Membranes in Water Reclamation: Treatment, Reuse and Concentrate Management
Abstract
:1. Introduction
2. Membranes for Water Reclamation
2.1. Membranes with Physicochemical Treatments
- Pretreatment: Treatment prior to membrane filtration.
- Hybrid systems: Treatment with membrane filtrations.
- Post-treatment: Treatment after membrane filtration.
2.1.1. Pretreatment to Membrane
2.1.2. Membrane Hybrid Systems (MHSs)
Membrane–Adsorption (GAC) Hybrid System
Membrane–Ion-Exchange (PuroliteA502PS) Hybrid System
2.2. Membranes with Biological Treatment
2.2.1. Osmotic Membrane Bioreactor
2.2.2. Membrane Distillation Bioreactor
3. Membrane Filtration for High-Quality Water Reuse
3.1. Hybrid Dual-Membrane System
3.1.1. MF/UF–RO Systems
3.1.2. Dual-Membrane Systems Used in the Real World
- (a)
- Samsung Chemicals Co, Ltd., Daesan, Republic of Korea: Conventional pretreatment systems were unable to treat local polluted rivers below an SDI of 3. The subsequent RO post-treatment suffered membrane fouling. The installation of a Memcor CMF system prior to RO was able to improve the quality of RO feed, and treated 30,000 m3/d of polluted river water. The SDI of the effluent of the CMF system was less than 3, and RO operated more reliably [82].
- (b)
- Vértesi Power Plant Co., Oroszlány, Hungary: The cooling lake situated next to the Vértesi Power Plant experienced a decline in water quality over the last decade. The lake’s total dissolved solids (TDSs), total suspended solids (TSSs), and algae content were reported to be 6000 mg/L, 100 mg/L, and 225 million counts/L, respectively, leading to an increase in deionizer chemicals and regeneration frequency; however, the implementation of CMF/RO prior to the deionizer effectively reduced the TDS level to 5–10 mg/L in the RO permeate, resulting in lower operation and maintenance costs as well as ion-exchange operation costs [82].
- (c)
- The Tias WWTP, Lanzarote, Canary Islands, Spain: The WWTP utilized the USF Memcor CMF and RO systems to treat its effluent. The CMF system generated 1020 m3/d of filtrate that was devoid of suspended solids (<1.0 mg/L), turbidity (<1.0 NTU), and total and fecal coliforms. The SDI was <3.0, and the system achieved a water recovery rate of 85%. The 600 m3/d of microfiltered water was subsequently treated by FILMTEC BW30–400 RO membranes manufactured by Dow Chemicals (Midland, MI, USA), which generated 430 m3/d. The RO permeate of 600 m3/d (TDS content of 20 mg/L) and microfiltered water of 420 m3/d (TDS content of 1100 mg/L) were blended together and used for irrigation purposes [82].
- (d)
- Water reclamation and management scheme (WRAMS) at Sydney Olympic Park, Australia: The WRAMS was designed to treat a mix of secondary effluent and stormwater. It consists of CMF and RO membrane filters, with a capacity of 7.5 ML/d. The permeate from the CMF and RO is mixed in an appropriate ration to produce reusable water and sold back to consumers [10,83].
- (e)
- One of the largest wastewater treatment plants was established recently in Sulaibiya (Kuwait), where RO and UF-membrane-based membrane filtration is employed to reclaim municipal wastewater for nonpotable uses such as industry, irrigation, and aquifer recharge. The initial capacity of the plant was to produce treated water up to the volume of 375,000 m3 per day, and designed for future extension to 600,000 m3 per day [12].
3.2. Innovative Membrane Treatment Technologies for High-Quality Water Reuse
3.2.1. NF as an Alternative to RO
3.2.2. Membrane Hybrid Systems as Pretreatments to NF
3.2.3. NF as Pretreatment to RO
3.2.4. Track-Etched Membranes (TeMs) in Membrane Distillation
4. Recent Membrane Technologies for ROC Management
4.1. NF Membranes
4.2. RO–NF Treatment System
4.3. MF–GAC Hybrid System/NF–RO
Cost Comparison: NF–RO Combination Versus Two-Stage RO
4.4. Forward Osmosis with GAC Pretreatment
4.5. Membrane Distillation (MD) in Wastewater Reverse Osmosis Concentrate (WWROC) Treatment
4.6. Direct Contact Membrane Distillation (DCMD) and Freeze Crystallizer (FC)
4.7. Selectrodialysis with Bipolar Membranes (BMSED)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salehi, M. Global Water Shortage and Potable Water Safety; Today’s Concern and Tomorrow’s Crisis. Environ. Int. 2022, 158, 106936. [Google Scholar] [CrossRef] [PubMed]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and Technology for Water Purification in the Coming Decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Chellam, S. Contributions of Surface and Pore Deposition to (Ir)Reversible Fouling during Constant Flux Microfiltration of Secondary Municipal Wastewater Effluent. J. Membr. Sci. 2020, 610, 118231. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, Y.; Shen, F.; Zhang, L.; Wang, D.; Tang, X.; Zhou, Y.; Nie, X.; Lv, L.; Zhang, W.; et al. New Insights into the Fractionation of Effluent Organic Matter on Diagnosis of Key Composition Affecting Advanced Phosphate Removal by Zr-Based Nanocomposite. Water Res. 2020, 186, 116299. [Google Scholar] [CrossRef]
- Johir, M.A.H.; Vigneswaran, S. Membrane Hybrid System in Water and Wastewater Treatment. In Sustainable Technologies for Water and Wastewater Treatment, 1st ed.; Kaleekkal, N.J., Mural, P.K.S., Vigneswaran, S., Ghosh, U., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 369–386. [Google Scholar] [CrossRef]
- Quist-Jensen, C.A.; Macedonio, F.; Drioli, E. Membrane Technology for Water Production in Agriculture: Desalination and Wastewater Reuse. Desalination 2015, 364, 17–32. [Google Scholar] [CrossRef]
- Obotey Ezugbe, E.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Cohen, Y.; Choi, J.Y.; Rahardianto, A. Water Reclamation, Remediation, and Cleaner Production with Nanofiltration. In Nanofiltration; Schäefer, A.I., Fane, A.G., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 451–497. [Google Scholar] [CrossRef]
- Ketharani, J.; Hansima, M.A.C.K.; Indika, S.; Samarajeewa, D.R.; Makehelwala, M.; Jinadasa, K.B.S.N.; Weragoda, S.K.; Rathnayake, R.M.L.D.; Nanayakkara, K.G.N.; Wei, Y.; et al. A Comparative Study of Community Reverse Osmosis and Nanofiltration Systems for Total Hardness Removal in Groundwater. Groundw. Sustain. Dev. 2022, 18, 100800. [Google Scholar] [CrossRef]
- Devaisy, S.; Kandasamy, J.; Nguyen, T.V.; Johir, M.A.H.; Ratnaweera, H.; Vigneswaran, S. Comparison of Membrane-Based Treatment Methods for the Removal of Micro-Pollutants from Reclaimed Water. Water 2022, 14, 3708. [Google Scholar] [CrossRef]
- Ngo, M.T.T.; Ueyama, T.; Makabe, R.; Bui, X.-T.; Nghiem, L.D.; Nga, T.T.V.; Fujioka, T. Fouling Behavior and Performance of a Submerged Flat-Sheet Nanofiltration Membrane System for Direct Treatment of Secondary Wastewater Effluent. J. Water Process Eng. 2021, 41, 101991. [Google Scholar] [CrossRef]
- Xiang, Q.; Nomura, Y.; Fukahori, S.; Mizuno, T.; Tanaka, H.; Fujiwara, T. Innovative Treatment of Organic Contaminants in Reverse Osmosis Concentrate from Water Reuse: A Mini Review. Curr. Pollut. Rep. 2019, 5, 294–307. [Google Scholar] [CrossRef]
- Ye, W.; Liu, R.; Chen, X.; Chen, Q.; Lin, J.; Lin, X.; Van der Bruggen, B.; Zhao, S. Loose Nanofiltration-Based Electrodialysis for Highly Efficient Textile Wastewater Treatment. J. Membr. Sci. 2020, 608, 118182. [Google Scholar] [CrossRef]
- Zeynali, R.; Akbari, M.; Ghasemzadeh, K.; Jalilnejad, E.; Basile, A. Achievements in High Pressure Membrane Processes NF and RO for Wastewater and Water Treatment. In Current Trends and Future Developments on (Bio-) Membranes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 109–126. [Google Scholar] [CrossRef]
- Liu, X.; Ren, Z.; Ngo, H.H.; He, X.; Desmond, P.; Ding, A. Membrane Technology for Rainwater Treatment and Reuse: A Mini Review. Water Cycle 2021, 2, 51–63. [Google Scholar] [CrossRef]
- Nqombolo, A.; Mpupa, A.; Moutloali, R.M.; Nomngongo, P.N. Wastewater Treatment Using Membrane Technology. In Wastewater and Water Quality; Yonar, T., Ed.; InTech: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Joo, S.H.; Tansel, B. Novel Technologies for Reverse Osmosis Concentrate Treatment: A Review. J. Environ. Manag. 2015, 150, 322–335. [Google Scholar] [CrossRef]
- Valdés, H.; Saavedra, A.; Flores, M.; Vera-Puerto, I.; Aviña, H.; Belmonte, M. Reverse Osmosis Concentrate: Physicochemical Characteristics, Environmental Impact, and Technologies. Membranes 2021, 11, 753. [Google Scholar] [CrossRef]
- Li, C.; Sun, W.; Lu, Z.; Ao, X.; Li, S. Ceramic Nanocomposite Membranes and Membrane Fouling: A Review. Water Res. 2020, 175, 115674. [Google Scholar] [CrossRef]
- Luo, J.; Chen, W.; Song, H.; Liu, J. Fabrication of Hierarchical Layer-by-Layer Membrane as the Photocatalytic Degradation of Foulants and Effective Mitigation of Membrane Fouling for Wastewater Treatment. Sci. Total Environ. 2020, 699, 134398. [Google Scholar] [CrossRef]
- Abid, H.S.; Johnson, D.J.; Hashaikeh, R.; Hilal, N. A Review of Efforts to Reduce Membrane Fouling by Control of Feed Spacer Characteristics. Desalination 2017, 420, 384–402. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.L.; Feng, F.; Shen, L.; Huang, Z.; Zhao, Q.; Lin, H.; Chung, T.-S. Engineering Metal–Organic Frameworks (MOFs) Based Thin-Film Nanocomposite (TFN) Membranes for Molecular Separation. Chem. Eng. J. 2023, 454, 140447. [Google Scholar] [CrossRef]
- Zhao, D.L.; Zhao, Q.; Lin, H.; Chen, S.B.; Chung, T.-S. Pressure-Assisted Polydopamine Modification of Thin-Film Composite Reverse Osmosis Membranes for Enhanced Desalination and Antifouling Performance. Desalination 2022, 530, 115671. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, D.L.; Ee, L.Y.; Chung, T.-S.; Chen, S.B. In-Situ Coating of Fe-TA Complex on Thin-Film Composite Membranes for Improved Water Permeance in Reverse Osmosis Desalination. Desalination 2023, 554, 116515. [Google Scholar] [CrossRef]
- Ang, W.L.; Mohammad, A.W.; Hilal, N.; Leo, C.P. A Review on the Applicability of Integrated/Hybrid Membrane Processes in Water Treatment and Desalination Plants. Desalination 2015, 363, 2–18. [Google Scholar] [CrossRef]
- Molinari, R.; Lavorato, C.; Argurio, P. Application of Hybrid Membrane Processes Coupling Separation and Biological or Chemical Reaction in Advanced Wastewater Treatment. Membranes 2020, 10, 281. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, P.; Kandasamy, J.; Ratnaweera, H.; Vigneswaran, S. Submerged Membrane/Adsorption Hybrid Process in Water Reclamation and Concentrate Management—A Mini Review. Environ. Sci. Pollut. Res. 2022, 30, 42738–42752. [Google Scholar] [CrossRef]
- Wang, W.; Yue, Q.; Guo, K.; Bu, F.; Shen, X.; Gao, B. Application of Al Species in Coagulation/Ultrafiltration Process: Influence of Cake Layer on Membrane Fouling. J. Membr. Sci. 2019, 572, 161–170. [Google Scholar] [CrossRef]
- Yang, H.-J.; Kim, H.-S. Effect of Coagulation on MF/UF for Removal of Particles as a Pretreatment in Seawater Desalination. Desalination 2009, 247, 45–52. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Pramanik, S.K.; Sarker, D.C.; Suja, F. Impact of Ozonation, Anion Exchange Resin and UV/H2O2 Pre-Treatments to Control Fouling of Ultrafiltration Membrane for Drinking Water Treatment. Environ. Technol. 2017, 38, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Northcott, K.; Duke, M.; Scales, P.; Gray, S.R. Influence of Pre-Treatment Combinations on RO Membrane Fouling. Desalination 2016, 393, 120–126. [Google Scholar] [CrossRef]
- Kim, S.; Nam, S.-N.; Jang, A.; Jang, M.; Park, C.M.; Son, A.; Her, N.; Heo, J.; Yoon, Y. Review of Adsorption–Membrane Hybrid Systems for Water and Wastewater Treatment. Chemosphere 2022, 286, 131916. [Google Scholar] [CrossRef]
- Katalo, R.; Okuda, T.; Nghiem, L.D.; Fujioka, T. Moringa Oleifera Coagulation as Pretreatment Prior to Microfiltration for Membrane Fouling Mitigation. Environ. Sci. Water Res. Technol. 2018, 4, 1604–1611. [Google Scholar] [CrossRef]
- Fan, L.; Nguyen, T.; Roddick, F.A.; Harris, J.L. Low-Pressure Membrane Filtration of Secondary Effluent in Water Reuse: Pre-Treatment for Fouling Reduction. J. Membr. Sci. 2008, 320, 135–142. [Google Scholar] [CrossRef]
- Elma, M.; Rahma, A.; Pratiwi, A.E.; Rampun, E.L.A. Coagulation as Pretreatment for Membrane-based Wetland Saline Water Desalination. Asia-Pac. J. Chem. Eng. 2020, 15, e2461. [Google Scholar] [CrossRef]
- Bouchareb, R.; Derbal, K.; Özay, Y.; Bilici, Z.; Dizge, N. Combined Natural/Chemical Coagulation and Membrane Filtration for Wood Processing Wastewater Treatment. J. Water Process Eng. 2020, 37, 101521. [Google Scholar] [CrossRef]
- López-Ortiz, C.M.; Sentana-Gadea, I.; Varó-Galvañ, P.; Maestre-Pérez, S.E.; Prats-Rico, D. The Use of Combined Treatments for Reducing Parabens in Surface Waters: Ion-Exchange Resin and Nanofiltration. Sci. Total Environ. 2018, 639, 228–236. [Google Scholar] [CrossRef]
- Yu, W.; Liu, M.; Graham, N.J.D. Combining Magnetic Ion Exchange Media and Microsand before Coagulation as Pretreatment for Submerged Ultrafiltration: Biopolymers and Small Molecular Weight Organic Matter. ACS Sustain. Chem. Eng. 2019, 7, 18566–18573. [Google Scholar] [CrossRef]
- Zhang, H.; He, Q.; Luo, J.; Wan, Y.; Darling, S.B. Sharpening Nanofiltration: Strategies for Enhanced Membrane Selectivity. ACS Appl. Mater. Interfaces 2020, 12, 39948–39966. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, P.; Kandasamy, J.; Jamil, S.; Ratnaweera, H.; Vigneswaran, S. Ozonation/Adsorption Hybrid Treatment System for Improved Removal of Natural Organic Matter and Organic Micropollutants from Water—A Mini Review and Future Perspectives. Chemosphere 2022, 296, 133961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Shen, J.; Zhong, Y.; Ding, T.; Dissanayake, P.D.; Yang, Y.; Tsang, Y.F.; Ok, Y.S. Sorption of Pharmaceuticals and Personal Care Products (PPCPs) from Water and Wastewater by Carbonaceous Materials: A Review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 727–766. [Google Scholar] [CrossRef]
- Zhang, M.; Igalavithana, A.D.; Xu, L.; Sarkar, B.; Hou, D.; Zhang, M.; Bhatnagar, A.; Cho, W.C.; Ok, Y.S. Engineered/Designer Hierarchical Porous Carbon Materials for Organic Pollutant Removal from Water and Wastewater: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2295–2328. [Google Scholar] [CrossRef]
- Lee, H.; Hyun, K. Effect of Sequencing Batch Reactor (SBR)/Granular Activated Carbon (GAC) Bed and Membrane Hybrid System for Simultaneous Water Reuse and Membrane Fouling Mitigation. Environ. Eng. Res. 2020, 26, 190500. [Google Scholar] [CrossRef]
- Thankappan, R.; Nguyen, T.V.; Srinivasan, S.V.; Vigneswaran, S.; Kandasamy, J.; Loganathan, P. Removal of Leather Tanning Agent Syntan from Aqueous Solution Using Fenton Oxidation Followed by GAC Adsorption. J. Ind. Eng. Chem. 2015, 21, 483–488. [Google Scholar] [CrossRef]
- Devaisy, S.; Kandasamy, J.; Aryal, R.; Johir, M.A.H.; Ratnaweera, H.; Vigneswaran, S. Removal of Organics with Ion-Exchange Resins (IEX) from Reverse Osmosis Concentrate. Membranes 2023, 13, 136. [Google Scholar] [CrossRef] [PubMed]
- Schumann, P.; Ordóñez Andrade, J.A.; Jekel, M.; Ruhl, A.S. Packing Granular Activated Carbon into a Submerged Gravity-Driven Flat Sheet Membrane Module for Decentralized Water Treatment. J. Water Process Eng. 2020, 38, 101517. [Google Scholar] [CrossRef]
- Ouyang, W.; Chen, T.; Shi, Y.; Tong, L.; Chen, Y.; Wang, W.; Yang, J.; Xue, J. Physico-chemical Processes. Water Environ. Res. 2019, 91, 1350–1377. [Google Scholar] [CrossRef] [Green Version]
- Shanmuganathan, S.; Nguyen, T.V.; Jeong, S.; Kandasamy, J.; Vigneswaran, S. Submerged Membrane—(GAC) Adsorption Hybrid System in Reverse Osmosis Concentrate Treatment. Sep. Purif. Technol. 2015, 146, 8–14. [Google Scholar] [CrossRef]
- Wang, J.; Fane, A.G.; Chew, J.W. Relationship between Scouring Efficiency and Overall Concentration of Fluidized Granular Activated Carbon (GAC) in Microfiltration. Chem. Eng. Res. Des. 2018, 132, 28–39. [Google Scholar] [CrossRef]
- Chang, S.; Ahmad, R.; Kwon, D.; Kim, J. Hybrid Ceramic Membrane Reactor Combined with Fluidized Adsorbents and Scouring Agents for Hazardous Metal-Plating Wastewater Treatment. J. Hazard. Mater. 2020, 388, 121777. [Google Scholar] [CrossRef]
- Fortunato, L.; Ranieri, L.; Naddeo, V.; Leiknes, T. Fouling Control in a Gravity-Driven Membrane (GDM) Bioreactor Treating Primary Wastewater by Using Relaxation and/or Air Scouring. J. Membr. Sci. 2020, 610, 118261. [Google Scholar] [CrossRef]
- Pradhan, M.; Vigneswaran, S.; Kandasamy, J.; Aim, R.B. Combined Effect of Air and Mechanical Scouring of Membranes for Fouling Reduction in Submerged Membrane Reactor. Desalination 2012, 288, 58–65. [Google Scholar] [CrossRef]
- Johir, M.A.H.; Aryal, R.; Vigneswaran, S.; Kandasamy, J.; Grasmick, A. Influence of Supporting Media in Suspension on Membrane Fouling Reduction in Submerged Membrane Bioreactor (SMBR). J. Membr. Sci. 2011, 374, 121–128. [Google Scholar] [CrossRef]
- Johir, M.A.; Shanmuganathan, S.; Vigneswaran, S.; Kandasamy, J. Performance of Submerged Membrane Bioreactor (SMBR) with and without the Addition of the Different Particle Sizes of GAC as Suspended Medium. Bioresour. Technol. 2013, 141, 13–18. [Google Scholar] [CrossRef]
- Aslam, M.; Kim, J. Investigating Membrane Fouling Associated with GAC Fluidization on Membrane with Effluent from Anaerobic Fluidized Bed Bioreactor in Domestic Wastewater Treatment. Environ. Sci. Pollut. Res. 2019, 26, 1170–1180. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Qu, F.; Liang, H.; Shao, S.; Han, Z.; Chang, H.; Du, X.; Li, G. Performance of Mesoporous Adsorbent Resin and Powdered Activated Carbon in Mitigating Ultrafiltration Membrane Fouling Caused by Algal Extracellular Organic Matter. Desalination 2014, 336, 129–137. [Google Scholar] [CrossRef]
- Hilbrandt, I.; Shemer, H.; Ruhl, A.S.; Semiat, R.; Jekel, M. Comparing Fine Particulate Iron Hydroxide Adsorbents for the Removal of Phosphate in a Hybrid Adsorption/Ultrafiltration System. Sep. Purif. Technol. 2019, 221, 23–28. [Google Scholar] [CrossRef]
- Vigneswaran, S.; Guo, W.S.; Smith, P.; Ngo, H.H. Submerged Membrane Adsorption Hybrid System (SMAHS): Process Control and Optimization of Operating Parameters. Desalination 2007, 202, 392–399. [Google Scholar] [CrossRef]
- Kim, H.-S.; Takizawa, S.; Ohgaki, S. Application of Microfiltration Systems Coupled with Powdered Activated Carbon to River Water Treatment. Desalination 2007, 202, 271–277. [Google Scholar] [CrossRef]
- Suzuki, T.; Watanabe, Y.; Ozawa, G.; Ikeda, S. Removal of Soluble Organics and Manganese by a Hybrid MF Hollow Fiber Membrane System. Desalination 1998, 117, 119–129. [Google Scholar] [CrossRef]
- Humbert, H.; Gallard, H.; Croué, J.-P. A Polishing Hybrid AER/UF Membrane Process for the Treatment of a High DOC Content Surface Water. Water Res. 2012, 46, 1093–1100. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Nguyen, T.V.; Shim, W.G.; Kandasamy, J.; Vigneswaran, S. Performance of Submerged Membrane—Ion Exchange Hybrid System with Purolite A502PS in Treating Reverse Osmosis Feed. Sep. Purif. Technol. 2014, 122, 24–31. [Google Scholar] [CrossRef]
- Verbych, S.; Hilal, N.; Sorokin, G.; Leaper, M. Ion Exchange Extraction of Heavy Metal Ions from Wastewater. Sep. Sci. Technol. 2005, 39, 2031–2040. [Google Scholar] [CrossRef]
- Li, Q.; Fu, L.; Wang, Z.; Li, A.; Shuang, C.; Gao, C. Synthesis and Characterization of a Novel Magnetic Cation Exchange Resin and Its Application for Efficient Removal of Cu2+ and Ni2+ from Aqueous Solutions. J. Clean. Prod. 2017, 165, 801–810. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Li, Q.; Shuang, C.; Zhou, Q.; Li, A.; Gao, C. Competition and Enhancement Effect in Coremoval of Atenolol and Copper by an Easily Regenerative Magnetic Cation Exchange Resin. Chemosphere 2017, 179, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Martins, V.L.; Ogden, M.D.; Jones, M.R.; Trowsdale, S.A.; Hall, P.J.; Jensen, H.S. Opportunities for Coupled Electrochemical and Ion-Exchange Technologies to Remove Recalcitrant Micropollutants in Water. Sep. Purif. Technol. 2020, 239, 116522. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Cuprys, A.K.; Maletskyi, Z.; Ratnaweera, H. Treatment Trends and Combined Methods in Removing Pharmaceuticals and Personal Care Products from Wastewater—A Review. Membranes 2023, 13, 158. [Google Scholar] [CrossRef] [PubMed]
- Neoh, C.H.; Noor, Z.Z.; Mutamim, N.S.A.; Lim, C.K. Green Technology in Wastewater Treatment Technologies: Integration of Membrane Bioreactor with Various Wastewater Treatment Systems. Chem. Eng. J. 2016, 283, 582–594. [Google Scholar] [CrossRef] [Green Version]
- Pathak, N.; Shon, H.; Vigneswaran, S. Advanced Membrane Bioreactor Hybrid Systems. In Sustainable Technologies for Water and Wastewater Treatment, 1st ed.; Kaleekkal, N.J., Mural, P.K.S., Vigneswaran, S., Ghosh, U., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 317–342. [Google Scholar] [CrossRef]
- Wijekoon, K.C.; Hai, F.I.; Kang, J.; Price, W.E.; Guo, W.; Ngo, H.H.; Cath, T.Y.; Nghiem, L.D. A Novel Membrane Distillation–Thermophilic Bioreactor System: Biological Stability and Trace Organic Compound Removal. Bioresour. Technol. 2014, 159, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Deviller, G.; Lundy, L.; Fatta-Kassinos, D. Recommendations to Derive Quality Standards for Chemical Pollutants in Reclaimed Water Intended for Reuse in Agricultural Irrigation. Chemosphere 2020, 240, 124911. [Google Scholar] [CrossRef]
- Giakoumis, T.; Vaghela, C.; Voulvoulis, N. The Role of Water Reuse in the Circular Economy. In Advances in Chemical Pollution, Environmental Management and Protection; Elsevier: Amsterdam, The Netherlands, 2020; Volume 5, pp. 227–252. [Google Scholar] [CrossRef]
- Foglia, A.; González-Camejo, J.; Radini, S.; Sgroi, M.; Li, K.; Eusebi, A.L.; Fatone, F. Transforming Wastewater Treatment Plants into Reclaimed Water Facilities in Water-Unbalanced Regions. An Overview of Possibilities and Recommendations Focusing on the Italian Case. J. Clean. Prod. 2023, 410, 137264. [Google Scholar] [CrossRef]
- Pandey, B.C. Review: Reuse of Treated Wastewater. IJRASET 2022, 10, 1915–1918. [Google Scholar] [CrossRef]
- Ghernaout, D.; Elboughdiri, N.; Alghamdi, A. Direct Potable Reuse: The Singapore NEWater Project as a Role Model. OALib 2019, 6, 97435. [Google Scholar] [CrossRef]
- Güneş, E.; Gönder, Z.B. Evaluation of the Hybrid System Combining Electrocoagulation, Nanofiltration and Reverse Osmosis for Biologically Treated Textile Effluent: Treatment Efficiency and Membrane Fouling. J. Environ. Manag. 2021, 294, 113042. [Google Scholar] [CrossRef]
- Suwaileh, W.; Johnson, D.; Hilal, N. Membrane Desalination and Water Re-Use for Agriculture: State of the Art and Future Outlook. Desalination 2020, 491, 114559. [Google Scholar] [CrossRef]
- Kim, J.E.; Phuntsho, S.; Chekli, L.; Hong, S.; Ghaffour, N.; Leiknes, T.; Choi, J.Y.; Shon, H.K. Environmental and Economic Impacts of Fertilizer Drawn Forward Osmosis and Nanofiltration Hybrid System. Desalination 2017, 416, 76–85. [Google Scholar] [CrossRef]
- Sostarturk, S.; Simonic, M.; Petrinic, I. Wastewater Treatment after Reactive Printing. Dye. Pigment. 2005, 64, 147–152. [Google Scholar] [CrossRef]
- Pearce, G.K. UF/MF Pre-Treatment to RO in Seawater and Wastewater Reuse Applications: A Comparison of Energy Costs. Desalination 2008, 222, 66–73. [Google Scholar] [CrossRef]
- Durham, B.; Bourbigot, M.M.; Pankratz, T. Membranes as Pretreatment to Desalination in Wastewater Reuse: Operating Experience in the Municipal and Industrial Sectors. Desalination 2001, 138, 83–90. [Google Scholar] [CrossRef]
- Del Pino, M.P.; Durham, B. Wastewater Reuse through Dual-Membrane Processes: Opportunities for Sustainable Water Resources. Desalination 1999, 124, 271–277. [Google Scholar] [CrossRef]
- Chapman, H. WRAMS, Sustainable Water Recycling. Desalination 2006, 188, 105–111. [Google Scholar] [CrossRef]
- Ghernaout, D. Short Communication: Requiring Reverse Osmosis Membranes Modifications—An Overview. AJCHE 2017, 5, 81. [Google Scholar] [CrossRef] [Green Version]
- Bellona, C.; Heil, D.; Yu, C.; Fu, P.; Drewes, J.E. The Pros and Cons of Using Nanofiltration in Lieu of Reverse Osmosis for Indirect Potable Reuse Applications. Sep. Purif. Technol. 2012, 85, 69–76. [Google Scholar] [CrossRef]
- Bellona, C.; Drewes, J. Viability of a Low-Pressure Nanofilter in Treating Recycled Water for Water Reuse Applications: A Pilot-Scale Study. Water Res. 2007, 41, 3948–3958. [Google Scholar] [CrossRef]
- Yangali-Quintanilla, V.; Maeng, S.K.; Fujioka, T.; Kennedy, M.; Amy, G. Proposing Nanofiltration as Acceptable Barrier for Organic Contaminants in Water Reuse. J. Membr. Sci. 2010, 362, 334–345. [Google Scholar] [CrossRef]
- Alzahrani, S.; Mohammad, A.W.; Hilal, N.; Abdullah, P.; Jaafar, O. Comparative Study of NF and RO Membranes in the Treatment of Produced Water—Part I: Assessing Water Quality. Desalination 2013, 315, 18–26. [Google Scholar] [CrossRef]
- Verliefde, A.R.D.; Cornelissen, E.R.; Heijman, S.G.J.; Verberk, J.Q.J.C.; Amy, G.L.; Van der Bruggen, B.; van Dijk, J.C. The Role of Electrostatic Interactions on the Rejection of Organic Solutes in Aqueous Solutions with Nanofiltration. J. Membr. Sci. 2008, 322, 52–66. [Google Scholar] [CrossRef]
- Guo, J.; Peng, Y.; Guo, J.; Ma, J.; Wang, W.; Wang, B. Dissolved Organic Matter in Biologically Treated Sewage Effluent (BTSE): Characteristics and Comparison. Desalination 2011, 278, 365–372. [Google Scholar] [CrossRef]
- Tomasini, H.R.; Hacifazlioglu, M.C.; Kabay, N.; Bertin, L.; Pek, T.O.; Yuksel, M. Concentrate Management for Integrated MBR-RO Process for Wastewater Reclamation and Reuse-Preliminary Tests. J. Water Process Eng. 2019, 29, 100455. [Google Scholar] [CrossRef]
- Meier, J.; Melin, T. Wastewater Reclamation by the PAC-NF Process. Desalination 2005, 178, 27–40. [Google Scholar] [CrossRef]
- Meier, J.; Melin, T.; Eilers, L.H. Nanofiltration and Adsorption on Powdered Adsorbent as Process Combination for the Treatment of Severely Contaminated Waste Water. Desalination 2002, 146, 361–366. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Johir, M.A.H.; Nguyen, T.V.; Kandasamy, J.; Vigneswaran, S. Experimental Evaluation of Microfiltration–Granular Activated Carbon (MF–GAC)/Nano Filter Hybrid System in High Quality Water Reuse. J. Membr. Sci. 2015, 476, 1–9. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Vigneswaran, S.; Nguyen, T.V.; Loganathan, P.; Kandasamy, J. Use of Nanofiltration and Reverse Osmosis in Reclaiming Micro-Filtered Biologically Treated Sewage Effluent for Irrigation. Desalination 2015, 364, 119–125. [Google Scholar] [CrossRef]
- Morillo, J.; Usero, J.; Rosado, D.; El Bakouri, H.; Riaza, A.; Bernaola, F.-J. Comparative Study of Brine Management Technologies for Desalination Plants. Desalination 2014, 336, 32–49. [Google Scholar] [CrossRef]
- Llenas, L.; Martínez-Lladó, X.; Yaroshchuk, A.; Rovira, M.; de Pablo, J. Nanofiltration as Pretreatment for Scale Prevention in Seawater Reverse Osmosis Desalination. Desalin. Water Treat. 2011, 36, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.M.; Farooque, A.M.; Jamaluddin, A.T.M.; Al-Amoudi, A.S.; Al-Sofi, M.A.K.; Al-Rubaian, A.F.; Kither, N.M.; Al-Tisan, I.A.R.; Rowaili, A. A Demonstration Plant Based on the New NF—SWRO Process. Desalination 2000, 131, 157–171. [Google Scholar] [CrossRef]
- Hassan, A.M.; Al-Sofi, M.A.K.; Al-Amoudi, A.S.; Jamaluddin, A.T.M.; Farooque, A.M.; Rowaili, A.; Dalvi, A.G.I.; Kither, N.M.; Mustafa, G.M.; Al-Tisan, I.A.R. A New Approach to Membrane and Thermal Seawater Desalination Processes Using Nanofiltration Membranes (Part 1). Desalination 1998, 118, 35–51. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Korolkov, I.V.; Dosmagambetova, S.S.; Zdorovets, M.V.; Güven, O. Recent Progress in the Membrane Distillation and Impact of Track-Etched Membranes. Polymers 2021, 13, 2520. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Muslimova, I.B.; Melnikova, G.B.; Petrovskaya, A.S.; Seitbayev, A.S.; Chizhik, S.A.; Zhappar, N.K.; Korolkov, I.V.; Güven, O.; Zdorovets, M.V. Graft Polymerization of Stearyl Methacrylate on PET Track-Etched Membranes for Oil–Water Separation. Polymers 2022, 14, 3015. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.S.; Kargari, A. Water Recovery from Reverse Osmosis Concentrate by Commercial Nanofiltration Membranes: A Comparative Study. Desalination 2022, 528, 115619. [Google Scholar] [CrossRef]
- Afrasiabi, N.; Shahbazali, E. RO Brine Treatment and Disposal Methods. Desalination Water Treat. 2011, 35, 39–53. [Google Scholar] [CrossRef]
- Ali, M.E.A. Nanofiltration Process for Enhanced Treatment of RO Brine Discharge. Membranes 2021, 11, 212. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Loganathan, P.; Kazner, C.; Johir, M.A.H.; Vigneswaran, S. Submerged Membrane Filtration Adsorption Hybrid System for the Removal of Organic Micropollutants from a Water Reclamation Plant Reverse Osmosis Concentrate. Desalination 2017, 401, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Vishwakarma, V.; Dawn, S.S.; Saravanan, K.G.; Kirubaharan, A.M.K.; Vigneswaran, S.; Naidu, G. Polymetallic Coatings to Control Biofouling in Pipelines: Challenges and Potential, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Jamil, S.; Loganathan, P.; Kazner, C.; Vigneswaran, S. Forward Osmosis Treatment for Volume Minimisation of Reverse Osmosis Concentrate from a Water Reclamation Plant and Removal of Organic Micropollutants. Desalination 2015, 372, 32–38. [Google Scholar] [CrossRef]
- Naidu, G.; Jeong, S.; Choi, Y.; Vigneswaran, S. Membrane Distillation for Wastewater Reverse Osmosis Concentrate Treatment with Water Reuse Potential. J. Membr. Sci. 2017, 524, 565–575. [Google Scholar] [CrossRef] [Green Version]
- Naidu, G.; Zhong, X.; Vigneswaran, S. Comparison of Membrane Distillation and Freeze Crystallizer as Alternatives for Reverse Osmosis Concentrate Treatment. Desalination 2018, 427, 10–18. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, C.; Wang, Y.; Fu, R.; Liu, Z.; Xu, T. Selectrodialysis with Bipolar Membrane for the Reclamation of Concentrated Brine from RO Plant. Desalination 2018, 442, 8–15. [Google Scholar] [CrossRef]
No. | Pretreatment and Experimental System | Details of Membranes | Results | Refs. | |
---|---|---|---|---|---|
Without Pretreatment | With Pretreatment | ||||
1. | Effect of coagulation on the performance of MF and UF; Coagulant was Fe. Experimental system:
| MF: hollow fiber; polyvynilidenefluoride (PVDF) material; pore size of 0.1 μm; and initial flux (L/m2 h at 50 kPa) of 1100 | Silt density index (SDI15) After MF = 3.17 | SDI15 after coagulation followed by MF = 0.75 | [29] |
UF: hollow fiber; PVDF material; pore size of 0.05 μm; and initial flux (L/m2 h at 50 kPa) of 350 | Silt density index (SDI15) After UF = 2.76 | SDI15 after coagulation followed by UF = 1.88 | |||
2. | Effect of coagulation on the performance of MF; Moringa oleifera (MO) and alum were used as coagulants. Feed water: river water; Turbidity: 7.8 NTU; Color: 8.7 PCU. | MF: hollow fiber; polyvynilidenefluoride (PVDF) material; pore size of 0.1 μm; and permeate flux (140 L/m2 h) | MF without coagulation; TMP development from 12.0 to 27 kPa over 3 h | MO (2 mL/L)—MF: TMP development from 12.0–16.5 kPa over 6 h Alum-MF: TMP development from 12–14.5 kPa over 6 h. | [33] |
Removals of contaminants by MF only: Turbidity (NTU) = 0.2 ± 0.1; Color (PCU) = 1.9 ± 0.1. | Removals by MO-MF treated: Turbidity (NTU) = 0.0; Color (PCU) = 0.3 ± 0.1. Removals by Alum-MF treated: Turbidity (NTU) = 0.0; Color (PCU) = 0.0 ± 0.0. | ||||
3. | The effect of coagulations such as alum (Al2(SO4)3) on the membrane permeability. Feed water: wastewater discharged from Wood processing facility | UP150 Microdyn Nadir™ Polyethersulfone (PES) Hydrophilic membrane at 10 bar; MWCO (da) ∼150,000; Water flux < 570 LMH/2 bar. | At 3 bar, the flux declined from 30 LMH to 5 LMH over 120 min. | Improved flux after treated by alum: 110 LMH—25 LMH over 120 min. | [36] |
NF270 DOW Filmtec Polyamide (PA) Hydrophilic 41 bar MWCO (Da) ∼200−400 Water flux 122−167 LMH/8.8 bar. | At 15 bar, the flux declined from 50 LMH to 10 LMH over 120 min. | Improved flux after treatment by alum: 80 LMH to 20 LMH over 120 min. | |||
NF90 membrane DOW Filmtec Polyamide (PA) Hydrophilic 41 bar MWCO (Da) ∼200−400 Water flux 78−102 LMH/8.8 bar. | Fouling rate was 80% with NF only. | Fouling rate was 55% after treatment with alum; 55% after treated with Moringa Oleifera powder. | |||
4. | The effect of oxidation, ozonation, and ion exchange followed by UF; Feed water: lake water. | UF membrane: polyvinylidene fluoride in a stirred cell of dead-end configuration; 0.1 μm pore size; and hydrophobic nature. | UF only: Unified membrane fouling index (UMFI) (m2/L) of 0.22. | Pretreatments such as UV/H2O2, ozonation, and AER reduced UMFI (m2/L) to 61%, 43%, and 23%, respectively. | [30] |
5. | The effect of an ion-exchange resin followed by MF in a hybrid system; Feed water: RO concentrate. | Hydrophilic modified Polyacrylonitrile (PAN), nominal pore size of 0.10 μm; surface are of 0.2 m2; manufactured by MANN + HUMMEL ULTRA-FLO PTE LTD, Singapore. | MF only: TMP development from 100 mbar to 350 mbar over 400 min of operation. Removal of DOC < 10%. | Pretreatment reduced the TMP development from 100–250 mbar over 400 min; DOC removal 55–63% at the ion-exchange resin (Purolite® A502PS). | [45] |
6. | The effect of advanced oxidation (ozonation) and biologically activated carbon (BAC) on the subsequent RO permeability. Feed water: secondary effluent of a wastewater treatment plant. | A ceramic MF membrane (Pall®, 0.1 μm, ZrO2); Filmtec® BW30 membranes; BAC column (the activated carbon, Acticarb BAC GA1000N). | RO normalized flux
| RO normalized flux
| [31] |
Experimental System | Membranes | Performance of the System in Terms of Removal Efficiency | Refs. | |
---|---|---|---|---|
1. | NF membranes Feed: petrochemical complex | TW30 | TDS = 93% Divalents = 96–98.7% Chloride ions = 90.3% | [102] |
2. | MF–GAC hybrid system Feed: wastewater treatment |
| DOC = 60–80% Micropollutants = 89–99% | [10] |
NF–RO hybrid system Feed: WWTP | Similar removals as above | |||
3. | FO to minimize the volume of ROCs Feed: WWTP | FO membrane: cellulose triacetate material with embedded polyester screen support (CTA-ES membrane 1401270); pore size = 0.74 nm | Volume reduction = 8% in five repeated steps Draw solution: 2–3 M NaCl | [107] |
4. | Membrane distillation with GAC pretreatment Feed: WWTP | A hydrophobic polytetrafluoroethylene (PTFE) flat sheet membrane (General Electric, Boston, MA, USA); pore size = 0.2 µm | Water recovery (recyclable) = 85%; good permeate quality (EC = 10–15 µS/cm; ion rejection 99%) Flux decline of
| [108] |
5. | Direct contact membrane distillation and freeze crystallizer (DCMD and FC) Feed: seawater desalination plants | A commercial hydrophobic polytetrafluoroethylene (PTFE) flat sheet membrane; pore size = 0.2 μm | Water recovery of DCMD = 60%; chemically pretreated ROCs enhanced the performance of DCMD; and water recovery of FC in a multistage freeze/thaw approach = 56–57% and good-quality freshwater ice with TDS < 0.08–0.37 g/L | [109] |
6. | Selectrodialysis with bipolar membranes (BMSED): Feed: seawater desalination plants | ASTOM ASV/CSO and Selemion ACS/CIMS monovalent selective membranes | Permaselectivity of Na+/Ca2+ and Cl−/SO42− ranged from 5–10 and 50–60 Formation of NaOH and HCl byproducts with a purity of 99.99% | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devaisy, S.; Kandasamy, J.; Nguyen, T.V.; Ratnaweera, H.; Vigneswaran, S. Membranes in Water Reclamation: Treatment, Reuse and Concentrate Management. Membranes 2023, 13, 605. https://doi.org/10.3390/membranes13060605
Devaisy S, Kandasamy J, Nguyen TV, Ratnaweera H, Vigneswaran S. Membranes in Water Reclamation: Treatment, Reuse and Concentrate Management. Membranes. 2023; 13(6):605. https://doi.org/10.3390/membranes13060605
Chicago/Turabian StyleDevaisy, Sukanyah, Jaya Kandasamy, Tien Vinh Nguyen, Harsha Ratnaweera, and Saravanamuthu Vigneswaran. 2023. "Membranes in Water Reclamation: Treatment, Reuse and Concentrate Management" Membranes 13, no. 6: 605. https://doi.org/10.3390/membranes13060605
APA StyleDevaisy, S., Kandasamy, J., Nguyen, T. V., Ratnaweera, H., & Vigneswaran, S. (2023). Membranes in Water Reclamation: Treatment, Reuse and Concentrate Management. Membranes, 13(6), 605. https://doi.org/10.3390/membranes13060605