Production and Bioconversion Efficiency of Enzyme Membrane Bioreactors in the Synthesis of Valuable Products
Abstract
:1. Introduction
2. Enzyme Membrane Synthesis and Challenges
2.1. Enzyme Membrane Synthesis
2.2. Challenges for Enzyme Membrane Bioreactor
3. Production of Different Valuable Product Using EMR
3.1. Production of Oligosaccharides
3.2. Oligodextran Production
3.3. Oligorutin Production
3.4. Protein Hydrolysates Production
3.5. Biohydrogen Production
3.6. N-Acetylneuraminic Acid Production
3.7. Sugar Production
4. Bioconversion or Transformation Using EMR
4.1. Conversion of Chitin
4.2. Conversion of Gluten
4.3. Bioconversion of Lactose
4.4. Biological Aging of Beer
4.5. Conversion of Lignin
4.6. Conversion of Hesperidin
4.7. Conversion of Inulin
5. Conclusions and Future Prospects
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Arboleda Meija, J.A.; Parpinello, G.P.; Versari, A.; Conidi, C.; Cassano, A. Microwave-assisted extraction and membrane-based separation of biophenols from red wine lees. Food Bioprod. Process. 2019, 117, 74–83. [Google Scholar] [CrossRef]
- Asano, S.; Muranaka, Y.; Maki, T.; Ikeda, K.; Mae, K. Kinetic Modeling of an Enzyme Membrane Reactor for the Selective Production of Oligosaccharides. Fermentation 2022, 8, 701. [Google Scholar] [CrossRef]
- Sitanggang, A.B.; Drews, A.; Kraume, M. Enzymatic membrane reactors: Designs, applications, limitations and outlook. Chem. Eng. Process.—Process Intensif. 2022, 180, 108729. [Google Scholar] [CrossRef]
- Mejia, J.A.A.; Ricci, A.; Figueiredo, A.S.; Versari, A.; Cassano, A.; de Pinho, M.N.; Parpinello, G.P. Membrane-based Operations for the Fractionation of Polyphenols and Polysaccharides from Winery Sludges. Food Bioprocess Technol. 2022, 15, 933–948. [Google Scholar] [CrossRef]
- Botelho, V.A.; Mateus, M.; Petrus, J.C.C.; de Pinho, M.N. Membrane Bioreactor for Simultaneous Synthesis and Fractionation of Oligosaccharides. Membranes 2022, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Granados, M.; Farran, A.; Cortina, J.L.; Saurina, J.; Valderrama, C. Recovery of Natural Polyphenols from Spinach and Orange By-Products by Pressure-Driven Membrane Processes. Membranes 2022, 12, 669. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Saurina, J.; Granados, M.; Cortina, J.L. Integration of membrane processes for the recovery and separation of polyphenols from winery and olive mill wastes using green solvent-based processing. J. Environ. Manag. 2022, 307, 114555. [Google Scholar] [CrossRef]
- Mir-Cerdà, A.; Nuñez, O.; Granados, M.; Sentellas, S.; Saurina, J. An overview of the extraction and characterization of bioactive phenolic compounds from agri-food waste within the framework of circular bioeconomy. TrAC Trends Anal. Chem. 2023, 161, 116994. [Google Scholar] [CrossRef]
- Fuso, A.; Rosso, F.; Rosso, G.; Risso, D.; Manera, I.; Caligiani, A. Production of xylo-oligosaccharides (XOS) of tailored degree of polymerization from acetylated xylans through modelling of enzymatic hydrolysis. Food Res. Int. 2022, 162, 112019. [Google Scholar] [CrossRef]
- Torrado, I.; Dionísio, A.; Fernandes, M.C.; Roseiro, L.B.; Carvalheiro, F.; Pereira, H.; Duarte, L.C. Production of Oligosaccharides from Pine Nut Shells by Autohydrolysis. BioEnergy Res. 2023. [Google Scholar] [CrossRef]
- Bhatia, R.; Lad, J.B.; Bosch, M.; Bryant, D.N.; Leak, D.; Hallett, J.P.; Franco, T.T.; Gallagher, J.A. Production of oligosaccharides and biofuels from Miscanthus using combinatorial steam explosion and ionic liquid pretreatment. Bioresour. Technol. 2021, 323, 124625. [Google Scholar] [CrossRef] [PubMed]
- Costa-Pérez, A.; Medina, S.; Sánchez-Bravo, P.; Domínguez-Perles, R.; García-Viguera, C. The (Poly)phenolic Profile of Separate Winery By-Products Reveals Potential Antioxidant Synergies. Molecules 2023, 28, 2081. [Google Scholar] [CrossRef] [PubMed]
- Mir-Cerdà, A.; Carretero, I.; Coves, J.R.; Pedrouso, A.; Castro-Barros, C.M.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M.; Sentellas, S. Recovery of phenolic compounds from wine lees using green processing: Identifying target molecules and assessing membrane ultrafiltration performance. Sci. Total Environ. 2023, 857, 159623. [Google Scholar] [CrossRef]
- Aghajani Delavar, M.; Wang, J. Modeling microbial growth of dynamic membrane in a biohydrogen production bioreactor. Int. J. Hydrogen Energy 2022, 47, 7666–7681. [Google Scholar] [CrossRef]
- Ayanasamy, K.; Baharudin, A.; Jamek, S.; Saufi, S.M.; Hairom, N.H.H.; Mohd Sueb, M.S. High Sugar Production from Hydrolysate of Pineapple Residues via Integrated Enzyme-Membrane System. Chem. Eng. Technol. 2022, 45, 1777–1784. [Google Scholar] [CrossRef]
- Ewert, J.; Claaßen, W.; Stressler, T.; Fischer, L. An innovative two-step enzymatic membrane bioreactor approach for the continuous production of antioxidative casein hydrolysates with reduced bitterness. Biochem. Eng. J. 2019, 150, 107261. [Google Scholar] [CrossRef]
- Schmidt, M.; Prager, A.; Schönherr, N.; Gläser, R.; Schulze, A. Reagent-Free Immobilization of Industrial Lipases to Develop Lipolytic Membranes with Self-Cleaning Surfaces. Membranes 2022, 12, 599. [Google Scholar] [CrossRef]
- Díaz, S.; Ortega, Z.; Benítez, A.N.; Marrero, M.D.; Carvalheiro, F.; Duarte, L.C.; Matsakas, L.; Krikigianni, E.; Rova, U.; Christakopoulos, P.; et al. Oligosaccharides production by enzymatic hydrolysis of banana pseudostem pulp. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Ávila, P.F.; Silva, M.F.; Martins, M.; Goldbeck, R. Cello-oligosaccharides production from lignocellulosic biomass and their emerging prebiotic applications. World J. Microbiol. Biotechnol. 2021, 37, 73. [Google Scholar] [CrossRef]
- Martins, G.N.; Ureta, M.M.; Tymczyszyn, E.E.; Castilho, P.C.; Gomez-Zavaglia, A. Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis. Front. Nutr. 2019, 6, 78. [Google Scholar] [CrossRef]
- Pázmándi, M.; Kovács, Z.; Balga, E.; Kovács, M.; Maráz, A. Production of high-purity galacto-oligosaccharides by depleting glucose and lactose from galacto-oligosaccharide syrup with yeasts. Yeast 2020, 37, 515–530. [Google Scholar] [CrossRef]
- Mazzei, R.; Yihdego Gebreyohannes, A.; Papaioannou, E.; Nunes, S.P.; Vankelecom, I.F.J.; Giorno, L. Enzyme catalysis coupled with artificial membranes towards process intensification in biorefinery—A review. Bioresour. Technol. 2021, 335, 125248. [Google Scholar] [CrossRef]
- Al-Mardeai, S.; Elnajjar, E.; Hashaikeh, R.; Kruczek, B.; Van der Bruggen, B.; Al-Zuhair, S. Radial flow tubular membrane bioreactor for enhanced enzymatic hydrolysis of lignocellulosic waste biomass. Fuel 2023, 341, 127648. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, J.; Wan, Y. Regenerable temperature-responsive biocatalytic nanofiltration membrane for organic micropollutants removal. iScience 2022, 25, 103671. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Conidi, C.; Cassano, A. Membrane-based technologies for meeting the recovery of biologically active compounds from foods and their by-products. Crit. Rev. Food Sci. Nutr. 2019, 59, 2927–2948. [Google Scholar] [CrossRef]
- Qi, L.; Qiao, J. Design of Switchable Enzyme Carriers Based on Stimuli-Responsive Porous Polymer Membranes for Bioapplications. ACS Appl. Bio Mater. 2021, 4, 4706–4719. [Google Scholar] [CrossRef]
- Zou, X.-G.; Chi, Y.; Cao, Y.-Q.; Zheng, M.; Deng, Z.-Y.; Cai, M.; Yang, K.; Sun, P.-L. Preparation Process Optimization of Peptides from Agaricus blazei Murrill, and Comparison of Their Antioxidant and Immune-Enhancing Activities Separated by Ultrafiltration Membrane Technology. Foods 2023, 12, 251. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Sun, G. Facile Fabrication of Hydrophilic Nanofibrous Membranes with an Immobilized Metal–Chelate Affinity Complex for Selective Protein Separation. ACS Appl. Mater. Interfaces 2014, 6, 925–932. [Google Scholar] [CrossRef]
- Yang, Y.-J.; Chang, H.-C.; Wang, M.-Y.; Suen, S.-Y. Preparation of Polyacrylonitrile-Based Immobilized Copper-Ion Affinity Membranes for Protein Adsorption. Membranes 2023, 13, 271. [Google Scholar] [CrossRef] [PubMed]
- Muñiz-Mouro, A.; Gullón, B.; Lu-Chau, T.A.; Eibes, G. Green and sustainable synthesis of oligorutin using an enzymatic membrane reactor: Process optimization. Food Bioprod. Process. 2020, 124, 434–444. [Google Scholar] [CrossRef]
- Imam, H.T.; Marr, P.C.; Marr, A.C. Enzyme entrapment, biocatalyst immobilization without covalent attachment. Green Chem. 2021, 23, 4980–5005. [Google Scholar] [CrossRef]
- Bachosz, K.; Vu, M.T.; Nghiem, L.D.; Zdarta, J.; Nguyen, L.N.; Jesionowski, T. Enzyme-based control of membrane biofouling for water and wastewater purification: A comprehensive review. Environ. Technol. Innov. 2022, 25, 102106. [Google Scholar] [CrossRef]
- Nguyenhuynh, T.; Nithyanandam, R.; Chong, C.H.; Krishnaiah, D. Configuration modification of a submerged membrane reactor for enzymatic hydrolysis of cellulose. Biocatal. Agric. Biotechnol. 2017, 12, 50–58. [Google Scholar] [CrossRef]
- Zdarta, A.; Zdarta, J. Study of Membrane-Immobilized Oxidoreductases in Wastewater Treatment for Micropollutants Removal. Int. J. Mol. Sci. 2022, 23, 14086. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Amin, S.; Mohamed, A.A. Fouling in reverse osmosis membranes: Monitoring, characterization, mitigation strategies and future directions. Heliyon 2023, 9, e14908. [Google Scholar] [CrossRef]
- Li, X.; Su, Z.; Chen, X.; Luo, J.; Pinelo, M. Mathematical modelling of reaction-separation in an enzymatic membrane reactor during oligodextran production. J. Membr. Sci. 2021, 623, 119082. [Google Scholar] [CrossRef]
- Fan, R.; Burghardt, J.P.; Prell, F.; Zorn, H.; Czermak, P. Production and purification of fructo-oligosaccharides using an enzyme membrane bioreactor and subsequent fermentation with probiotic Bacillus coagulans. Sep. Purif. Technol. 2020, 251, 117291. [Google Scholar] [CrossRef]
- Singh, S.K.; Maiti, A.; Pandey, A.; Jain, N.; Sharma, C. Fouling limitations of osmotic pressure-driven processes and its remedial strategies: A review. J. Appl. Polym. Sci. 2023, 140, e53295. [Google Scholar] [CrossRef]
- Su, H.; Zhang, Q.; Yu, K.; Lu, C.; Xiao, Z.; Huang, Q.; Wang, S.; Wang, Y.; Wang, G.; Liang, J. A Novel Neutral and Mesophilic β-Glucosidase from Coral Microorganisms for Efficient Preparation of Gentiooligosaccharides. Foods 2021, 10, 2985. [Google Scholar] [CrossRef]
- Schmideder, A.; Schottroff, F.; Klermund, L.; Castiglione, K.; Weuster-Botz, D. Studies on the enzymatic synthesis of N-acetylneuraminic acid with continuously operated enzyme membrane reactors on a milliliter scale. Biochem. Eng. J. 2017, 119, 9–19. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, X.; Yu, S.; Zhang, W.; Zhang, T.; Jiang, B.; Mu, W. Bioconversion of inulin to difructose anhydride III by a novel inulin fructotransferase from Arthrobacter chlorophenolicus A6. Process Biochem. 2018, 75, 130–138. [Google Scholar] [CrossRef]
- Li, J.; Mao, X. Construction of an Immobilized Enzyme Membrane Reactor for Efficient and Sustainable Conversion of Ionic Liquid/Ultrasound-Pretreated Chitin. ACS Sustain. Chem. Eng. 2022, 10, 7536–7544. [Google Scholar] [CrossRef]
- Fan, R.; Dresler, J.; Tissen, D.; Wen, L.; Czermak, P. In situ purification and enrichment of fructo-oligosaccharides by fermentative treatment with Bacillus coagulans and selective catalysis using immobilized fructosyltransferase. Bioresour. Technol. 2021, 342, 125969. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Burghardt, J.P.; Dresler, J.; Czermak, P. Process Design for the Production of Prebiotic Oligosaccharides in an Enzyme Membrane Bioreactor: Interaction between Enzymatic Reaction and Membrane Filtration. Chem. Ing. Tech. 2021, 93, 306–310. [Google Scholar] [CrossRef]
- Hang, H.; Bao, S.; Zhao, M.; Wang, B.; Zhou, S.; Jiang, B. Enzyme membrane reactor coupled with nanofiltration membrane process for difructose anhydride III from inulin conversion. Chem. Eng. J. 2015, 276, 75–82. [Google Scholar] [CrossRef]
- Cao, T.; Pázmándi, M.; Galambos, I.; Kovács, Z. Continuous Production of Galacto-Oligosaccharides by an Enzyme Membrane Reactor Utilizing Free Enzymes. Membranes 2020, 10, 203. [Google Scholar] [CrossRef]
- Bueno-Zabala, K.A.; Lopresto, C.G.; Calabro, V.; Curcio, S.; Ruiz-Colorado, A.A.; Chakraborty, S. Optimized Production of Glucose Syrup and Enzyme Membrane Reactor Using In Situ Product Recovery. Ind. Eng. Chem. Res. 2020, 59, 21305–21311. [Google Scholar] [CrossRef]
- Burghardt, J.P.; Coletta, L.A.; van der Bolt, R.; Ebrahimi, M.; Gerlach, D.; Czermak, P. Development and Characterization of an Enzyme Membrane Reactor for Fructo-Oligosaccharide Production. Membranes 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Deng, T.; Cao, W.; Shen, F.; Wan, Y. From sucrose to fructo-oligosaccharides: Production and purification of fructo-oligosaccharides by an integrated enzymatic catalysis and membrane separation process. Sep. Purif. Technol. 2022, 288, 120678. [Google Scholar] [CrossRef]
- Acosta-Fernández, R.; Poerio, T.; Nabarlatz, D.; Giorno, L.; Mazzei, R. Enzymatic Hydrolysis of Xylan from Coffee Parchment in Membrane Bioreactors. Ind. Eng. Chem. Res. 2020, 59, 7346–7354. [Google Scholar] [CrossRef]
- Mafei, T.D.T.; Neto, F.; Peixoto, G.; de Baptista Neto, Á.; Monti, R.; Masarin, F. Extraction and Characterization of Hemicellulose from Eucalyptus By-product: Assessment of Enzymatic Hydrolysis to Produce Xylooligosaccharides. Appl. Biochem. Biotechnol. 2020, 190, 197–217. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, J.; Arya, S.K.; Khatri, M.; Singh, G.; Izyan Wan Azelee, N.; Rajagopal, R.; Woong Chang, S.; Ravindran, B.; Kumar Awasthi, M. Efficacious bioconversion of waste walnut shells to xylotetrose and xylopentose by free xylanase (Xy) and MOF immobilized xylanase (Xy-Cu-BTC). Bioresour. Technol. 2022, 357, 127374. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Ríos, K.L.; Rémond, C.; Dejonghe, W.; Van Roy, S.; Vangeel, S.; Van Hecke, W. Production of tailored xylo-oligosaccharides from beechwood xylan by different enzyme membrane reactors and evaluation of their prebiotic activity. Biochem. Eng. J. 2022, 185, 108494. [Google Scholar] [CrossRef]
- Zhou, J.; Harindintwali, J.D.; Yang, W.; Han, M.; Deng, B.; Luan, H.; Zhang, W.; Liu, X.; Yu, X. Engineering of a chitosanase fused to a carbohydrate-binding module for continuous production of desirable chitooligosaccharides. Carbohydr. Polym. 2021, 273, 118609. [Google Scholar] [CrossRef]
- Elst, K.; Babbar, N.; Van Roy, S.; Baldassarre, S.; Dejonghe, W.; Maesen, M.; Sforza, S. Continuous production of pectic oligosaccharides from sugar beet pulp in a cross flow continuous enzyme membrane reactor. Bioprocess Biosyst. Eng. 2018, 41, 1717–1729. [Google Scholar] [CrossRef]
- Su, Z.; Luo, J.; Sigurdardóttir, S.B.; Manferrari, T.; Jankowska, K.; Pinelo, M. An enzymatic membrane reactor for oligodextran production: Effects of enzyme immobilization strategies on dextranase activity. Carbohydr. Polym. 2021, 271, 118430. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, L.; Pinelo, M.; Huang, Y.; Zhou, W.; Wan, Y.; Luo, J. Integrated microsphere-packed bed enzymatic membrane reactor for enhanced bioconversion efficiency and stability: A proof-of-concept study. J. Membr. Sci. 2022, 658, 120732. [Google Scholar] [CrossRef]
- Sainio, T.; Kaspereit, M. Analysis of reactor–separator processes for polymeric and oligomeric degradation products with controlled molar mass distributions. Chem. Eng. Sci. 2021, 229, 116154. [Google Scholar] [CrossRef]
- Zohra, R.R.; Aman, A.; Ansari, A.; Haider, M.S.; Qader, S.A. Purification, characterization and end product analysis of dextran degrading endodextranase from Bacillus licheniformis KIBGE-IB25. Int. J. Biol. Macromol. 2015, 78, 243–248. [Google Scholar] [CrossRef]
- Muñiz-Mouro, A.; Ferreira, A.M.; Coutinho, J.A.P.; Freire, M.G.; Tavares, A.P.M.; Gullón, P.; González-García, S.; Eibes, G. Integrated Biocatalytic Platform Based on Aqueous Biphasic Systems for the Sustainable Oligomerization of Rutin. ACS Sustain. Chem. Eng. 2021, 9, 9941–9950. [Google Scholar] [CrossRef]
- Cheison, S.C.; Wang, Z.; Xu, S.-Y. Preparation of Whey Protein Hydrolysates Using a Single- and Two-Stage Enzymatic Membrane Reactor and Their Immunological and Antioxidant Properties: Characterization by Multivariate Data Analysis. J. Agric. Food Chem. 2007, 55, 3896–3904. [Google Scholar] [CrossRef] [PubMed]
- Firmansyah, M.; Abduh, M.Y. Production of protein hydrolysate containing antioxidant activity from Hermetia illucens. Heliyon 2019, 5, e02005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, A.; Hernández-Herreros, N.; García, J.L.; Auxiliadora Prieto, M. Enhancement of biohydrogen production rate in Rhodospirillum rubrum by a dynamic CO-feeding strategy using dark fermentation. Biotechnol. Biofuels 2021, 14, 168. [Google Scholar] [CrossRef]
- Kucharska, K.; Rybarczyk, P.; Hołowacz, I.; Łukajtis, R.; Glinka, M.; Kamiński, M. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes. Molecules 2018, 23, 2937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.W.; Nandong, J. Modeling of biohydrogen production using generalized multi-scale kinetic model: Impacts of fermentation conditions. Int. J. Hydrogen Energy 2022, 47, 17926–17945. [Google Scholar] [CrossRef]
- Varanasi, J.L.; Das, D. Maximizing biohydrogen production from water hyacinth by coupling dark fermentation and electrohydrogenesis. Int. J. Hydrogen Energy 2020, 45, 5227–5238. [Google Scholar] [CrossRef]
- Kao, C.H.; Chen, Y.Y.; Wang, L.R.; Lee, Y.C. Production of N-acetyl-D-neuraminic Acid by Recombinant Single Whole Cells Co-expressing N-acetyl-D-glucosamine-2-epimerase and N-acetyl-D-neuraminic Acid Aldolase. Mol. Biotechnol. 2018, 60, 427–434. [Google Scholar] [CrossRef]
- Lindeque, R.M.; Woodley, J.M. Reactor Selection for Effective Continuous Biocatalytic Production of Pharmaceuticals. Catalysts 2019, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- Britton, J.; Majumdar, S.; Weiss, G.A. Continuous flow biocatalysis. Chem. Soc. Rev. 2018, 47, 5891–5918. [Google Scholar] [CrossRef]
- Vasileva, N.; Ivanov, Y.; Damyanova, S.; Kostova, I.; Godjevargova, T. Hydrolysis of whey lactose by immobilized β-galactosidase in a bioreactor with a spirally wound membrane. Int. J. Biol. Macromol. 2016, 82, 339–346. [Google Scholar] [CrossRef]
- Merz, M.; Eisele, T.; Claaßen, W.; Appel, D.; Rabe, S.; Stressler, T.; Fischer, L. Continuous long-term hydrolysis of wheat gluten using a principally food-grade enzyme membrane reactor system. Biochem. Eng. J. 2015, 99, 114–123. [Google Scholar] [CrossRef]
- Krewinkel, M.; Kaiser, J.; Merz, M.; Rentschler, E.; Kuschel, B.; Hinrichs, J.; Fischer, L. Novel cellobiose 2-epimerases for the production of epilactose from milk ultrafiltrate containing lactose. J. Dairy Sci. 2015, 98, 3665–3678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.-R.; Ma, W.-X.; Han, X.-Y.; Chen, G.-E.; Xu, Z.-L.; Mao, H.-F. Self-adhesive PMIA membranes with chitosan porous beads immobilized pullulanase for efficient biological aging of beer. Colloids Surf. B Biointerfaces 2022, 218, 112720. [Google Scholar] [CrossRef] [PubMed]
- Sarma, R.; Islam, M.S.; Running, M.P.; Bhattacharyya, D. Multienzyme Immobilized Polymeric Membrane Reactor for the Transformation of a Lignin Model Compound. Polymers 2018, 10, 463. [Google Scholar] [CrossRef] [Green Version]
- Meenakshi, S.; Trilokesh, C.; Gayathri, G.; Uppuluri, K.B.; Kaleekkal, N.J. Direct entrapment and statistical optimization of cellulolytic enzymes on PVDF membranes for the hydrolysis of corncob lignocelluloses. J. Mol. Liq. 2022, 346, 117087. [Google Scholar] [CrossRef]
- Ming, S.; Li, S.; Chen, Z.; Chen, X.; Wang, F.; Deng, S.; Marszałek, K.; Zhu, Z.; Zhang, W.; Barba, F.J. Bioinspired Lipase Immobilized Membrane for Improving Hesperidin Lipophilization. Antioxidants 2022, 11, 1906. [Google Scholar] [CrossRef]
- García, M.G.; García Fernández, J.M.; Buttersack, C. Adsorption of difructose dianhydrides on hydrophobic Y-zeolites. Microporous Mesoporous Mater. 2020, 292, 109673. [Google Scholar] [CrossRef]
- Maguire, N.A.P.; Ebrahimi, M.; Fan, R.; Gießelmann, S.; Ehlen, F.; Schütz, S.; Czermak, P. Influence of Ceramic Membrane Surface Characteristics on the Flux Behavior of a Complex Fermentation Broth. Membranes 2021, 11, 402. [Google Scholar] [CrossRef]
- Busse, N.; Kraume, M.; Czermak, P. Modeling the design and operational mode of a continuous membrane reactor for enzymatic lignin modification. Biochem. Eng. J. 2017, 124, 88–98. [Google Scholar] [CrossRef]
Reactants | Name of the Enzyme | Sources | Product | Yield | Reference | |
---|---|---|---|---|---|---|
In % | g·L−1 | |||||
GOS syntheses, lactose solutions, cellulose acetate membranes | β Galactosidase | Lactose | Galactooligosaccharide | 60% | [5] | |
PVDF hollow fiber with an epoxy resin-sealed in the flux inlet of the membrane’s bottom | Spezyme Fred enzymes from Bacillus licheniformis for liquefaction and Optidex L-400 from Aspergillus niger for saccharification | Pure wheat starch with a starch content of 95.1% | Glucose Syrups | 73.6 ± 4.3 g glucose L−1 | [47] | |
Enzyme membrane reactor, FOS, fructosyltransferase (1-FFT) | Aspergillus terreus fructosyltransferase (1-FFT) | Cell-free suspension of Kluyveromyces lactis GG799 strain for enzyme production | Fructooligosaccharide | ----- | [48] | |
Soluble Biolacta N5, a Bacillus circulans-derived commercial enzyme | Biolacta N5 (derived from Bacillus circulans) | Lactose | Galactooligosaccharide | 38% | [46] | |
L-cysteine grafted polydopamine-coated membrane | FTases | Sucrose | Fructooligosaccharide | 51.4 to 92.3% | [49] | |
Sugar beet pulp + nitric acid | Viscozyme | Sugar beet pulp | Pectic oligosaccharides | 82.9 ± 9.9% | [55] | |
Ceramic membrane EMR | FTases | Sucrose (600 g·L−1) | Fructooligosaccharide | 10% | [44] | |
Transfructosylation of Sucrose by Pichia pastoris | FTases | Buffered glycerol complex medium (BMGY) | Fructooligosaccharides | 270 g·L−1 | [37] | |
Cu-BTC MOF by using CuCl2 along with BTC (benzene-1, 3, 5-tricarboxylate) | Xylanase (Xy) | Waste walnut shells | Xylotetrose and xylopentose | 11.8% X4 and 64.2% X5 | [52] | |
Methacrylate polymer Lifetech ECR8285 has butyl and epoxy groups functionalized on its surface | FTases | Sucrose | Fructooligosaccharide | 92.1% | 130–170 g·L−1 | [43] |
Beechwood xylan (BX) | CTec2 (a mixture of cellulase, glucosidase, xylanase, xylosidase and arabinosidase activity) | Beechwood xylan | Xylo-oligosaccharides (XOs) and xylose | 48% | [53] | |
Reverse hydrolysis of glucose (Blg163) | β-glucosidase gene from coral microbial metagenome produced in E. coli | Cellobiose and glucose | Gentiooligosaccharides | 70.34 ± 2.20 g·L−1 | [39] | |
Carbohydrate-binding module + Csn75 | Chitosanase Csn75 | ----- | Chitooligosaccharides | 97.75% | [54] | |
Enzymatic hydrolysis of enzymatic reactor ultrafiltration | Dextranase | Dextran | Oligodextran | ----- | [36] | |
Polydopamine → tannic acid + hydrolyzable 3-amino-propyltriethoxysilane, crosslinked and non-crosslinked dextranase | Dextranase | Dextran | Oligodextran | ----- | [56] | |
Enzymatic packed bed membrane reactor, PBR, EMR | Invertase and dextranase | Sucrose | Glucose and oligodextran | Sucrose conversion rate 85% | [57] | |
Pineapple leaves + b-xylosidase | β-xylosidase | Pineapple residues (leaves) | Sugar | Reaction and filtration rate much higher than (293.94%) reaction alone (32.23%) | [15] | |
Polysaccharide, protein | Catalytic degradation | ----- | Oligomers and polymers | 55.8% to 92.3% | [58] | |
Oligomerization reactions in organic-free reaction media | Peroxidases and laccases | Rutin | Oligorutin | ----- | [30] | |
Two-step EMBR process | Peptidases | Sodium caseinate | Antioxidative casein hydrolysates | Antioxidativity: +39% | [16] | |
Three phases of dynamic membrane formation | ----- | ----- | Dark fermentative hydrogen production | 16.4% | [14] | |
Parallel enzyme membrane reactors, cascades of EMRs | N-acyl-d-glucosamine 2-epimerase and an N-acetylneuraminate lyase. | ----- | N-acetylneuraminic acid (Neu5Ac) | ----- | [40] |
Reactants | Name of the Enzyme | Sources | Product | Yield | Reference | |
---|---|---|---|---|---|---|
In % | g·L−1 | |||||
Ceramic membrane filtration | Yeast (Kluyveromyces lactis) | ----- | K. lactis biomass | ----- | ----- | [78] |
Encapsulation of cellulolytic enzymes isolated from Trichoderma harzanium BPGF1 in polyvinylidene fluoride membrane | Trichoderma harzanium BPGF1 | Lignocellulosic biomass | Lignocellulosic biomass | 72.46 ± 2.4% | [75] | |
Hydrophobic Y-zeolites (adsorb DFAs from aqueous solution), depolymerization of inulin | Exo-inulinase | Freeze-died molasses | Difructose dianhydrides III (α-D-fructofuranose β-D-fructofuranose 1,2′:2,3′-dianhydride; αf(1,2′:2,3′)βf) | ----- | [77] | |
Enzyme membrane reactor nanofiltration | Inulin fructotransferase | Inulin | Difructosan anhydride III | 400 g·L−1 | [45] | |
Cloned Arthrobacter chlorophenolicus A6 is overexpressed on E. coli, chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis | Inulin fructotransferase | Inulin | Difructose anhydride III | Sucrose (81%), 1-kestose (72%), nystose (67%) | [41] | |
EMRS + external ceramic crossflow ultrafiltration membrane | Ligninolytic heme peroxidases | Ligninsulfonates (LSs) and kraft lignins | Lignin | ----- | [79] | |
Fabricated through layer-by-layer assembly, pH-responsive membranes, polymer membrane reactor | Glucose oxidase, peroxidase and laccase | Guaiacylglycerol-β-guaiacyl ether | Lignin, fabrication of multienzyme. | Loss 12% of initial activity | [74] | |
Cellulose ultrafiltration membrane, chitinase from Streptomycesalbolongus | Chitinase | Chitin | Convert chitin | Chitin conversion rate of 75.60% | [42] | |
Reverse filtration, crosslinking of GA and PDA coating | Candida antarctica lipase B (CAL-B) | ----- | Hesperidin esterification | 73.6 ± 4.3 g glucose L−1 | [76] | |
Food-grade EMR process, 8% ethanol | Ethanol | Flavourzyme wheat gluten | Converted wheat gluten | 6.33 g h−1 L−1 | [71] | |
Lactose + cellobiose 2-epimerases | Cellobiose 2-epimerases | Milk ultrafiltrate containing lactose | Epilactose | Epilactose production was lower (18.5%) | [72] | |
PMIA membrane | Pulluanase @chitosan | ----- | Biological aging of beer | 70.8% | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padhan, B.; Ray, M.; Patel, M.; Patel, R. Production and Bioconversion Efficiency of Enzyme Membrane Bioreactors in the Synthesis of Valuable Products. Membranes 2023, 13, 673. https://doi.org/10.3390/membranes13070673
Padhan B, Ray M, Patel M, Patel R. Production and Bioconversion Efficiency of Enzyme Membrane Bioreactors in the Synthesis of Valuable Products. Membranes. 2023; 13(7):673. https://doi.org/10.3390/membranes13070673
Chicago/Turabian StylePadhan, Bandana, Madhubanti Ray, Madhumita Patel, and Rajkumar Patel. 2023. "Production and Bioconversion Efficiency of Enzyme Membrane Bioreactors in the Synthesis of Valuable Products" Membranes 13, no. 7: 673. https://doi.org/10.3390/membranes13070673
APA StylePadhan, B., Ray, M., Patel, M., & Patel, R. (2023). Production and Bioconversion Efficiency of Enzyme Membrane Bioreactors in the Synthesis of Valuable Products. Membranes, 13(7), 673. https://doi.org/10.3390/membranes13070673