Preparation and Lithium-Ion Separation Property of ZIF-8 Membrane with Excellent Flexibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Modification of MPPM
2.3. Construction of ZIF-8 Membrane
2.4. Characterization
2.5. Ion Separation Performance Test
3. Results and Discussion
3.1. Construction of ZIF-8/MPPM
3.2. Characterization of ZIF-8/MPPM
3.3. ZIF-8/MPPM Ion Separation Performance
3.4. Bending Performance of ZIF-8/MPPM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Yang, H.; Wang, Y.; Sha, Z. Review on the electrochemical extraction of lithium from seawater/brine. J. Electroanal. Chem. 2019, 850, 113389. [Google Scholar] [CrossRef]
- Shi, C.; Jing, Y.; Xiao, J.; Wang, X.; Yao, Y.; Jia, Y. Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents. Sep. Purif. Technol. 2017, 172, 473–479. [Google Scholar] [CrossRef]
- Wang, H.; Cui, J.; Li, M.; Guo, Y.; Deng, T.; Yu, X. Selective recovery of lithium from geothermal water by EGDE cross-linked spherical CTS/LMO. Chem. Eng. J. 2020, 389, 124410. [Google Scholar] [CrossRef]
- Zhang, C.; Mu, Y.; Zhao, S.; Zhang, W.; Wang, Y. Lithium extraction from synthetic brine with high Mg2+/Li+ ratio using the polymer inclusion membrane. Desalination 2020, 496, 114710. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; Xiong, J.; He, L.; Zhao, Z.; Wang, D. Selective recovery of lithium and iron phosphate/carbon from spent lithium iron phosphate cathode material by anionic membrane slurry electrolysis. Waste Manag. 2020, 107, 1–8. [Google Scholar] [CrossRef]
- Nie, X.-Y.; Sun, S.-Y.; Song, X.; Yu, J.-G. Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis. J. Membr. Sci. 2017, 530, 185–191. [Google Scholar] [CrossRef]
- Zhao, W.-Y.; Zhou, M.; Yan, B.; Sun, X.; Liu, Y.; Wang, Y.; Xu, T.; Zhang, Y. Waste conversion and resource recovery from wastewater by ion exchange membranes: State-of-the-Art and Perspective. Ind. Eng. Chem. Res. 2018, 57, 6025–6039. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, Z.; He, L. Highly selective lithium recovery from high Mg/Li ratio brines. Desalination 2020, 474, 114185. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, L.; Nagasawa, H.; Kanezashi, M.; Tsuru, T. Tuning the microstructure of polycarbosilane-derived SiC(O) separation membranes via thermal-oxidative cross-linking. Sep. Purif. Technol. 2020, 248, 117067. [Google Scholar] [CrossRef]
- Nightingale, E.R., Jr. Phenomenological theory of ion solvation. effective radii of hydrated ions. J. Phys. Chem. 1959, 63, 1381–1387. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, H.; Luo, H.; Zhang, Q.; Liu, Z.; Zhao, Q. High performance Mg2+/Li+ separation membranes modified by a bis-quaternary ammonium salt. Desalination 2022, 526, 115519. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, H.; Thornton, A.W.; Hill, A.J.; Wang, H.; Konstas, K. Lithium extraction by emerging metal–organic framework-based membranes. Adv. Funct. Mater. 2021, 31, 2105991. [Google Scholar] [CrossRef]
- Cheng, Y.D.; Datta, S.J.; Zhou, S.; Jia, J.T.; Shekhah, O.; Eddaoudi, M. Advances in metal-organic framework-based membranes. Chem. Soc. Rev. 2022, 51, 8300–8350. [Google Scholar]
- Zhang, C.; Mu, Y.; Zhang, W.; Zhao, S.; Wang, Y. PVC-based hybrid membranes containing metal-organic frameworks for Li+/Mg2+ separation. J. Membr. Sci. 2020, 596, 117724. [Google Scholar] [CrossRef]
- Xu, T.; Sheng, F.; Wu, B.; Shehzad, M.A.; Yasmin, A.; Wang, X.; He, Y.; Ge, L.; Zheng, X.; Xu, T. Ti-exchanged UiO-66-NH2–containing polyamide membranes with remarkable cation permselectivity. J. Membr. Sci. 2020, 615, 118608. [Google Scholar] [CrossRef]
- Xu, T.; Shehzad, M.A.; Yu, D.; Li, Q.; Wu, B.; Ren, X.; Ge, L.; Xu, T. Highly cation permselective metal–organic framework membranes with leaf-like morphology. ChemSusChem 2019, 12, 2593–2597. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ying, Y.; Mao, Y.; Peng, X.; Chen, B. Polystyrene sulfonate threaded through a metal–organic framework membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. 2016, 55, 15120–15124. [Google Scholar] [CrossRef]
- Razmjou, A.; Asadnia, M.; Hosseini, E.; Habibnejad Korayem, A.; Chen, V. Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nat. Commun. 2019, 10, 5793. [Google Scholar] [CrossRef]
- Abdul Hamid, M.R.; Park, S.; Kim, J.S.; Lee, Y.M.; Jeong, H.-K. In situ formation of zeolitic-imidazolate framework thin films and composites using modified polymer substrates. J. Mater. Chem. A 2019, 7, 9680–9689. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, J.; Hu, Y.; Wang, P.; Ou, R.; Jiang, L.; Liu, J.Z.; Freeman, B.D.; Hill, A.J.; Wang, H. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 2018, 4, eaaq0066. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Sun, Y.; Yin, J.; Sun, H.; Wu, H.; Wang, H.; Zhang, Y.; Feng, X.; Meng, J. A MOF membrane with ultrathin ZIF-8 layer bonded on ZIF-8 in-situ embedded PSf substrate. J. Taiwan Inst. Chem. Eng. 2019, 104, 273–283. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Wei, L.; Meng, B.; Tan, X.; Jin, W.; Liu, S. A simple seed-embedded method to prepare ZIF-8 membranes supported on flexible PESf hollow fibers. J. Ind. Eng. Chem. 2019, 72, 222–231. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, Y.; Lyu, L.; Hou, Q.; Caro, J.; Wang, H. Flexible polypropylene-supported ZIF-8 membranes for highly efficient propene/propane separation. J. Am. Chem. Soc. 2020, 142, 20915–20919. [Google Scholar] [CrossRef]
- Lu, Z.; Wei, Y.; Deng, J.; Ding, L.; Li, Z.-K.; Wang, H. Self-Crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano 2019, 13, 10535–10544. [Google Scholar] [CrossRef]
- Ding, L.; Li, L.; Liu, Y.; Wu, Y.; Lu, Z.; Deng, J.; Wei, Y.; Caro, J.; Wang, H. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 2020, 3, 296–302. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, Y.; Zuo, P.; Dong, Y.; Yang, Z.; Xu, T. An isoporous ion exchange membrane for selective Na+ transport. J. Membr. Sci. 2022, 659, 120805. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, H.C.; Liang, H.Q.; Wan, L.S.; Xu, Z.K. Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking. J. Membr. Sci. 2015, 476, 50–58. [Google Scholar] [CrossRef]
- Modi, A.; Jiang, Z.; Kasher, R. Hydrostable ZIF-8 layer on polyacrylonitrile membrane for efficient treatment of oilfield produced water. Chem. Eng. J. 2022, 434, 133513. [Google Scholar] [CrossRef]
- He, M.; Zhang, Y.; Wang, Y.; Wang, X.; Li, Y.; Hu, N.; Wu, T.; Zhang, F.; Dai, Z.; Chen, X.; et al. High hydrogen permeable ZIF-8 membranes on double modified substrates. Sep. Purif. Technol. 2021, 275, 119109. [Google Scholar] [CrossRef]
- Dangwal, S.; Ronte, A.; Lin, H.; Liu, R.; Zhu, J.; Lee, J.S.; Gappa-Fahlenkamp, H.; Kim, S.-J. ZIF-8 membranes supported on silicalite-seeded substrates for propylene/propane separation. J. Membr. Sci. 2021, 626, 119165. [Google Scholar] [CrossRef]
- Xu, T.; Wu, B.; Hou, L.; Zhu, Y.; Sheng, F.; Zhao, Z.; Dong, Y.; Liu, J.; Ye, B.; Li, X.; et al. Highly ion-permselective porous organic cage membranes with hierarchical channels. J. Am. Chem. Soc. 2022, 144, 10220–10229. [Google Scholar] [CrossRef] [PubMed]
- Epsztein, R.; DuChanois, R.M.; Ritt, C.L.; Noy, A.; Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 2020, 15, 426–436. [Google Scholar] [CrossRef]
- Xu, R.; Kang, Y.; Zhang, W.; Zhang, X.; Pan, B. Oriented UiO-67 metal–organic framework membrane with fast and selective lithium-ion transport. Angew. Chem. Int. Ed. 2022, 61, e202115443. [Google Scholar]
- Mohammad, M.; Lisiecki, M.; Liang, K.; Razmjou, A.; Chen, V. Metal-Phenolic network and metal-organic framework composite membrane for lithium ion extraction. Appl. Mater. Today 2020, 21, 100884. [Google Scholar] [CrossRef]
- Qi, C.; Li, J.; Shi, Y.; Zhang, B.; Chen, T.; Wang, C.; Liu, Q.; Yang, X. ZIF-8 penetrating composite membrane for ion sieving. J. Solid State Chem. 2022, 313, 123281. [Google Scholar] [CrossRef]
- Xu, T.; Shehzad, M.A.; Wang, X.; Wu, B.; Ge, L.; Xu, T. Engineering leaf-like UiO-66-SO3H membranes for selective transport of cations. Nano-Micro Lett. 2020, 12, 51. [Google Scholar] [CrossRef]
- Sheng, F.; Wu, B.; Li, X.; Xu, T.; Shehzad, M.A.; Wang, X.; Ge, L.; Wang, H.; Xu, T. Efficient ion sieving in covalent organic framework membranes with Sub-2-Nanometer channels. Adv. Mater. 2021, 33, 2104404. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Chai, M.; Abdollahzadeh, M.; Ahmadi, H.; Chen, V.; Gore, D.B.; Asadnia, M.; Razmjou, A. A lithium ion selective membrane synthesized from a double layered Zrbased metalorganic framework (MOF-on-MOF) thin film. Desalination 2022, 532, 115733. [Google Scholar] [CrossRef]
- Deng, J.; Lu, Z.; Ding, L.; Li, Z.-K.; Wei, Y.; Caro, J.; Wang, H. Fast electrophoretic preparation of large-area two-dimensional titanium carbide membranes for ion sieving. Chem. Eng. J. 2021, 408, 127806. [Google Scholar] [CrossRef]
- Abraham, J.; Vasu, K.S.; Williams, C.D.; Gopinadhan, K.; Su, Y.; Cherian, C.T.; Dix, J.; Prestat, E.; Haigh, S.J.; Grigorieva, I.V.; et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 2017, 12, 546–550. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, L.; Wang, J.; Wang, F.; Tian, M.; Zheng, S.; Shao, N.; Wang, L.; He, M. Precisely tunable ion sieving with an Al13–Ti3C2Tx lamellar membrane by controlling interlayer spacing. ACS Nano 2020, 14, 15306–15316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, P.; Li, P.; Ji, Y.; Liu, G.; Jin, W. Designing biomimic two-dimensional ionic transport channels for efficient ion sieving. ACS Nano 2021, 15, 5209–5220. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhou, C.; Wang, J.; Liu, H.; Xu, Y.; Seo, J.W.; Shen, J.; Gao, C.; Van der Bruggen, B. Formation of morphologically confined nanospaces via self-assembly of graphene and nanospheres for selective separation of lithium. J. Mater. Chem. A 2018, 6, 18859–18864. [Google Scholar] [CrossRef]
- Xi, Y.-H.; Liu, Z.; Ji, J.; Wang, Y.; Faraj, Y.; Zhu, Y.; Xie, R.; Ju, X.-J.; Wang, W.; Lu, X.; et al. Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions. J. Membr. Sci. 2018, 550, 208–218. [Google Scholar] [CrossRef]
- Li, Z.-Q.; Wu, M.-Y.; Ding, X.-L.; Wu, Z.-Q.; Xia, X.-H. Reversible electrochemical tuning of ion sieving in coordination polymers. Anal. Chem. 2020, 92, 9172–9178. [Google Scholar] [CrossRef]
- Xin, W.; Lin, C.; Fu, L.; Kong, X.-Y.; Yang, L.; Qian, Y.; Zhu, C.; Zhang, Q.; Jiang, L.; Wen, L. Nacre-like mechanically robust heterojunction for lithium-ion extraction. Matter 2021, 4, 737–754. [Google Scholar] [CrossRef]
Membrane | Ion Permeation Flux Li+ (mol m−2 h−1) | Selectivity | Reference | |
---|---|---|---|---|
Li+/Na+ | Li+/Mg2+ | |||
ZIF-8-0.6@PVC | - | 1.34 | 2.02 | [14] |
HSO3-UiO-66@PVC | 8.84 × 10−3 | - | 4.78 | [14] |
PSS@HKUST-1 | 6.75 | 35 | 1815 | [17] |
ZIF-8/GO/AAO | - | 1.37 | - | [20] |
MXene | 2 × 10−3 | - | 3.07 | [25] |
UiO-67 | 27.01 | 2.02 | 159.4 | [33] |
TA-FeIII/ZIF-8 | - | ~0.97 | 3.87 | [34] |
ZIF-8-Epoxy | - | - | 6.1 | [35] |
UiO-66-SO3H | 7.56 × 10−2 | - | 19 | [36] |
TpBDMe2 | 5.53 × 10−2 | 0.32 | 217 | [37] |
UiO-66-(COOH)/UiO-66-NH2 | - | - | 90.8 | [38] |
MXene | 0.01 | - | 2.0 | [39] |
PCGO | 5 × 10−3 | 1.19 | 500 | [40] |
Al13-Ti3C2Tx | 0.01 | - | 2.5 | [41] |
Sulfonated-GO | 1.3 | - | 8.46 | [42] |
rGO@SAPS-1 | 0.06 | - | 3.8 | [43] |
FRGO | 0.015 | - | 12 | [44] |
Prussian white | 0.18 | - | 8.57 | [45] |
IGM | 1.02 | 2.52 | 8.07 | [46] |
ZIF-8/MPPM | 0.151 | 1.96 | 11.50 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Fan, R.; Xiang, S.; Hu, J.; Zheng, X. Preparation and Lithium-Ion Separation Property of ZIF-8 Membrane with Excellent Flexibility. Membranes 2023, 13, 500. https://doi.org/10.3390/membranes13050500
Zhao J, Fan R, Xiang S, Hu J, Zheng X. Preparation and Lithium-Ion Separation Property of ZIF-8 Membrane with Excellent Flexibility. Membranes. 2023; 13(5):500. https://doi.org/10.3390/membranes13050500
Chicago/Turabian StyleZhao, Jun, Rongyu Fan, Shengchang Xiang, Jiapeng Hu, and Ximing Zheng. 2023. "Preparation and Lithium-Ion Separation Property of ZIF-8 Membrane with Excellent Flexibility" Membranes 13, no. 5: 500. https://doi.org/10.3390/membranes13050500
APA StyleZhao, J., Fan, R., Xiang, S., Hu, J., & Zheng, X. (2023). Preparation and Lithium-Ion Separation Property of ZIF-8 Membrane with Excellent Flexibility. Membranes, 13(5), 500. https://doi.org/10.3390/membranes13050500