Experimental Investigation on the Energy and Exergy Efficiency of the Vacuum Membrane Distillation System with Its Various Configurations
Abstract
:1. Introduction
2. Facility Description
3. Hybrid Configuration of the VMD System
4. Methodology
- Steady state;
- Both kinetic and potential energies are ignored;
- Neglecting fluid leakage of the VMD system’s components;
- Consider the coefficient of performance (COP) of the two chillers to be equal to 3;
- Consider that the vapor extracted from the VMD cell is in vapor phase;
- Complete condensation is assumed in the condenser compartment.
4.1. Mass, Energy, and Exergy Balances
4.2. Performance Evaluation
5. Results and Discussion
5.1. Effect of Feed Flow and Temperature on the VMD System
5.2. Energy and Exergy Flow Diagrams
5.3. Performance Evaluation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Membrane area, m2 |
C | Salinity, ppm |
COP | Coefficient of performance |
Gain output ratio | |
h | Enthalpy, kJ/kg |
Gas phase of the permeate flow, kJ/kg | |
Liquid phase of the permeate flow, kJ/kg | |
Latent heat, kJ/kg | |
Permeate flux, kg/m2·h | |
m° | Mass flow rate, kg/s |
P | Pressure, kpa |
Vacuum pressure, kPa | |
Absolute pressure, kPa | |
T | Temperature, °C |
Reference temperature, °C | |
First chiller condenser’s temperature, °C | |
Second chiller condenser’s temperature, °C | |
Electrical work supplied on the heater, W | |
Work driven on the first chiller, W | |
Work driven on the second chiller, W | |
Minimum work, W | |
Volume flow rate, L/h | |
Greek | |
ηex | Exergetic efficiency, % |
ηex,u | Utilitarian exergetic efficiency, % |
Heat lost from the VMD cell, W | |
Heat lost from the condenser, W | |
Heat lost from the first chiller, W | |
Heat lost from the second chiller, W | |
Exergy flow, kJ/kg | |
Exergy destruction, W | |
Subscript | |
H1 | Inlet hot water |
H2 | Outlet hot water |
D1 | Permeate vapor |
D2 | Distillate water |
C1 | Inlet cold water of the first chiller |
C2 | Outlet cold water of the first chiller |
C3 | Inlet cold water of the second chiller |
C4 | Outlet cold water of the second chiller |
H | Heater |
VMD | Vacuum membrane distillation |
C | Condenser |
CH1 | First chiller |
CH2 | Second chiller |
References
- Souhaimi, M.K.; Matsuura, T. Membrane Distillation: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Chamani, H.; Woloszyn, J.; Matsuura, T.; Rana, D.; Lan, C.Q. Pore wetting in membrane distillation: A comprehensive review. Prog. Mater. Sci. 2021, 122, 100843. [Google Scholar] [CrossRef]
- Essalhi, M.; Khayet, M. Fundamentals of membrane distillation. In Pervaporation, Vapour Permeation and Membrane Distillation; Elsevier: Amsterdam, The Netherlands, 2015; pp. 277–316. [Google Scholar]
- Meindersma, G.; Guijt, C.; De Haan, A. Desalination and water recycling by air gap membrane distillation. Desalination 2006, 187, 291–301. [Google Scholar] [CrossRef]
- Mericq, J.-P.; Laborie, S.; Cabassud, C. Vacuum membrane distillation of seawater reverse osmosis brines. Water Res. 2010, 44, 5260–5273. [Google Scholar] [CrossRef] [PubMed]
- Boukhriss, M.; Timoumi, M.; Bacha, H.B. Experimental of membrane distillation unit coupled with a DCMD using solar energy. Sol. Compass 2023, 7, 100055. [Google Scholar] [CrossRef]
- Moreira, V.R.; Raad, J.V.; Lazarini, J.X.; Santos, L.V.; Amaral, M.C. Recent progress in membrane distillation configurations powered by renewable energy sources and waste heat. J. Water Process Eng. 2023, 53, 103816. [Google Scholar] [CrossRef]
- Fontananova, E.; Grosso, V.; Pantuso, E.; Donato, L.; Di Profio, G. Energy duty in direct contact membrane distillation of hypersaline brines operating at the water-energy nexus. J. Membr. Sci. 2023, 676, 121585. [Google Scholar] [CrossRef]
- Guillén-Burrieza, E.; Blanco, J.; Zaragoza, G.; Alarcón, D.-C.; Palenzuela, P.; Ibarra, M.; Gernjak, W. Experimental analysis of an air gap membrane distillation solar desalination pilot system. J. Membr. Sci. 2011, 379, 386–396. [Google Scholar] [CrossRef]
- Bouguecha, S.T.; Aly, S.E.; Al-Beirutty, M.H.; Hamdi, M.M.; Boubakri, A. Solar driven DCMD: Performance evaluation and thermal energy efficiency. Chem. Eng. Res. Des. 2015, 100, 331–340. [Google Scholar] [CrossRef]
- Najib, A.; Orfi, J.; Alansary, H.; Ali, E.M. An experimental investigation of a solar-driven desalination system based on multi-effect membrane distillation. Desalination Water Treat. 2020, 198, 1–18. [Google Scholar] [CrossRef]
- Najib, A.; Orfi, J.; Alansary, H.; Ali, E. Assessing the impact of operating conditions on the energy and exergy efficiency for multi-effect vacuum membrane distillation systems. Water 2021, 13, 1500. [Google Scholar] [CrossRef]
- Golubev, G.; Eremeev, I.; Makaev, S.; Shalygin, M.; Vasilevsky, V.; He, T.; Drioli, E.; Volkov, A. Thin-film distillation coupled with membrane condenser for brine solutions concentration. Desalination 2021, 503, 114956. [Google Scholar] [CrossRef]
- Najib, A.; Al-Ansary, H.; Orfi, J.; Ali, E.; Almehmadi, F.A. Performance Comparison of Cross-and Forward-Flow Configurations for Multiple-Effect Vacuum Membrane Distillation. Membranes 2022, 12, 495. [Google Scholar] [CrossRef]
- Zhao, S.; Feron, P.H.; Chen, X.; Boztepe, I.; Zhang, J.; Mirza, N.R.; Kong, L. Gas flow enhanced mass transfer in vacuum membrane distillation. Desalination 2023, 552, 116434. [Google Scholar] [CrossRef]
- Dong, G.; Cha-Umpong, W.; Hou, J.; Ji, C.; Chen, V. Open-source industrial-scale module simulation: Paving the way towards the right configuration choice for membrane distillation. Desalination 2019, 464, 48–62. [Google Scholar] [CrossRef]
- Ibrahim, S.S.; Alsalhy, Q.F. How far can membrane characteristic parameters bestow at the vacuum membrane distillation (VMD) performance: Modeling and simulation. Sep. Sci. Technol. 2022, 57, 1211–1233. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Boutikos, P.; Mathioulakis, E.; Belessiotis, V. Experimental evaluation of the performance and energy efficiency of a Vacuum Multi-Effect Membrane Distillation system. Desalination 2017, 408, 70–80. [Google Scholar] [CrossRef]
- Andrés-Mañas, J.; Ruiz-Aguirre, A.; Acién, F.G.; Zaragoza, G. Assessment of a pilot system for seawater desalination based on vacuum multi-effect membrane distillation with enhanced heat recovery. Desalination 2018, 443, 110–121. [Google Scholar] [CrossRef]
- Miladi, R.; Frikha, N.; Gabsi, S. Exergy analysis of a solar-powered vacuum membrane distillation unit using two models. Energy 2017, 120, 872–883. [Google Scholar] [CrossRef]
- Banat, F.; Jwaied, N.; Rommel, M.; Koschikowski, J.; Wieghaus, M. Performance evaluation of the “large SMADES” autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan. Desalination 2007, 217, 17–28. [Google Scholar] [CrossRef]
- Johnson, W. Multi-Zone Automatic Temperature Control System; ASME: New York, NY, USA, 1985. [Google Scholar]
- Sharqawy, M.H.; JLienhard, H.; Zubair, S.M. Thermophysical properties of seawater: A review of existing correlations and data. Desalination Water Treat. 2010, 16, 354–380. [Google Scholar] [CrossRef]
- Sharqawy, M.H.; Zubair, S.M. On exergy calculations of seawater with applications in desalination systems. Int. J. Therm. Sci. 2011, 50, 187–196. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Boles, M.A.; Kanoğlu, M. Thermodynamics: An Engineering Approach; McGraw-hill: New York, NY, USA, 2011; Volume 5. [Google Scholar]
- Klein, S.A.; Nellis, G. Mastering EES; F-Chart Software: Madison, WI, USA, 2013. [Google Scholar]
- Su, W.; Li, J.; Lu, Z.; Jin, X.; Zhang, J.; Liu, Z.; Xiaosong, Z. Performance analysis and optimization of a solar assisted heat pump-driven vacuum membrane distillation system for liquid desiccant regeneration. Energy Convers. Manag. 2024, 301, 118047. [Google Scholar] [CrossRef]
Character of Layer | Detail |
---|---|
Hydrophobic membrane | Polytetrafluoroethylene (PTFE) |
Dimension | 12 mm × 9 mm |
Effective area of one effect | 0.0108 m2 |
Membrane thickness | 64–127 μm |
Porosity | ~75% |
Tortuosity | ~1.33 |
Mean pore size | ~0.45 µm |
State | Liquid | T (°C) | Pa (kPa) | m° (kg/min) | C (ppm) | h (kJ/kg) | s (kJ/kg·k) | (kJ/kg) |
---|---|---|---|---|---|---|---|---|
H1 | Saline water | 70.1 | 155.0 | ~2.046 | 65,000 | 270.0 | 0.87 | 25.29 |
H2 | Saline water | 66.4 | 134.0 | ~2.041 | 65,152 | 255.5 | 0.82 | 22.79 |
D1 | Distillate water | 69.7 | 36.0 | ~0.005 | 43 | 2626.0 | 7.76 | 437.10 |
D2 | Distillate water | 67.1 | 101.3 | ~0.005 | 43 | 280.9 | 0.92 | 22.06 |
C1 | Distillate water | 9.1 | 118.0 | ~2.050 | 5 | 38.3 | 0.14 | ~0.00 |
C2 | Distillate water | 11.6 | 107.2 | ~2.050 | 5 | 48.5 | 0.17 | 0.05 |
State | Liquid | T (°C) | Pa (kPa) | m° (kg/min) | C (ppm) | h (kJ/kg) | s (kJ/kg·k) | (kJ/kg) |
---|---|---|---|---|---|---|---|---|
H1 | Saline water | 70.2 | 157.5 | ~2.046 | 65,000 | 270.3 | 0.87 | 25.35 |
H2 | Saline water | 63.8 | 133.5 | ~2.033 | 65,438 | 245.5 | 0.80 | 21.17 |
D1 | Distillate water | 70.0 | 11.3 | ~0.013 | 35 | 2626.0 | 7.75 | 439.7 |
D2 | Distillate water | 69.6 | 101.3 | ~0.013 | 35 | 291.3 | 0.95 | 23.88 |
C1 | Distillate water | 11.2 | 122.5 | ~2.050 | 5 | 46.8 | 0.17 | ~0.03 |
C2 | Distillate water | 11.3 | 110.5 | ~2.050 | 5 | 47.3 | 0.17 | ~0.04 |
C3 | Ethylene glycol | 23.1 | 132.5 | ~4.500 | 50% in water | 96.2 | 0.34 | 0.86 |
C4 | Ethylene glycol | 28.4 | 110.0 | ~4.500 | 50% in water | 105.6 | 0.37 | 1.37 |
Reference Number | Miladi et al. [20] | Najib et al. [12] | The Present Work | |
---|---|---|---|---|
Base | Hybrid | |||
Membrane distillation configuration | VMD | V-MEMD | VMD | VMD |
Membrane distillation module | Hollow fiber | Flat sheet | Flat sheet | Flat sheet |
Membrane area, A (m2) | N/A | 5.12 | 0.0108 | 0.0108 |
Feed water type | liquid desiccant (LiCl) | Brackish water | a synthetic salt solution | a synthetic salt solution |
Hot water temperature, (°C) | ~81 | 55–75 | 40–71 | 40–71 |
Hot flow rate, (L/h) | ~2232 b | 840 | 120–360 | 120–360 |
Cold-side absolute pressure, (kpa) | 7.0 | 11.5 | 9.7–35.9 | 7.9–11.3 |
Cold water temperature, (°C) | 29.0 | 20.0–45.0 | 9.1–11.2 | 9.1–23.1 |
Feed flow rate, (L/h) | N/A | 87–159 | N/A | N/A |
Distillate water, (kg/m2·h) | N/A | 0.6–17.2 | 5.0–25.3 | 13.6–72.6 |
Gain output ratio, | 2.20 b | 0.40–5.05 | 0.37–0.38 | 0.55–0.63 |
Exergetic efficiency, ηex (%) | 2.3–3.25 | 0–18.2 | 1.8–6.1 | 2.1–5.7 |
Utilitarian exergetic efficiency, ηex,u (%) | 9.96 | 2.5 b–57.4 b | 2.2–5.3 | 4.1–8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najib, A.; Mana, T.; Ali, E.; Al-Ansary, H.; Almehmadi, F.A.; Alhoshan, M. Experimental Investigation on the Energy and Exergy Efficiency of the Vacuum Membrane Distillation System with Its Various Configurations. Membranes 2024, 14, 54. https://doi.org/10.3390/membranes14020054
Najib A, Mana T, Ali E, Al-Ansary H, Almehmadi FA, Alhoshan M. Experimental Investigation on the Energy and Exergy Efficiency of the Vacuum Membrane Distillation System with Its Various Configurations. Membranes. 2024; 14(2):54. https://doi.org/10.3390/membranes14020054
Chicago/Turabian StyleNajib, Abdullah, Turki Mana, Emad Ali, Hany Al-Ansary, Fahad Awjah Almehmadi, and Mansour Alhoshan. 2024. "Experimental Investigation on the Energy and Exergy Efficiency of the Vacuum Membrane Distillation System with Its Various Configurations" Membranes 14, no. 2: 54. https://doi.org/10.3390/membranes14020054
APA StyleNajib, A., Mana, T., Ali, E., Al-Ansary, H., Almehmadi, F. A., & Alhoshan, M. (2024). Experimental Investigation on the Energy and Exergy Efficiency of the Vacuum Membrane Distillation System with Its Various Configurations. Membranes, 14(2), 54. https://doi.org/10.3390/membranes14020054