Treatment of Aniline Wastewater by Membrane Distillation and Crystallization
Abstract
:1. Introduction
2. Experiment
2.1. Material
2.2. Characterization
2.3. Fenton Oxidation Pretreatment Process
2.4. Vacuum Membrane Distillation and Crystallization
3. Results and Discussion
3.1. Optimization of Operating Parameters for VMD Treatment of Aniline Wastewater
3.2. Pretreatment of Aniline Wastewater by Fenton Reaction
3.3. Membrane Distillation and Crystallization Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nie, Y.; Deng, Z.; Yuan, J. Application and development of treatment technology for aniline wastewater. Tech. Equip. Environ. Pollut. Control 2003, 4, 77–81. [Google Scholar]
- Zhang, Q.; Zhang, W.; He, Q.; Li, M.; Li, Y.; Huang, W. Effects of dissolved oxygen concentrations on a bioaugmented sequencing batch rector treating aniline-laden wastewater: Reactor performance, microbial dynamics and functional genes. Bioresour. Technol. 2020, 313, 123598. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Zhang, Y.; Li, M.; Huang, S.; Hayat, W.; He, L.; Du, X.; Liu, G.; Du, M. Heterogeneously degradation of aniline in aqueous solution using persulfate catalyzed by magnetic BiFeO3 nanoparticles. Catal. Today 2018, 310, 130–140. [Google Scholar] [CrossRef]
- Yang, K.; Ji, M.; Liang, B.; Zhao, Y.; Zhai, S.; Ma, Z.; Yang, Z. Bioelectrochemical degradation of monoaromatic compounds: Current advances and challenges. J. Hazard. Mater. 2020, 398, 122892. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yan, X.; Yan, Y.; Li, T.; An, J.; Liao, C.; Li, N.; Wang, X. Electrode potential regulates phenol degradation pathways in oxygen-diffused microbial electrochemical system. Chem. Eng. J. 2020, 381, 122663. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, W.; Chi, M. Enhancement on the simultaneous removal of nitrate and organic pollutants from groundwater by a three-dimensional bio-electrochemical reactor. Bioresour. Technol. 2009, 100, 4662–4668. [Google Scholar] [CrossRef]
- Jiang, Y.; Shang, Y.; Gong, T.; Hu, Z.; Yang, K.; Shao, S. High concentration of Mn2+ has multiple influences on aerobic granular sludge for aniline wastewater treatment. Chemosphere 2020, 240, 124945. [Google Scholar] [CrossRef]
- Devulapalli, R.; Jones, F. Separation of aniline from aqueous solutions using emulsion liquid membranes. J. Hazard. Mater. 1999, 70, 157–170. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, X.; Sun, J.; Li, P.; Zhang, A. Treatment of aniline contaminated water by a self-designed dielectric barrier discharge reactor coupling with micro-bubbles: Optimization of the system and effects of water matrix. J. Chem. Technol. Biotechnol. 2019, 94, 494–504. [Google Scholar] [CrossRef]
- Yu, S.; Wang, X.; Chen, Z.; Wang, J.; Wang, S.; Hayat, T.; Wang, X. Layered double hydroxide intercalated with aromatic acid anions for the efficient capture of aniline from aqueous solution. J. Hazard. Mater. 2017, 321, 111–120. [Google Scholar] [CrossRef]
- Figoli, A.; Ursino, C.; Galiano, F.; Di Nicolò, E.; Campanelli, P.; Carnevale, M.; Criscuoli, A. Innovative hydrophobic coating of perfluoropolyether (PFPE) on commercial hydrophilic membranes for DCMD application. J. Membr. Sci. 2017, 522, 192–201. [Google Scholar] [CrossRef]
- Iqhrammullah, M.; Fahrina, A.; Chiari, W.; Ahmad, K.; Fitriani, F.; Suriaini, N.; Safitri, E.; Puspita, K. Laccase Immobilization Using Polymeric Supports for Wastewater Treatment: A Critical Review. Macromol. Chem. Phys. 2023, 224, 2200461. [Google Scholar] [CrossRef]
- Mei, Y.; Tang, C.Y. Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination 2018, 425, 156–174. [Google Scholar] [CrossRef]
- Deshmukh, A.; Boo, C.; Karanikola, V.; Lin, S.; Straub, A.P.; Tong, T.; Warsinger, D.M.; Elimelech, M. Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges. Energy Environ. Sci. 2018, 11, 1177–1196. [Google Scholar] [CrossRef]
- Reddy, A.S.; Kalla, S.; Murthy, Z. Textile wastewater treatment via membrane distillation. Environ. Eng. Res. 2022, 27, 210228. [Google Scholar] [CrossRef]
- Shao, Y.; Han, M.; Wang, Y.; Li, G.; Xiao, W.; Li, X.; Wu, X.; Ruan, X.; Yan, X.; He, G.; et al. Superhydrophobic polypropylene membrane with fabricated antifouling interface for vacuum membrane distillation treating high concentration sodium/magnesium saline water. J. Membr. Sci. 2019, 579, 240–252. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhong, L.; Horseman, T.; Liu, Z.; Zeng, G.; Li, Z.; Lin, S.; Wang, W. Superhydrophobic-omniphobic membrane with anti-deformable pores for membrane distillation with excellent wetting resistance. J. Membr. Sci. 2021, 620, 118768. [Google Scholar] [CrossRef]
- Shao, S.; Shi, D.; Hu, J.; Qing, W.; Li, X.; Li, X.; Ji, B.; Yang, Z.; Guo, H.; Tang, C.Y. Unraveling the Kinetics and Mechanism of Surfactant-Induced Wetting in Membrane Distillation: An In Situ Observation with Optical Coherence Tomography. Environ. Sci. Technol. 2022, 56, 556–563. [Google Scholar] [CrossRef] [PubMed]
- García-Payo, M.C.; Essalhi, M.; Khayet, M. Effects of PVDF-HFP concentration on membrane distillation performance and structural morphology of hollow fiber membranes. J. Membr. Sci. 2010, 347, 209–219. [Google Scholar] [CrossRef]
- Hou, D.; Wang, J.; Sun, X.; Ji, Z.; Luan, Z. Preparation and properties of PVDF composite hollow fiber membranes for desalination through direct contact membrane distillation. J. Membr. Sci. 2012, 405, 185–200. [Google Scholar] [CrossRef]
- Feng, C.; Khulbe, K.C.; Matsuura, T.; Gopal, R.; Kaur, S.; Ramakrishna, S.; Khayet, M. Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane. J. Membr. Sci. 2008, 311, 1–6. [Google Scholar] [CrossRef]
- Singh, D.; Sirkar, K.K. Desalination by air gap membrane distillation using a two hollow-fiber-set membrane module. J. Membr. Sci. 2012, 421, 172–179. [Google Scholar] [CrossRef]
- Lee, C.H.; Hong, W.H. Effect of operating variables on the flux and selectivity in sweep gas membrane distillation for dilute aqueous isopropanol. J. Membr. Sci. 2001, 188, 79–86. [Google Scholar] [CrossRef]
- Khayet, M.; Godino, M.; Mengual, J. Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method. Desalination 2003, 157, 297–305. [Google Scholar] [CrossRef]
- Ji, H.; Choi, M.-Y.; Lee, H.-S.; Kim, A.S.; Kim, H.-J. Vacuum membrane distillation for deep seawater: Experiments and theory. Desalination Water Treat. 2017, 58, 344–350. [Google Scholar] [CrossRef]
- Mengual, J.; Khayet, M.; Godino, M. Heat and mass transfer in vacuum membrane distillation. Int. J. Heat Mass Transf. 2004, 47, 865–875. [Google Scholar] [CrossRef]
- Mericq, J.-P.; Laborie, S.; Cabassud, C. Vacuum membrane distillation for an integrated seawater desalination process. Desalination Water Treat. 2009, 9, 287–329. [Google Scholar] [CrossRef]
- Banat, F.A.; Simandl, J. Membrane distillation for dilute ethanol: Separation from aqueous streams. J. Membr. Sci. 1999, 163, 333–348. [Google Scholar] [CrossRef]
- Cerneaux, S.; Strużyńska, I.; Kujawski, W.M.; Persin, M.; Larbot, A. Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes. J. Membr. Sci. 2009, 337, 55–60. [Google Scholar] [CrossRef]
- Banat, F.; Jwaied, N. Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units. Desalination 2008, 220, 566–573. [Google Scholar] [CrossRef]
- Ben Abdallah, S.; Frikha, N.; Gabsi, S. Simulation of solar vacuum membrane distillation unit. Desalination 2013, 324, 87–92. [Google Scholar] [CrossRef]
- Curcio, E.; Drioli, E. Membrane Distillation and Related Operations—A Review. Sep. Purif. Rev. 2005, 34, 35–86. [Google Scholar] [CrossRef]
- Moradi, R.; Monfared, S.M.; Amini, Y.; Dastbaz, A. Vacuum enhanced membrane distillation for trace contaminant removal of heavy metals from water by electrospun PVDF/TiO2 hybrid membranes. Korean J. Chem. Eng. 2016, 33, 2160–2168. [Google Scholar] [CrossRef]
- Shi, W.; Li, T.; Tian, Y.; Li, H.; Fan, M.; Zhang, H.; Qin, X. An innovative hollow fiber vacuum membrane distillation-crystallization (VMDC) coupling process for dye house effluent separation to reclaim fresh water and salts. J. Clean. Prod. 2022, 337, 130586. [Google Scholar] [CrossRef]
- Mene, N.R.; Murthy, Z. Recovery of pure water and crystalline products from concentrated brine by using membrane distillation crystallization. Sep. Sci. Technol. 2019, 54, 396–408. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, J.H.; Moon, S.J.; Jung, J.T.; Wang, H.H.; Ali, A.; Quist-Jensen, C.A.; Macedonio, F.; Drioli, E.; Lee, Y.M. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. J. Membr. Sci. 2020, 598, 117683. [Google Scholar] [CrossRef]
- Pan, J.; Chen, M.; Xu, X.; Sun, S.-P.; Wang, Z.; Cui, Z.; Xing, W.; Tavajohi, N. Enhanced anti-wetted PVDF membrane for pulping RO brine treatment by vacuum membrane distillation. Desalination 2022, 526, 115533. [Google Scholar] [CrossRef]
- Di Profio, G.; Grosso, V.; Caridi, A.; Caliandro, R.; Guagliardi, A.; Chita, G.; Curcio, E.; Drioli, E. Direct production of carbamazepine–saccharin cocrystals from water/ethanol solvent mixtures by membrane-based crystallization technology. CrystEngComm 2011, 13, 5670–5673. [Google Scholar] [CrossRef]
- Tong, T.; Elimelech, M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2016, 50, 6846–6855. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Benredjem, Z.; Barbari, K.; Chaabna, I.; Saaidia, S.; Djemel, A.; Delimi, R.; Douas, S.; Bakhouche, K. Comparative investigation on the removal of methyl orange from aqueous solution using three different advanced oxidation processes. Int. J. Chem. React. Eng. 2021, 19, 597–604. [Google Scholar] [CrossRef]
- Luo, J.; Tang, Y.; Zhou, J.; Yang, Y. Experimental study on the treatment process of wastewater in a printing and dyeing industrial park. Ind. Water Treat. 2014, 34, 62–65. [Google Scholar]
- Gong, Y.; Xu, X.; Wang, F.; Zhao, L.; Chen, Y.; Shen, S. Study on the pretreatment of aniline wastewater by combining micro-electrolysis with Fenton oxidation. Ind. Water Treat. 2008, 28, 51–53, 69. [Google Scholar]
- Zhao, D.; Zou, H.; Zhu, Q.; Yang, X. Aniline wastewater treatment by Fenton oxidation-coagulation. Chin. J. Environ. Eng. 2012, 6, 3942–3946. [Google Scholar]
- Li, X.; Zhang, Y.; Cao, J.; Wang, X.; Cui, Z.; Zhou, S.; Li, M.; Drioli, E.; Wang, Z.; Zhao, S. Enhanced fouling and wetting resistance of composite Hyflon AD/poly(vinylidene fluoride) membrane in vacuum membrane distillation. Sep. Purif. Technol. 2019, 211, 135–140. [Google Scholar] [CrossRef]
- Ve, Q.L.; Koirala, R.; Bawahab, M.; Faqeha, H.; Do, M.C.; Nguyen, Q.L.; Date, A.; Akbarzadeh, A. Experimental investigation of the effect of the spacer and operating conditions on mass transfer in direct contact membrane distillation. Desalination 2021, 500, 114839. [Google Scholar] [CrossRef]
- Chen, L.; Xu, P.; Wang, H. Interplay of the Factors Affecting Water Flux and Salt Rejection in Membrane Distillation: A State-of-the-Art Critical Review. Water 2020, 12, 2841. [Google Scholar] [CrossRef]
- Olatunji, S.O.; Camacho, L.M. Heat and Mass Transport in Modeling Membrane Distillation Configurations: A Review. Front. Energy Res. 2018, 6, 130. [Google Scholar] [CrossRef]
- Moradi, R.; Karimi-Sabet, J.; Shariaty-Niassar, M.; Amini, Y. Experimental investigation of nanofibrous poly(vinylidene fluoride) membranes for desalination through air gap membrane distillation process. Korean J. Chem. Eng. 2016, 33, 2953–2960. [Google Scholar] [CrossRef]
- Nakoa, K.; Date, A.; Akbarzadeh, A. A research on water desalination using membrane distillation. Desalination Water Treat. 2015, 56, 2618–2630. [Google Scholar] [CrossRef]
- Rezaei, M.; Warsinger, D.M.; Duke, M.C.; Matsuura, T.; Samhaber, W.M. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention. Water Res. 2018, 139, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dow, N.; Duke, M.; Ostarcevic, E.; Li, J.-D.; Gray, S. Identification of material and physical features of membrane distillation membranes for high performance desalination. J. Membr. Sci. 2010, 349, 295–303. [Google Scholar] [CrossRef]
- Abu-Zeid, M.A.E.R.; Zhang, Y.; Dong, H.; Zhang, L.; Chen, H.L.; Hou, L. A comprehensive review of vacuum membrane distillation technique. Desalination 2015, 356, 1–14. [Google Scholar] [CrossRef]
- Stamatakis, E.; Stubos, A.; Palyvos, J.; Chatzichristos, C.; Muller, J. An improved predictive correlation for the induction time of CaCO3 scale formation during flow in porous media. J. Colloid Interface Sci. 2005, 286, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-D.; Francis, L.; Lee, J.-G.; Ham, M.-G.; Ghaffour, N. Effect of non-woven net spacer on a direct contact membrane distillation performance: Experimental and theoretical studies. J. Membr. Sci. 2018, 564, 193–203. [Google Scholar] [CrossRef]
- Abdallah, H.; Moustafa, A.; AlAnezi, A.A.; El-Sayed, H. Performance of a newly developed titanium oxide nanotubes/polyethersulfone blend membrane for water desalination using vacuum membrane distillation. Desalination 2014, 346, 30–36. [Google Scholar] [CrossRef]
- Ricceri, F.; Blankert, B.; Ghaffour, N.; Vrouwenvelder, J.S.; Tiraferri, A.; Fortunato, L. Unraveling the role of feed temperature and cross-flow velocity on organic fouling in membrane distillation using response surface methodology. Desalination 2022, 540, 115971. [Google Scholar] [CrossRef]
- Charfi, A.; Tibi, F.; Kim, J.; Hur, J.; Cho, J. Organic Fouling Impact in a Direct Contact Membrane Distillation System Treating Wastewater: Experimental Observations and Modeling Approach. Membranes 2021, 11, 493. [Google Scholar] [CrossRef]
- Naidu, G.; Jeong, S.; Kim, S.-J.; Kim, I.S.; Vigneswaran, S. Organic fouling behavior in direct contact membrane distillation. Desalination 2014, 347, 230–239. [Google Scholar] [CrossRef]
- Guomin, C.A.O.; Ding, W.; Yang, G.; Zhang, D. Aqueous Phase Degradation of Aromatic Compounds by Fenton Oxidation. J. East China Univ. Sci. Technoloy Nat. Sci. Ed. 2008, 34, 830–833, 886. [Google Scholar]
- Zhang, H.; Zhou, Y.; Guo, S.; Lu, X. Advances of advanced oxidation process to treat aniline wastewater. Ind. Water Treat. 2021, 41, 167–172, 185. [Google Scholar]
- Chen, D.; Qian, J.; Jiang, S. Performance of Fenton Three-phase Catalytic Oxidation Process for Advanced Treatment of Dyeing and Printing Wastewater. China Water Wastewater 2022, 38, 68–72. [Google Scholar]
- Chen, W.; Wei, Z. Study on Fenton oxidation-coagulation process for the treatment of printing and dyeing wastewater. Ind. Water Treat. 2004, 24, 39–41. [Google Scholar]
- Xue, D.; Li, C.; Zhang, L.; Liu, D.; Jiang, H.; Li, X. Oxidation treatment of printing and dyeing wastewater by flocculation-Fenton reagent. Chin. J. Environ. Eng. 2014, 8, 3601–3606. [Google Scholar]
- Jianhui, S.; Shengpeng, S.; Huiliang, W. Progress of the research on Fenton oxidation technology in the treatment of industrial wastewater containing refractory organic matter. Ind. Water Treat. 2006, 26, 9–13. [Google Scholar]
- Zhao, G.; Sun, J.; Zhang, Y.; Wang, H.; Wu, J. Research progress of advanced oxidation technology in treatment of printing and dyeing wastewater. Appl. Chem. Ind. 2021, 50, 2550–2554, 2558. [Google Scholar]
Number | Project | Units | Numerical Value |
---|---|---|---|
1 | pH | - | 12.85–12.96 |
2 | Conductivity | ms·cm−1 | 162.75 |
3 | Na+ | g·L−1 | 52.86 |
4 | Cl- | g·L−1 | 66.30 |
5 | NO3- | g·L−1 | 0.88 |
6 | Turbidity | NTU | 2.98 |
7 | TDS | mg·L−1 | ≈125 |
8 | TOC | mg·L−1 | 4728 |
9 | COD | mg·L−1 | 5600 |
PVDF Characteristics | Value |
---|---|
Contact angle (°) | 128 |
Porosity (%) | 65.12 |
Tensile ratio (%) | 69.05 |
Tensile strength (MPa) | 4.52 |
Pore size (nm) | 334 |
Thickness (mm) | 0.122 |
Operating Condition | Mean Roughness (Ra), nm | AFM Images |
---|---|---|
Original Membrane | 207 | |
60 °C/400 mL/min | 102 | |
60 °C/500 mL/min | 170 | |
60 °C/600 mL/min | 174 | |
500 mL/min/50 °C | 90.8 | |
500 mL/min/60 °C | 164 | |
500 mL/min/70 °C | 28 |
Processing Capacity/L | Feed Flow Rate /mL∙min−1 | Feed Temperature /°C | Vacuum Pressure /MPa |
---|---|---|---|
2 | 500 | 60 | 0.0095 |
TOC (mg/L) | ||
---|---|---|
Original Solution | Crystalline Mother Solution | Crystalline Salt (10 ppm) |
4728 | 2471.1 | 2.99 |
Element | Mass Ratio % | Atomic Ratio % |
---|---|---|
O | 4.54 | 7.95 |
Na | 38.66 | 47.14 |
Cl | 56.80 | 44.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Hou, W.; Yang, Z.; Wang, Z.; Chen, R.; Drioli, E.; Wang, X.; Cui, Z. Treatment of Aniline Wastewater by Membrane Distillation and Crystallization. Membranes 2023, 13, 561. https://doi.org/10.3390/membranes13060561
Zhang F, Hou W, Yang Z, Wang Z, Chen R, Drioli E, Wang X, Cui Z. Treatment of Aniline Wastewater by Membrane Distillation and Crystallization. Membranes. 2023; 13(6):561. https://doi.org/10.3390/membranes13060561
Chicago/Turabian StyleZhang, Fangli, Wei Hou, Zhonglin Yang, Zhaohui Wang, Rizhi Chen, Enrico Drioli, Xiaozu Wang, and Zhaoliang Cui. 2023. "Treatment of Aniline Wastewater by Membrane Distillation and Crystallization" Membranes 13, no. 6: 561. https://doi.org/10.3390/membranes13060561
APA StyleZhang, F., Hou, W., Yang, Z., Wang, Z., Chen, R., Drioli, E., Wang, X., & Cui, Z. (2023). Treatment of Aniline Wastewater by Membrane Distillation and Crystallization. Membranes, 13(6), 561. https://doi.org/10.3390/membranes13060561