Proton Conducting Organic-Inorganic Composite Membranes for All-Vanadium Redox Flow Battery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
Preparation of Proton-Conducting PVA-Based Composite Membranes
2.3. Characterizations
3. Results and Discussion
VRFB Performance of Surface-Modified PVA-SiO2 Membranes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagarale, R.K.; Gohil, G.S.; Shahi, V.K. Recent developments on ion-exchange membranes and electro-membrane processes. Adv. Colloid Interface Sci. 2006, 119, 97–130. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Wu, L.; He, Y.; Yang, Z.; Wang, Y.; Jiang, C.; Ge, L.; Bakangura, E.; Xu, T. Ion exchange membranes: New developments and applications. J. Membr. Sci. 2017, 522, 267–291. [Google Scholar] [CrossRef]
- Varcoe, J.R.; Atanassov, P.; Dekel, D.R.; Herring, A.M.; Hickner, M.A.; Kohl, P.A.; Kucernak, A.R.; Mustain, W.E.; Nijmeijer, K.; Scott, K.; et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 2014, 7, 3135. [Google Scholar] [CrossRef]
- Hickner, M.A.; Herring, A.M.; Coughlin, E.B. Anion Exchange Membranes: Current Status and Moving Forward. J. Polym. Sci. B Polym. Phys. 2013, 51, 1727–1735. [Google Scholar] [CrossRef]
- Stenina, I.A.; Yaroslavtsev, A.B. Ionic Mobility in Ion-Exchange Membranes. Membranes 2021, 11, 198. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Abdu, S.; Wessling, M. Selectivity of ion exchange membranes: A review. J. Membr. Sci. 2018, 555, 429–454. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Mai, Z.; Zhang, H.; Vankelecom, I. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ. Sci. 2011, 4, 1147. [Google Scholar] [CrossRef]
- Strathmann, H.; Grabowski, A.; Eigenberger, G. Ion-Exchange Membranes in the Chemical Process Industry. Ind. Eng. Chem. Res. 2013, 52, 10364–10379. [Google Scholar] [CrossRef]
- Remiš, T.; Bělský, P.; Andersen, S.M.; Tomáš, M.; Kadlec, J.; Kovářík, T. Preparation and Characterization of Poly(Vinyl Alcohol) (PVA)/SiO2, PVA/Sulfosuccinic Acid (SSA) and PVA/SiO2/SSA Membranes: A Comparative Study. J. Macromol. Sci. B 2020, 59, 157–181. [Google Scholar] [CrossRef]
- Kariduraganavar, M.Y.; Nagarale, R.K.; Kittur, A.A.; Kulkarni, S.S. Ion-exchange membranes: Preparative methods for electrodialysis and fuel cell applications. Desalination 2006, 197, 225–246. [Google Scholar] [CrossRef]
- Peighambardoust, S.J.; Rowshanzamir, S.; Amjadi, M. Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrogen Energy 2010, 35, 9349–9384. [Google Scholar] [CrossRef]
- Weng, G.; Ouyang, K.; Lin, X.; Xue, J.; Wang, H. Proton conducting membranes for hydrogen and ammonia production. React. Chem. Eng. 2021, 6, 1739. [Google Scholar] [CrossRef]
- Bai, H.; Ho, W.S.W. Recent developments in fuel-processing and proton-exchange membranes for fuel cells. Polym. Int. 2011, 60, 26–41. [Google Scholar] [CrossRef]
- Wycisk, R.; Pintauro, P.N.; Park, J.W. New developments in proton conducting membranes for fuel cells. Curr. Opin. Chem. Eng. 2014, 4, 71–78. [Google Scholar] [CrossRef]
- Jannasch, P. Recent developments in high-temperature proton conducting polymer electrolyte membranes. Curr. Opin. Colloid Interface Sci. 2003, 8, 96–102. [Google Scholar] [CrossRef]
- Jiang, S.; Sun, H.; Wang, H.; Ladewig, B.P.; Yao, Z. A comprehensive review on the synthesis and applications of ion exchange membranes. Chemosphere 2021, 282, 130817. [Google Scholar] [CrossRef]
- Xu, T. Ion exchange membranes: State of their development and perspective. J. Membr. Sci. 2005, 263, 1–29. [Google Scholar] [CrossRef]
- Pawar, C.M.; Sreenath, S.; Bhatt, B.; Nikumbe, D.Y.; Saleha, W.F.G.; Nagarale, R.K. Surface modification, counter-ion exchange effect on thermally annealed sulfonated poly (ether ether ketone) membranes for vanadium redox flow battery. Colloids Surf. A Physicochem. Eng. Asp. 2023, 667, 131295. [Google Scholar] [CrossRef]
- Kobuchi, Y.; Motomura, H.; Noma, Y.; Hanada, F. Application of ion exchange membranes to the recovery of acids by diffusion dialysis. J. Membr. Sci. 1986, 27, 173–179. [Google Scholar] [CrossRef]
- Yaroslavtsev, A.B. Perfluorinated Ion-Exchange Membranes. Polym. Sci. Ser. A 2013, 55, 674–698. [Google Scholar] [CrossRef]
- Kusoglu, A.; Weber, A.Z. New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem. Rev. 2017, 117, 987–1104. [Google Scholar] [CrossRef] [PubMed]
- Smitha, B.; Sridhar, S.; Khan, A.A. Solid polymer electrolyte membranes for fuel cell applications-a review. J. Membr. Sci. 2005, 259, 10–26. [Google Scholar] [CrossRef]
- Yee, R.S.L.; Rozendal, R.A.; Zhang, K.; Ladewig, B.P. Cost effective cation exchange membranes: A review. Chem. Eng. Res. Des. 2012, 90, 950–959. [Google Scholar] [CrossRef]
- Hickner, M.A.; Ghassemi, H.; Kim, Y.S.; Einsla, B.R.; McGrath, J.E. Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chem. Rev. 2004, 104, 4587–4612. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-S.; Choi, Y.-J.; Choi, I.-J.; Yoon, T.-H.; Moon, S.-H. Electrochemical characterization of sulfonated poly(arylene ether sulfone) (S-PES) cation-exchange membranes. J. Membr. Sci. 2003, 216, 39–53. [Google Scholar] [CrossRef]
- Pagels, M.K.; Adhikari, S.; Walgama, R.C.; Singh, A.; Han, J.; Shin, D.; Bae, C. One-Pot Synthesis of Proton Exchange Membranes from Anion Exchange Membrane Precursors. ACS Macro Lett. 2020, 9, 1489–1493. [Google Scholar] [CrossRef]
- Prajapati, P.K.; Reddy, N.N.; Nimiwal, R.; Singh, P.S.; Adimurthy, S.; Nagarale, R.K. Polyaniline@porous polypropylene for efficient separation of acid by diffusion dialysis. Sep. Purif. Technol. 2020, 233, 115989. [Google Scholar] [CrossRef]
- Aparicio, G.M.; Vargas, R.A.; Bueno, P.R. Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes. J. Non Cryst. Solids 2019, 522, 119520. [Google Scholar] [CrossRef]
- Jin, Y.; Diniz da Costa, J.C.; Lu, G.Q. Proton conductive composite membrane of phosphisilicate and polyvinyl alcohol. Solid State Ion. 2007, 178, 937–942. [Google Scholar] [CrossRef]
- Nagarale, R.K.; Shahi, V.K.; Rangarajan, R. Preparation of polyvinyl alcohol–silica hybrid heterogeneous anion-exchange membranes by sol–gel method and their characterization. J. Membr. Sci. 2005, 248, 37–44. [Google Scholar] [CrossRef]
- Binsu, V.V.; Nagarale, R.K.; Shahi, V.K. Phosphonic acid functionalized aminopropyl triethoxysilane-PVA composite material: Organic–inorganic hybrid proton-exchange membranes in aqueous media. J. Mater. Chem. 2005, 15, 4823–4831. [Google Scholar] [CrossRef]
- Kamjornsupamitr, T.; Sangthumchai, T.; Youngme, S.; Martwiset, S. Proton conducting composite membranes from crosslinked poly(vinyl alcohol) and poly(styrene sulfonic acid)-functionalized silica nanoparticles. Int. J. Hydrogen Energy 2018, 43, 11190–11201. [Google Scholar] [CrossRef]
- Sgreccia, E.; Narducci, R.; Knauth, P.; Luisa Di Vona, M. Silica Containing Composite Anion Exchange Membranes by Sol–Gel Synthesis: A Short Review. Polymers 2021, 13, 1874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, M.; Yan, H.; Pan, G.; Xu, J.; Shi, Y.; Liu, Y. Novel organic–inorganic hybrid composite membranes for nanofiltration of acid and alkaline media. RSC Adv. 2014, 4, 57522. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Wang, J.; Wang, L. Preparation and characterization of a sol-gel derived silica/PVA-Py hybrid anion exchange membranes for alkaline fuel cell application. J. Electroanal. Chem. 2020, 873, 114342. [Google Scholar] [CrossRef]
- Dodda, J.M.; Bělský, P.; Chmelar, J.; Remis, T.; Smolna, K.; Tomáš, M.; Kullova, L.; Kadlec, J. Comparative study of PVA/SiO2 and PVA/SiO2/glutaraldehyde (GA) nanocomposite membranes prepared by single-step solution casting method. J. Mater. Sci. 2015, 50, 6477–6490. [Google Scholar] [CrossRef]
- Nagarale, R.K.; Gohil, G.S.; Shahi, V.K.; Rangarajan, R. Organic-Inorganic Hybrid Membrane: Thermally Stable Cation-Exchange Membrane Prepared by the Sol-Gel Method. Macromolecules 2004, 37, 10023–10030. [Google Scholar] [CrossRef]
- Panero, S.; Fiorenza, P.; Navarra, M.A.; Romanowska, J.; Scrosati, B. Silica-Added, Composite Poly(vinyl alcohol) Membranes for Fuel Cell Application. J. Electrochem. Soc. 2005, 152, A2400–A2405. [Google Scholar] [CrossRef]
- Beydaghi, H.; Javanbakht, M.; Badiei, A. Cross-linked poly(vinyl alcohol)/sulfonated nanoporous silica hybrid membranes for proton exchange membrane fuel cell. J. Nanostruct. Chem. 2014, 4, 97. [Google Scholar] [CrossRef]
- Nagarale, R.K.; Shin, W.; Singh, P.K. Progress in ionic organic-inorganic composite membranes for fuel cell applications. Polym. Chem. 2010, 1, 388–408. [Google Scholar] [CrossRef]
- Hegde, S.N.; Manuvalli, B.B.; Kariduraganavar, M.Y. A Unique Approach for the Development of Hybrid Membranes by Incorporating Functionalized Nanosilica into Crosslinked sPVA/TEOS for Fuel Cell Applications. ACS Appl. Energy Mater. 2022, 5, 9823–9829. [Google Scholar] [CrossRef]
- Panawong, C.; Tasari, S.; Saejueng, P.; Budsombat, S. Composite proton conducting membranes from crosslinked poly(vinyl alcohol)/chitosan and silica particles containing poly(2-acrylamido-2-methyl-1-propansulfonic acid). J. Appl. Polym. Sci. 2022, 139, 51989. [Google Scholar] [CrossRef]
- Beydaghi, H.; Javanbakht, M.; Amoli, H.S.; Badiei, A.; Khaniani, Y.; Ganjali, M.R.; Norouzi, P.; Abdouss, M. Synthesis and characterization of new proton conducting hybrid membranes for PEM fuel cells based on poly(vinyl alcohol) and nanoporous silica containing phenyl sulfonic acid. Int. J. Hydrogen Energy 2011, 36, 13310–13316. [Google Scholar] [CrossRef]
- Murmu, R.; Roy, D.; Patra, S.C.; Sutar, H.; Senapati, P. Preparation and characterization of the SPEEK/PVA/Silica hybrid membrane for direct methanol fuel cell (DMFC). Polym. Bull. 2022, 79, 2061–2087. [Google Scholar] [CrossRef]
- Nagarale, R.K.; Gohil, G.S.; Shahi, V.K.; Rangarajan, R. Preparation of organic–inorganic composite anion-exchange membranes via aqueous dispersion polymerization and their characterization. J. Colloid Interface Sci. 2005, 287, 198–206. [Google Scholar] [CrossRef]
- Ying, Y.P.; Kamarudin, S.K.; Masdar, M.S. Silica-related membranes in fuel cell applications: An overview. Int. J. Hydrogen Energy 2018, 43, 16068–16084. [Google Scholar] [CrossRef]
- Guo, R.; Ma, X.; Hu, C.; Jiang, Z. Novel PVA-silica nanocomposite membrane for pervaporative dehydration of ethylene glycol aqueous solution. Polymer 2007, 48, 2939–2945. [Google Scholar] [CrossRef]
- Sreenath, S.; Sharma, N.K.; Nagarale, R.K. Alkaline all iron redox flow battery with a polyethylene/poly(styrene-co-divinylbenzene) interpolymer cation-exchange membrane. RSC Adv. 2020, 10, 44824. [Google Scholar] [CrossRef]
- Sreenath, S.; Pawar, C.M.; Bavdane, P.; Nikumbe, D.Y.; Nagarale, R.K. A sulfonated polyethylene–styrene cation exchange membrane: A potential separator material in vanadium redox flow battery applications. Energy Adv. 2022, 1, 87. [Google Scholar] [CrossRef]
- Cao, L.; Kronander, A.; Tang, A.; Wang, D.-W.; Skyllas-Kazacos, M. Membrane Permeability Rates of Vanadium Ions and Their Effects on Temperature Variation in Vanadium Redox Batteries. Energies 2016, 9, 1058. [Google Scholar] [CrossRef]
- Binsu, V.V.; Nagarale, R.K.; Shahi, V.K.; Ghosh, P.K. Studies on N-methylene phosphonic chitosan/poly(vinyl alcohol) composite proton-exchange membrane. React. Funct. Polym. 2006, 66, 1619–1629. [Google Scholar] [CrossRef]
- Nasef, M.M.; Fujigaya, T.; Abouzari-Lotf, E.; Nakashima, N.; Yang, Z. Enhancement of performance of pyridine modified polybenzimidazole fuel cell membranes using zirconium oxide nanoclusters and optimized phosphoric acid doping level. Int. J. Hydrogen Energy 2016, 41, 6842–6854. [Google Scholar] [CrossRef]
- Vianna de Aguiar, L.C.; Gomes de Ramos Filho, F.; Dahmouche, K.; Perez, G.; Archanjo, B.S.; Kawaguti, C.A.; Gomes, A.D.-S. SPEEK-Tin dioxide proton conducting membranes: Effect of modifying agent of tin dioxide particles surface. J. Appl. Polym. Sci. 2020, 137, e49507. [Google Scholar] [CrossRef]
- Peng, Z.; Kong, L.X. A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym. Degrad. Stab. 2007, 92, 1061–1071. [Google Scholar] [CrossRef]
- Kima, D.S.; Park, H.B.; Rhim, J.W.; Lee, Y.M. Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J. Membr. Sci. 2004, 240, 37–48. [Google Scholar] [CrossRef]
- Rawat, R.K.; Chauhan, P. A novel approach to achieve the tin (II) oxide based proton conductive sensor for ammonia detection at room temperature. Mater. Lett. 2021, 285, 129049. [Google Scholar] [CrossRef]
- Hara, S.; Takano, S.; Miyayama, M. Proton-Conducting Properties and Microstructure of Hydrated Tin Dioxide and Hydrated Zirconia. J. Phys. Chem. B 2004, 108, 5634–5639. [Google Scholar] [CrossRef]
- Hara, S.; Sakamoto, H.; Miyayama, M.; Kudo, T. Proton-conducting properties of hydrated tin dioxide as an electrolyte for fuel cells at intermediate temperature. Solid State Ion. 2002, 154–155, 679–685. [Google Scholar] [CrossRef]
- Marrero, J.C.; Gomes, A.D.-S.; Hui, W.S.; Filho, J.C.D.; Silva de Oliveira, V. Sulfonation degree effect on ion-conducting SPEEK-titanium oxide membranes properties. Polímeros 2017, 27, 189–194. [Google Scholar] [CrossRef]
- D’Epifanio, A.; Mecheri, B.; Passarini, G.; Traversa, E.; Miyayama, M.; Licoccia, S. Proton Conducting Composite Membranes from Polyether Ether Ketone and Hydrated Metal Oxides. ECS Trans. 2006, 3, 151–156. [Google Scholar] [CrossRef]
- Mecheri, B.; D’Epifanio, A.; Pisani, L.; Chen, F.; Traversa, E.; Weise, F.C.; Greenbaum, S.; Licoccia, S. Effect of a Proton Conducting Filler on the Physico-Chemical Properties of SPEEK Based Membranes. Fuel Cells 2009, 9, 372–380. [Google Scholar] [CrossRef]
- Chen, F.; Mecheri, B.; D’Epifanio, A.; Traversa, E.; Licoccia, S. Development of Nafion/TinOxide Composite MEA for DMFC Applications. Fuel Cells 2010, 10, 790–797. [Google Scholar] [CrossRef]
- Kumar, G.G.; Shin, J.; Nho, Y.-C.; Hwang, I.S.; Fei, G.; Kim, A.R.; Nahm, K.S. Irradiated PVdF-HFP–tin oxide composite membranes for the applications of direct methanol fuel cells. J. Membr. Sci. 2010, 350, 92–100. [Google Scholar] [CrossRef]
- Sreenath, S.; Nayanthara, P.S.; Pawar, C.M.; Nikumbe, D.Y.; Bhatt, B.; Chaudhari, J.C.; Nagarale, R.K. High-Capacity Retention Thermally Reinforced Pore-Filled Anion Exchange Membrane for All-Vanadium Flow Batteries. ACS Appl. Energy Mater. 2022, 5, 13661–13671. [Google Scholar] [CrossRef]
- Dzyaz’ko, Y.S.; Belyakov, V.N.; Stefanyak, N.V.; Vasilyuk, S.L. Anion-Exchange Properties of Composite Ceramic Membranes Containing Hydrated Zirconium Dioxide. Russ. J. Appl. Chem. 2006, 79, 769–773. [Google Scholar] [CrossRef]
- Vijayakumar, M.; Bhuvaneswari, M.S.; Nachimuthu, P.; Schwenzer, B.; Kim, S.; Yang, Z.; Liu, J.; Graff, G.L.; Thevuthasan, S.; Hu, J. Spectroscopic investigations of the fouling process on Nafion membranes in vanadium redox flow batteries. J. Membr. Sci. 2011, 366, 325–334. [Google Scholar] [CrossRef]
- Strehlow, H.; Wendt, H. Fast ionic reactions in solution. IV. The formation of the vanadyl sulfate complex in aqueous solution. Inorg. Chem. 1963, 2, 6–10. [Google Scholar] [CrossRef]
- Sreenath, S.; Nayanthara, P.S.; Pawar, C.M.; Noufal, M.C.; Nagarale, R.K. Phenolic triamine dangling poly(VDF-co-HFP) anion exchange membrane for all aqueous organic redox flow battery. J. Energy Storage 2021, 40, 102689. [Google Scholar] [CrossRef]
- Bavdane, P.P.; Sreenath, S.; Nikumbe, D.Y.; Pawar, C.M.; Kuzhiyil, M.C.; Nagarale, R.K. N-Sulfonated Poly(arylene-oxindole) for Vanadium Redox Flow Battery Applications. ACS Appl. Energy Mater. 2022, 5, 13189–13199. [Google Scholar] [CrossRef]
- Chen, Y.; Li, A.; Xiong, P.; Xiao, S.; Sheng, Z.; Peng, S.; He, Q. Three birds with one stone: Microphase separation induced by densely grafted short chains in ion conducting membranes. J. Membr. Sci. 2022, 664, 121119. [Google Scholar] [CrossRef]
- Zhai, S.; Jia, X.; Lu, Z.; Ai, Y.; Liu, X.; Lin, J.; He, S.; Wang, Q.; Chen, L. Highly ion selective composite proton exchange membranes for vanadium redox flow batteries by the incorporation of UiO-66-NH2 threaded with ion conducting polymers. J. Membr. Sci. 2022, 662, 121003. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Zhang, S.; Huang, X. Sulfonated polyimide/s-MoS2 composite membrane with high proton selectivity and good stability for vanadium redox flow battery. J. Membr. Sci. 2015, 490, 179–189. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, B.; Wang, Y. Effects of covalent bond interactions on properties of polyimide grafting sulfonated polyvinyl alcohol proton exchange membrane for vanadium redox flow battery applications. J. Power Sources 2019, 433, 126680. [Google Scholar] [CrossRef]
- Sharma, J.; Khan, H.; Upadhyay, P.; Kothandaraman, R.; Kulshrestha, V. Stable Poly(2,6-dimethyl-1,4-phenylene ether) Based Cross-Linked Cationic Polyelectrolyte Membrane with Ionic Microstructure Modification for Efficient VRFB Performance. ACS Appl. Energy Mater. 2023, 6, 447–460. [Google Scholar] [CrossRef]
- Wei, L.; Zhao, T.S.; Zhao, G.; An, L.; Zeng, L. A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries. Appl. Energy 2016, 176, 74–79. [Google Scholar] [CrossRef]
- Wei, L.; Xiong, C.; Jiang, H.R.; Fan, X.Z.; Zhao, T.S. Highly catalytic hollow Ti3C2Tx MXene spheres decorated graphite felt electrode for vanadium redox flow batteries. Energy Storage Mater. 2020, 25, 885–892. [Google Scholar] [CrossRef]
Membranes | V3+ Diffusion Coefficient (cm2 s−1) | VO2+ Diffusion Coefficient (cm2 s−1) |
---|---|---|
PVA-SiO2-Si | 2.34 × 10−7 | 1.50 × 10−7 |
PVA-SiO2-Zr | 3.86 × 10−8 | 6.45 × 10−8 |
PVA-SiO2-Sn | 1.47 × 10−7 | 1.09 × 10−7 |
Nafion-117 | 8.60 × 10−7 | 1.04 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sreenath, S.; Sreelatha, N.P.; Pawar, C.M.; Dave, V.; Bhatt, B.; Borle, N.G.; Nagarale, R.K. Proton Conducting Organic-Inorganic Composite Membranes for All-Vanadium Redox Flow Battery. Membranes 2023, 13, 574. https://doi.org/10.3390/membranes13060574
Sreenath S, Sreelatha NP, Pawar CM, Dave V, Bhatt B, Borle NG, Nagarale RK. Proton Conducting Organic-Inorganic Composite Membranes for All-Vanadium Redox Flow Battery. Membranes. 2023; 13(6):574. https://doi.org/10.3390/membranes13060574
Chicago/Turabian StyleSreenath, Sooraj, Nayanthara P. Sreelatha, Chetan M. Pawar, Vidhiben Dave, Bhavana Bhatt, Nitin G. Borle, and Rajaram Krishna Nagarale. 2023. "Proton Conducting Organic-Inorganic Composite Membranes for All-Vanadium Redox Flow Battery" Membranes 13, no. 6: 574. https://doi.org/10.3390/membranes13060574
APA StyleSreenath, S., Sreelatha, N. P., Pawar, C. M., Dave, V., Bhatt, B., Borle, N. G., & Nagarale, R. K. (2023). Proton Conducting Organic-Inorganic Composite Membranes for All-Vanadium Redox Flow Battery. Membranes, 13(6), 574. https://doi.org/10.3390/membranes13060574