Pore-Scale Modeling of Liquid Water Transport in Compressed Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Considering Fiber Anisotropy
Abstract
:1. Introduction
2. Multi-Phase LB Model
3. Two-Dimensional Reconstruction of GDL and Computational Domain
4. Results and Discussion
4.1. Effect of Fiber Anisotropy on Liquid Water Transport within the Uncompressed GDL
4.2. Effect of Fiber Anisotropy and Compression on Liquid Water Transport within the GDL
5. Conclusions
- (1)
- For uncompressed GDLs with different anisotropy, GDLs with β = 0.1 and 1 decrease the liquid water saturation compared to GDLs with parallel layers. Carbon fibers angled to the in-plane direction facilitate the formation of the main flow path of liquid water.
- (2)
- Compression leads to structural deformation of the GDL under the rib, the lateral flow of liquid water within the GDL under the rib is prevented, and the liquid film in the GC disappears.
- (3)
- Compression has little effect on the water saturation within the GDL at β = 0.1. In contrast, liquid water saturation within GDLs with β = 1, 10, and 100 decreases with increasing compression ratio.
- (4)
- GDLs with different anisotropy have different sensitivities to compression, with the lowest liquid water saturation being the GDL with β = 0.1 when uncompressed, and the GDL with β = 1 at a compression ratio of 40%.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, D.; Tan, Y.; Li, B.; Ming, P.; Xiao, Q.; Zhang, C. A Review of the Transition Region of Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells: Design, Degradation, and Mitigation. Membranes 2022, 12, 306. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E.J.F.; Smith, G. Modelling the Proton-Conductive Membrane in Practical Polymer Electrolyte Membrane Fuel Cell (PEMFC) Simulation: A Review. Membranes 2020, 10, 310. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Li, B.; Xing, S.; Zhao, C.; Wang, H. Experimental Investigation on the Anode Flow Field Design for an Air-Cooled Open-Cathode Proton Exchange Membrane Fuel Cell. Membranes 2022, 12, 1069. [Google Scholar] [CrossRef]
- González-Castaño, C.; Lorente-Leyva, L.L.; Alpala, J.; Revelo-Fuelagán, J.; Peluffo-Ordóñez, D.H.; Restrepo, C. Dynamic Modeling of a Proton-Exchange Membrane Fuel Cell Using a Gaussian Approach. Membranes 2021, 11, 953. [Google Scholar] [CrossRef]
- Yang, W.; Zhu, L.; Wang, S.; Yin, Z.; Xiao, L.; Shao, Q.; Jung, J.C.-Y.; Sui, P.-C. Investigation of fabrication of gas diffusion substrate for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2022, 47, 35423–35436. [Google Scholar] [CrossRef]
- Xiao, L.; Bian, M.; Zhu, L.; Duan, K.; Leng, W.; Zeis, R.; Sui, P.-C.; Zhang, H. High-density and low-density gas diffusion layers for proton exchange membrane fuel cells: Comparison of mechanical and transport properties. Int. J. Hydrog. Energy 2022, 47, 22532–22544. [Google Scholar] [CrossRef]
- Xiao, L.; Bian, M.; Yin, Z.; Wen, X.; Zhao, C.; Sui, P.-C.; Yuan, J.; Zhang, H. Combined effects of microstructural characteristics on anisotropic transport properties of gas diffusion layers for PEMFCs. Int. J. Hydrog. Energy 2022, 47, 37978–37989. [Google Scholar] [CrossRef]
- Joibary, S.M.; Rahgoshay, S.M.; Rahimi-Esbo, M.; Firouzjaee, K.D. Numerical investigation of the influence of different cooling flow channels on the thermal and water saturation distribution in a real dimensional polymer electrolyte membrane fuel cell. Int. J. Hydrog. Energy 2023, 48, 2762–2787. [Google Scholar] [CrossRef]
- Flipo, G.; Josset, C.; Bellettre, J.; Auvity, B. Clarification of the surface wettability effects on two-phase flow patterns in PEMFC gas channels. Int. J. Hydrog. Energy 2016, 41, 15518–15527. [Google Scholar] [CrossRef]
- Sim, J.; Kang, M.; Min, K. Effects of ratio variation in substrate and microporous layer penetration on polymer exchange membrane fuel cell performance. Int. J. Hydrog. Energy 2021, 46, 18615–18629. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, S.; Wang, Z.; Li, R. Experimental and simulation analysis of liquid capillary fingering process in the gas diffusion layer. J. Power Sources 2023, 554, 232276. [Google Scholar] [CrossRef]
- Chen, L.; He, A.; Zhao, J.; Kang, Q.; Li, Z.-Y.; Carmeliet, J.; Shikazono, N.; Tao, W.-Q. Pore-scale modeling of complex transport phenomena in porous media. Prog. Energy Combust. Sci. 2022, 88, 100968. [Google Scholar] [CrossRef]
- Hao, L.; Cheng, P. Capillary pressures in carbon paper gas diffusion layers having hydrophilic and hydrophobic pores. Int. J. Heat Mass Transf. 2012, 55, 133–139. [Google Scholar] [CrossRef]
- Yang, M.; Jiang, Y.; Liu, J.; Xu, S.; Du, A. Lattice Boltzmann method modeling and experimental study on liquid water characteristics in the gas diffusion layer of proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2022, 47, 10366–10380. [Google Scholar] [CrossRef]
- Jeon, D.H. Effect of channel-rib width on water transport behavior in gas diffusion layer of polymer electrolyte membrane fuel cells. J. Power Sources 2019, 423, 280–289. [Google Scholar] [CrossRef]
- Molaeimanesh, G.R.; Akbari, M.H. Impact of PTFE distribution on the removal of liquid water from a PEMFC electrode by lattice Boltzmann method. Int. J. Hydrog. Energy 2014, 39, 8401–8409. [Google Scholar] [CrossRef]
- Molaeimanesh, G.; Akbari, M.H. Water droplet dynamic behavior during removal from a proton exchange membrane fuel cell gas diffusion layer by Lattice-Boltzmann method. Korean J. Chem. Eng. 2014, 31, 598–610. [Google Scholar] [CrossRef]
- Kim, K.N.; Kang, J.H.; Lee, S.G.; Nam, J.H.; Kim, C.-J. Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells. J. Power Sources 2015, 278, 703–717. [Google Scholar] [CrossRef]
- Sepe, M.; Satjaritanun, P.; Zenyuk, I.V.; Tippayawong, N.; Shimpalee, S. The Impact of Micro Porous Layer on Liquid Water Evolution inside PEMFC using Lattice Boltzmann Method. J. Electrochem. Soc. 2021, 168, 074507. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, G.; Li, S.; Shen, Q.; Liao, J.; Wang, H.; Espinoza-Andaluz, M.; Ying, R.; Pan, X. Study of the anisotropic permeability of proton exchange membrane fuel cell gas diffusion layer by lattice Boltzmann method. Comput. Mater. Sci. 2021, 190, 110286. [Google Scholar] [CrossRef]
- García-Salaberri, P.A.; Hwang, G.; Vera, M.; Weber, A.Z.; Gostick, J.T. Effective diffusivity in partially-saturated carbon-fiber gas diffusion layers: Effect of through-plane saturation distribution. Int. J. Heat Mass Transf. 2015, 86, 319–333. [Google Scholar] [CrossRef]
- García-Salaberri, P.A.; Zenyuk, I.V.; Shum, A.D.; Hwang, G.; Vera, M.; Weber, A.Z.; Gostick, J.T. Analysis of representative elementary volume and through-plane regional characteristics of carbon-fiber papers: Diffusivity, permeability and electrical/thermal conductivity. Int. J. Heat Mass Transf. 2018, 127, 687–703. [Google Scholar] [CrossRef]
- Espinoza, M.; Andersson, M.; Sundén, B. Predicting transport parameters in PEFC gas diffusion layers considering micro-architectural variations using the Lattice Boltzmann method. Int. J. Energy Res. 2017, 41, 565–578. [Google Scholar] [CrossRef]
- Simaafrookhteh, S.; Shakeri, M.; Baniassadi, M.; Sahraei, A.A. Microstructure Reconstruction and Characterization of the Porous GDLs for PEMFC Based on Fibers Orientation Distribution. Fuel Cells 2018, 18, 160–172. [Google Scholar] [CrossRef]
- Gao, Y.; Jin, T.; Wu, X.; Zhang, T. The Effect of Fiber Orientation on Stochastic Reconstruction and Permeability of a Carbon Paper Gas Diffusion Layer. Energies 2019, 12, 2808. [Google Scholar] [CrossRef]
- Molaeimanesh, G.; Akbari, M.H. A three-dimensional pore-scale model of the cathode electrode in polymer-electrolyte membrane fuel cell by lattice Boltzmann method. J. Power Sources 2014, 258, 89–97. [Google Scholar] [CrossRef]
- Lee, S.-H.; Nam, J.-H.; Kim, C.-J.; Kim, H.-M. Effect of fiber orientation on Liquid-Gas flow in the gas diffusion layer of a polymer electrolyte membrane fuel cell. Int. J. Hydrog. Energy 2021, 46, 33957–33968. [Google Scholar] [CrossRef]
- Kulkarni, N.; Cho, J.I.S.; Rasha, L.; Owen, R.E.; Wu, Y.; Ziesche, R.; Hack, J.; Neville, T.; Whiteley, M.; Kardjilov, N.; et al. Effect of cell compression on the water dynamics of a polymer electrolyte fuel cell using in-plane and through-plane in-operando neutron radiography. J. Power Sources 2019, 439, 227074. [Google Scholar] [CrossRef]
- Zenyuk, I.V.; Parkinson, D.Y.; Hwang, G.; Weber, A.Z. Probing water distribution in compressed fuel-cell gas-diffusion layers using X-ray computed tomography. Electrochem. Commun. 2015, 53, 24–28. [Google Scholar] [CrossRef]
- He, Y.-L.; Miao, Z.; Zhao, T.-S.; Yang, W.-W. Numerical study of the effect of the GDL structure on water crossover in a direct methanol fuel cell. Int. J. Hydrog. Energy 2012, 37, 4422–4438. [Google Scholar] [CrossRef]
- Kanda, D.; Watanabe, H.; Okazaki, K. Effect of local stress concentration near the rib edge on water and electron transport phenomena in polymer electrolyte fuel cell. Int. J. Heat Mass Transf. 2013, 67, 659–665. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, L.; Harandi, H.B.; Duan, K.; Zeis, R.; Sui, P.-C.; Chuang, P.-Y.A. Microstructure reconstruction of the gas diffusion layer and analyses of the anisotropic transport properties. Energy Conv. Manag. 2021, 241, 114293. [Google Scholar] [CrossRef]
- Burganos, V.N.; Skouras, E.D.; Kalarakis, A.N. An integrated simulator of structure and anisotropic flow in gas diffusion layers with hydrophobic additives. J. Power Sources 2017, 365, 179–189. [Google Scholar] [CrossRef]
- Froning, D.; Drakselová, M.; Tocháčková, A.; Kodým, R.; Reimer, U.; Lehnert, W.; Bouzek, K. Anisotropic properties of gas transport in non-woven gas diffusion layers of polymer electrolyte fuel cells. J. Power Sources 2020, 452, 227828. [Google Scholar] [CrossRef]
- Jeon, D.H.; Kim, H. Effect of compression on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell using lattice Boltzmann method. J. Power Sources 2015, 294, 393–405. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, S.M. Effects of rib structure and compression on liquid water transport in the gas diffusion layer of a polymer electrolyte membrane fuel cell. J. Mech. Sci. Technol. 2022, 36, 235–246. [Google Scholar] [CrossRef]
- Ira, Y.; Bakhshan, Y.; Khorshidimalahmadi, J. Effect of wettability heterogeneity and compression on liquid water transport in gas diffusion layer coated with microporous layer of PEMFC. Int. J. Hydrog. Energy 2021, 46, 17397–17413. [Google Scholar] [CrossRef]
- Shojaeefard, M.H.; Molaeimanesh, G.R.; Moqaddari, M.R. Effects of Compression on the Removal of Water Droplet from GDLs of PEM Fuel Cells. Fuel Cells 2019, 19, 675–684. [Google Scholar] [CrossRef]
- Molaeimanesh, G.R.; Shojaeefard, M.H.; Moqaddari, M.R. Effects of electrode compression on the water droplet removal from proton exchange membrane fuel cells. Korean J. Chem. Eng. 2019, 36, 136–145. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Cheng, Y. Numerical simulation of mixing-induced dynamic interfacial tension inside droplet by lattice Boltzmann method. Chem. Eng. Sci. 2023, 270, 118510. [Google Scholar] [CrossRef]
- Wang, J.; Liang, G.; Yin, X.; Shen, S. Pool boiling on micro-structured surface with lattice Boltzmann method. Int. J. Therm. Sci. 2023, 187, 108170. [Google Scholar] [CrossRef]
- Mino, Y.; Tanaka, C.; Tanaka, H.; Nakaso, K.; Gotoh, K. Numerical simulation of a drying colloidal suspension on a wettable substrate using the lattice Boltzmann method. Chem. Eng. Sci. 2022, 263, 118050. [Google Scholar] [CrossRef]
- Wang, H.; Yang, G.; Li, S.; Shen, Q.; Liao, J.; Jiang, Z.; Espinoza-Andaluz, M.; Su, F.; Pan, X. Numerical study on permeability of gas diffusion layer with porosity gradient using lattice Boltzmann method. Int. J. Hydrog. Energy 2021, 46, 22107–22121. [Google Scholar] [CrossRef]
- Wang, H.; Yang, G.; Shen, Q.; Li, S.; Su, F.; Jiang, Z.; Liao, J.; Zhang, G.; Sun, J. Effects of Compression and Porosity Gradients on Two-Phase Behavior in Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells. Membranes 2023, 13, 303. [Google Scholar] [CrossRef] [PubMed]
- Sarkezi-Selsky, P.; Schmies, H.; Kube, A.; Latz, A.; Jahnke, T. Lattice Boltzmann simulation of liquid water transport in gas diffusion layers of proton exchange membrane fuel cells: Parametric studies on capillary hysteresis. J. Power Sources 2022, 535, 231381. [Google Scholar] [CrossRef]
- Schladitz, K.; Peters, S.; Reinel-Bitzer, D.; Wiegmann, A.; Ohser, J. Design of acoustic trim based on geometric modeling and flow simulation for non-woven. Comput. Mater. Sci. 2006, 38, 56–66. [Google Scholar] [CrossRef]
- Wang, H.; Yang, G.; Li, S.; Shen, Q.; Liao, J.; Jiang, Z.; Zhang, G.; Zhang, H.; Su, F. Effect of Binder and Compression on the Transport Parameters of a Multilayer Gas Diffusion Layer. Energy Fuels 2021, 35, 15058–15073. [Google Scholar] [CrossRef]
- Zou, Q.; He, X. On pressure and velocity flow boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 1997, 9, 1591–1598. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yang, G.; Li, S.; Shen, Q.; Li, Y.; Wang, R. Pore-Scale Modeling of Liquid Water Transport in Compressed Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Considering Fiber Anisotropy. Membranes 2023, 13, 559. https://doi.org/10.3390/membranes13060559
Wang H, Yang G, Li S, Shen Q, Li Y, Wang R. Pore-Scale Modeling of Liquid Water Transport in Compressed Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Considering Fiber Anisotropy. Membranes. 2023; 13(6):559. https://doi.org/10.3390/membranes13060559
Chicago/Turabian StyleWang, Hao, Guogang Yang, Shian Li, Qiuwan Shen, Yue Li, and Renjie Wang. 2023. "Pore-Scale Modeling of Liquid Water Transport in Compressed Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Considering Fiber Anisotropy" Membranes 13, no. 6: 559. https://doi.org/10.3390/membranes13060559
APA StyleWang, H., Yang, G., Li, S., Shen, Q., Li, Y., & Wang, R. (2023). Pore-Scale Modeling of Liquid Water Transport in Compressed Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Considering Fiber Anisotropy. Membranes, 13(6), 559. https://doi.org/10.3390/membranes13060559