Electrochemical Oxidation of Organic Pollutants in Aqueous Solution Using a Ti4O7 Particle Anode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Solutions
2.2. Experimental Setup
2.3. Experimental Procedure
2.4. Measurement Procedure
3. Results and Discussion
3.1. Elemental and Phase Analyses of Ti4O7 Granules
3.2. COD of Studied Organics
3.3. Current Mode Optimization
3.4. Pulsed Current Mode
3.5. Influence of the Hydrodynamic Regime
3.6. Anode Degradation
3.7. pH and Conductivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Huitle, C.A.; Panizza, M. Electrochemical Oxidation of Organic Pollutants for Wastewater Treatment. Curr. Opin. Electrochem. 2018, 11, 62–71. [Google Scholar] [CrossRef]
- Ma, P.; Ma, H.; Sabatino, S.; Galia, A.; Scialdone, O. Electrochemical Treatment of Real Wastewater. Part 1: Effluents with Low Conductivity. Chem. Eng. J. 2018, 336, 133–140. [Google Scholar] [CrossRef]
- Zou, J.; Peng, X.; Li, M.; Xiong, Y.; Wang, B.; Dong, F.; Wang, B. Electrochemical Oxidation of COD from Real Textile Wastewaters: Kinetic Study and Energy Consumption. Chemosphere 2017, 171, 332–338. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, P.-S.; Jiang, Y.-X.; Sun, L.; Sun, X.-H. Wastewater Treatment by Anodic Oxidation in Electrochemical Advanced Oxidation Process: Advance in Mechanism, Direct and Indirect Oxidation Detection Methods. Chemosphere 2023, 311, 136993. [Google Scholar] [CrossRef]
- Da Silva, S.W.; Welter, J.B.; Albornoz, L.L.; Heberle, A.N.A.; Ferreira, J.Z.; Bernardes, A.M. Advanced Electrochemical Oxidation Processes in the Treatment of Pharmaceutical Containing Water and Wastewater: A Review. Curr. Pollut. Rep. 2021, 7, 146–159. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, H.; Liang, J.; Yue, L.; Li, T.; Luo, Y.; Liu, Q.; Lu, S.; Asiri, A.M.; Gong, Z.; et al. Anodic Oxidation for the Degradation of Organic Pollutants: Anode Materials, Operating Conditions and Mechanisms. A Mini Review. Electrochem. Commun. 2021, 123, 106912. [Google Scholar] [CrossRef]
- Simond, O.; Schaller, V.; Comninellis, C. Theoretical Model for the Anodic Oxidation of Organics on Metal Oxide Electrodes. Electrochim. Acta 1997, 42, 2009–2012. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. A Critical Review on Latest Innovations and Future Challenges of Electrochemical Technology for the Abatement of Organics in Water. Appl. Catal. B Environ. 2023, 328, 122430. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Direct and Mediated Anodic Oxidation of Organic Pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef]
- Trellu, C.; Chaplin, B.P.; Coetsier, C.; Esmilaire, R.; Cerneaux, S.; Causserand, C.; Cretin, M. Electro-Oxidation of Organic Pollutants by Reactive Electrochemical Membranes. Chemosphere 2018, 208, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Segura, S.; Ocon, J.D.; Chong, M.N. Electrochemical Oxidation Remediation of Real Wastewater Effluents—A Review. Process Saf. Environ. Prot. 2018, 113, 48–67. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Scialdone, O.; Rodrigo, M.A. Electrochemical Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128131602. [Google Scholar]
- Mousset, E.; Oturan, N.; Oturan, M.A. An Unprecedented Route of [Rad]OH Radical Reactivity Evidenced by an Electrocatalytical Process: Ipso-Substitution with Perhalogenocarbon Compounds. Appl. Catal. B Environ. 2018, 226, 135–146. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Oturan, N.; Raffy, S.; Cretin, M.; Causserand, C.; Oturan, M.A. Efficiency of Plasma Elaborated Sub-Stoichiometric Titanium Oxide (Ti4O7) Ceramic Electrode for Advanced Electrochemical Degradation of Paracetamol in Different Electrolyte Media. Sep. Purif. Technol. 2019, 208, 142–152. [Google Scholar] [CrossRef]
- Xie, J.; Ma, J.; Zhang, C.; Kong, X.; Wang, Z.; Waite, T.D. Effect of the Presence of Carbon in Ti4O7 Electrodes on Anodic Oxidation of Contaminants. Environ. Sci. Technol. 2020, 54, 5227–5236. [Google Scholar] [CrossRef]
- Ma, J.; Trellu, C.; Skolotneva, E.; Oturan, N.; Oturan, M.A.; Mareev, S. Investigating the Reactivity of TiOx and BDD Anodes for Electro-Oxidation of Organic Pollutants by Experimental and Modeling Approaches. Electrochim. Acta 2022, 439, 141513. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Ye, J.; Lin, Z.; Yang, X. Electrochemical Oxidation of Methyl Orange by a Magnéli Phase Ti4O7 Anode. Chemosphere 2020, 241, 125084. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Zhuo, Q.; Wang, A.; Liu, J.; Yang, Z.; Niu, J. Efficient Electrochemical Oxidation of COVID-19 Treatment Drugs Favipiravir by a Novel Flow-through Ti/TiO2-NTA/Ti4O7 Anode. Electrochim. Acta 2022, 430, 141055. [Google Scholar] [CrossRef]
- You, S.; Liu, B.; Gao, Y.; Wang, Y.; Tang, C.Y.; Huang, Y.; Ren, N. Monolithic Porous Magnéli-Phase Ti4O7 for Electro-Oxidation Treatment of Industrial Wastewater. Electrochim. Acta 2016, 214, 326–335. [Google Scholar] [CrossRef]
- Lin, H.; Niu, J.; Liang, S.; Wang, C.; Wang, Y.; Jin, F.; Luo, Q.; Huang, Q. Development of Macroporous Magnéli Phase Ti4O7 Ceramic Materials: As an Efficient Anode for Mineralization of Poly- and Perfluoroalkyl Substances. Chem. Eng. J. 2018, 354, 1058–1067. [Google Scholar] [CrossRef]
- Misal, S.N.; Lin, M.H.; Mehraeen, S.; Chaplin, B.P. Modeling Electrochemical Oxidation and Reduction of Sulfamethoxazole Using Electrocatalytic Reactive Electrochemical Membranes. J. Hazard. Mater. 2020, 384, 121420. [Google Scholar] [CrossRef]
- Chen, G.; Betterton, E.A.; Arnold, R.G. Electrolytic Oxidation of Trichloroethylene Using a Ceramic Anode. J. Appl. Electrochem. 1999, 29, 961–970. [Google Scholar] [CrossRef]
- Wei, K.; Cui, T.; Huang, F.; Zhang, Y.; Han, W. Membrane Separation Coupled with Electrochemical Advanced Oxidation Processes for Organic Wastewater Treatment: A Short Review. Membranes 2020, 10, 337. [Google Scholar] [CrossRef]
- Zaky, A.M.; Chaplin, B.P. Mechanism of P-Substituted Phenol Oxidation at a Ti4O7 Reactive Electrochemical Membrane. Environ. Sci. Technol. 2014, 48, 5857–5867. [Google Scholar] [CrossRef]
- Trellu, C.; Coetsier, C.; Rouch, J.-C.; Esmilaire, R.; Rivallin, M.; Cretin, M.; Causserand, C. Mineralization of Organic Pollutants by Anodic Oxidation Using Reactive Electrochemical Membrane Synthesized from Carbothermal Reduction of TiO2. Water Res. 2018, 131, 310–319. [Google Scholar] [CrossRef]
- Skolotneva, E.; Cretin, M.; Mareev, S. A Simple 1d Convection-Diffusion Model of Oxalic Acid Oxidation Using Reactive Electrochemical Membrane. Membranes 2021, 11, 431. [Google Scholar] [CrossRef] [PubMed]
- Mareev, S.; Skolotneva, E.; Cretin, M.; Nikonenko, V. Modeling the Formation of Gas Bubbles inside the Pores of Reactive Electrochemical Membranes in the Process of the Anodic Oxidation of Organic Compounds. Int. J. Mol. Sci. 2021, 22, 5477. [Google Scholar] [CrossRef]
- Ma, J.; Trellu, C.; Oturan, N.; Raffy, S.; Oturan, M.A. Porous Magnéli Phase Obtained from 3d Printing for Efficient Anodic Oxidation Process. SSRN Electron. J. 2022, 456. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Ding, Z.; Min, C.W.; Hui, W.Q. A Study on the Use of Bipolar-Particles-Electrodes in Decolorization of Dyeing Effluents and Its Principle. Water Sci. Technol. 1987, 19, 391–400. [Google Scholar] [CrossRef]
- Li, H.; Yang, H.; Cheng, J.; Hu, C.; Yang, Z.; Wu, C. Three-Dimensional Particle Electrode System Treatment of Organic Wastewater: A General Review Based on Patents. J. Clean. Prod. 2021, 308, 127324. [Google Scholar] [CrossRef]
- Yasri, N.G.; Yaghmour, A.; Gunasekaran, S. Effective Removal of Organics from Corn Wet Milling Steepwater Effluent by Electrochemical Oxidation and Adsorption on 3-D Granulated Graphite Electrode. J. Environ. Chem. Eng. 2015, 3, 930–937. [Google Scholar] [CrossRef]
- Arts, A.; van den Berg, K.P.; de Groot, M.T.; van der Schaaf, J. Electrochemical Oxidation of Benzoic Acid and Its Aromatic Intermediates on Boron Doped Diamond Electrodes. Curr. Res. Green Sustain. Chem. 2021, 4, 100217. [Google Scholar] [CrossRef]
- Zhang, Z.; Yi, G.; Li, P.; Wang, X.; Wang, X.; Zhang, C.; Zhang, Y.; Sun, Q. Electrochemical Oxidation of Hydroquinone Using Eu-Doped PbO2 Electrodes: Electrode Characterization, Influencing Factors and Degradation Pathways. J. Electroanal. Chem. 2021, 895, 115493. [Google Scholar] [CrossRef]
- Panizza, M.; Michaud, P.A.; Cerisola, G.; Comninellis, C. Anodic Oxidation of 2-Naphthol at Boron-Doped Diamond Electrodes. J. Electroanal. Chem. 2001, 507, 206–214. [Google Scholar] [CrossRef]
- Yeom, H.W.; Streaker, C.B.; Howard Zhang, Q.; Min, D.B. Effects of Pulsed Electric Fields on the Quality of Orange Juice and Comparison with Heat Pasteurization. J. Agric. Food Chem. 2000, 48, 4597–4605. [Google Scholar] [CrossRef]
- Chandrasekar, M.S.; Pushpavanam, M. Pulse and Pulse Reverse Plating—Conceptual, Advantages and Applications. Electrochim. Acta 2008, 53, 3313–3322. [Google Scholar] [CrossRef]
- Sistat, P.; Huguet, P.; Ruiz, B.; Pourcelly, G.; Mareev, S.A.; Nikonenko, V.V. Effect of Pulsed Electric Field on Electrodialysis of a NaCl Solution in Sub-Limiting Current Regime. Electrochim. Acta 2015, 164, 267–280. [Google Scholar] [CrossRef]
- Butylskii, D.; Moroz, I.; Tsygurina, K.; Mareev, S. Effect of Surface Inhomogeneity of Ion-Exchange Membranes on the Mass Transfer Efficiency in Pulsed Electric Field Modes. Membranes 2020, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Skolotneva, E.; Trellu, C.; Cretin, M.; Mareev, S. A 2D Convection-Diffusion Model of Anodic Oxidation of Organic Compounds Mediated by Hydroxyl Radicals Using Porous Reactive Electrochemical Membrane. Membranes 2020, 10, 102. [Google Scholar] [CrossRef] [PubMed]
- Enache, D.F.; Popa, G.A.; Vasile, E.; Razvan, A.; Oprea, O.; Voicila, E.; Dumitru, F. Preparation and Characterization of Ultrafiltration TiO2 Nanoparticles-Polysulfone Membranes. Rev. Chim. 2017, 68, 2635–2640. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chem. Rev. 2015, 115, 13362–13407. [Google Scholar] [CrossRef]
No. | Impurities | Mass Content, % |
---|---|---|
2 | SiO2 | <1.30 |
3 | Al2O3 | <0.08 |
4 | K2O | <0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kislyi, A.; Moroz, I.; Guliaeva, V.; Prokhorov, Y.; Klevtsova, A.; Mareev, S. Electrochemical Oxidation of Organic Pollutants in Aqueous Solution Using a Ti4O7 Particle Anode. Membranes 2023, 13, 521. https://doi.org/10.3390/membranes13050521
Kislyi A, Moroz I, Guliaeva V, Prokhorov Y, Klevtsova A, Mareev S. Electrochemical Oxidation of Organic Pollutants in Aqueous Solution Using a Ti4O7 Particle Anode. Membranes. 2023; 13(5):521. https://doi.org/10.3390/membranes13050521
Chicago/Turabian StyleKislyi, Andrey, Ilya Moroz, Vera Guliaeva, Yuri Prokhorov, Anastasiia Klevtsova, and Semyon Mareev. 2023. "Electrochemical Oxidation of Organic Pollutants in Aqueous Solution Using a Ti4O7 Particle Anode" Membranes 13, no. 5: 521. https://doi.org/10.3390/membranes13050521
APA StyleKislyi, A., Moroz, I., Guliaeva, V., Prokhorov, Y., Klevtsova, A., & Mareev, S. (2023). Electrochemical Oxidation of Organic Pollutants in Aqueous Solution Using a Ti4O7 Particle Anode. Membranes, 13(5), 521. https://doi.org/10.3390/membranes13050521