sorption Removal of Lead(II) Ions. Membranes 2023, 13, 495. https://doi.org/10.3390/membranes13050495
Altynbaeva LS, Mashentseva AA, Aimanova NA, Zheltov DA, Shlimas DI, Nurpeisova DT, Barsbay M, Abuova FU, Zdorovets MV. Eco-Friendly Electroless Template Synthesis of Cu-Based Composite Track-Etched Membranes for Sorption Removal of Lead(II) Ions. Membranes. 2023; 13(5):495. https://doi.org/10.3390/membranes13050495
Chicago/Turabian StyleAltynbaeva, Liliya Sh., Anastassiya A. Mashentseva, Nurgulim A. Aimanova, Dmitriy A. Zheltov, Dmitriy I. Shlimas, Dinara T. Nurpeisova, Murat Barsbay, Fatima U. Abuova, and Maxim V. Zdorovets. 2023. "Eco-Friendly Electroless Template Synthesis of Cu-Based Composite Track-Etched Membranes for Sorption Removal of Lead(II) Ions" Membranes 13, no. 5: 495. https://doi.org/10.3390/membranes13050495
APA StyleAltynbaeva, L. S., Mashentseva, A. A., Aimanova, N. A., Zheltov, D. A., Shlimas, D. I., Nurpeisova, D. T., Barsbay, M., Abuova, F. U., & Zdorovets, M. V. (2023). Eco-Friendly Electroless Template Synthesis of Cu-Based Composite Track-Etched Membranes for Sorption Removal of Lead(II) Ions. Membranes, 13(5), 495. https://doi.org/10.3390/membranes13050495