Critical State of the Art of Sugarcane Industry Wastewater Treatment Technologies and Perspectives for Sustainability
Abstract
:1. Introduction
2. Characteristics of Sugarcane Industry Wastewater
2.1. Organoleptic Parameters
2.2. Physicochemical Parameters
2.3. The pH and the Temperature
Parameters | Sugar Production | Distillery Vinasse + Blanquette | References |
---|---|---|---|
Odor | - | Unacceptable | [27,28] |
Color (pt-Co) | - | 12–17,000 | [15,39] |
Temperature (°C) | 29.3–44.3 | 46.3–66.3 | [14] |
pH | 6.7–8.4 | 3.9–4.9 | [14,40] |
Conductivity (µm/cm) | 540.3–925.9 | 3910–50,500 | [41] |
BOD5 (mg/L) | 654.6–1968.5 | 5000–60,000 | [40,42,43] |
COD (mg/L) | 1100.3–2148.9 | 16,000–190,000 | [12,44,45] |
Chloride (mg/L) | 30.5–866.6 | 600.6–7475.7 | [46] |
Total hardness | 356.2–2493.1 | 3100.3–4477.2 | [47,48] |
Calcium (mg/L) | 365.4–468.0 | 288.5–3389.8 | [40,49] |
Magnesium (mg/L) | 214.8–341.0 | 100.3–1828.1 | [14,48] |
Sodium (mg/L) | - | 4–118 | [39,42] |
Potassium (mg/L) | 0.6–2 | 3000 | [45,47] |
Total solids (mg/L) | 2452.3–3050.6 | 12876.9–150,300.9 | [14,46] |
Total dissolved solids (mg/L) | 1480.2–1915.1 | 13,000.0–88,265.1 | [50] |
Total suspended solids (mg/L) | 220.3–790.7 | 2900.1–150,000.0 | [41,50] |
Nitrates (mg/L) | 0.4–0.9 | 2.40–32.9 | [45] |
Organic nitrogen (mg/L) | 24.3–36.4 | 75.2–400.7 | [14] |
Ammoniacal nitrogen (mg/L) | 0.0–4.2 | 10.9–18.1 | [40,45] |
Total nitrogen (mg/L) | 11.1–40.6 | 85.8–1355. 3 | [14,40] |
Phosphate (mg/L) | 1.2–9.6 | 1.2–108 | [47,51] |
Total phosphorus (mg/L) | 1–19 | 60–250 | [47,51] |
Sulfate (mg/L) | 21.5–51.7 | 300.0–6050.5 | [41,47] |
Oils and fats (mg/L) | 88.7–134.4 | 30.3–202.1 | [45] |
3. Different Technologies for Treating Effluents from Sugarcane Industries
3.1. Biological Processes
3.1.1. AF (Anaerobic Filters)
3.1.2. UASB (Upflow Anaerobic Sludge Blanket)
3.1.3. EGSB (Expanded Granular Sludge Bed)
3.1.4. ASBR (Anaerobic Sequencing Batch Reactor)
3.1.5. AFBR (Anaerobic Fluidized Bed Reactor)
Scale | T | Operating Conditions | COD Removal | Methane Yield | COD Effluent | Duration | Ref. | |
---|---|---|---|---|---|---|---|---|
(L) | (°C) | (%) | (m3-CH4·g−1 CODremoved) | (mg·L−1) | (d) | |||
Two-stage UASB | 7–14 | 23.5–55 | pH 7.0 | 15–44 | 0.23 | 29,817 | 475 | [89] |
HRT 48–17 | ||||||||
OLR 5.5–22 | ||||||||
One-stage AnSTBR | 1.65 | 55 | pH 3.8 | 6.4 | - | 7308 | 392 | [90] |
HRT 4 | ||||||||
OLR 60 | ||||||||
One-stage UASB | 15 | 26–52 | pH 6.6–8.3 | 76 | 0.11 | 41,700 | 72 | [91] |
HRT 96 | ||||||||
OLR 0.2–1.7 | ||||||||
Two-stage CSTR | 5 | 38 | pH 7.29 | - | 0.22 | 4030–5670 | 90 | [92] |
HRT 924–600 | ||||||||
OLR 2.1–3.2 | ||||||||
One-stage UASB | 3.5 | 35 | pH 7–7.5 | 90 | 0.268 | 65,180 | 75 | [93] |
OLR 7.6–12 | ||||||||
HRT 116.64 | ||||||||
ULV 0.1 | ||||||||
One-stage UASB | 40–21 | 20–30 | pH 6.5–6.8 | 49–82 | 0.181–185 | 45,000 | 230 | [94] |
OLR 0.2–7.5 | ||||||||
HRT 67.2–43.2 | ||||||||
ULV 0.019–0.018 | ||||||||
One-stage UASB | 13.7–10.6 | 55 | pH 4.6–8.6 | 90 | 0.274 | 45,000 | 387 | [95] |
OLR 0.15 to 3.50 | ||||||||
HRT 38.4–67.2 | ||||||||
SRT 23–267 | ||||||||
Two-stage UASB | 214.2–115 | 45 | pH 6.5–7.5 | 40 | - | 12,800–45,000 | 100 | [96] |
OLR 6 | ||||||||
HRT 24–12 | ||||||||
Two-stage AFBR | 0.743 | 30–55 | pH 3.9–4.6 | - | - | 5000 | 240 | [97] |
OLR 15–120 | ||||||||
HRT 8–1 | ||||||||
One-stage APBR | 2.3–3.5 | 55 | pH 4.6–6.5 | 26.2–33.3 | - | 35,000 | 30 | [98] |
OLR 36.2–54.3 | ||||||||
HRT 24–8 | ||||||||
One-stage UASB | 6 | 30 | pH 4.5–7.22 | 69 | 0.263 | 121000 | 70 | [99] |
OLR 17.05 | ||||||||
HRT 7.5 | ||||||||
One-stage AnSBBR | 3.5 | 35–55 | pH 6.9–8 | 79–82 | 0.304–0.352 | 1000–5000 | 175 | [100] |
OLR 1.5–7 | ||||||||
HRT 8 | ||||||||
Anaerobic Hybrid reactor | - | 50 | pH 7 | 79 | 0.52 | 90,000–130,000 | - | [101] |
OLR 8.7 | ||||||||
HRT 120 | ||||||||
One-stage AFBR | 4.192 | 30 | pH 6.5–8.3 | 51–70 | 0.212 | 2273–20073 | 355 | [85] |
OLR 3.33–26.19 | ||||||||
HRT 24 | ||||||||
ULV 76 | ||||||||
One-stage APBR | 2.3 | 25 | pH 4.6–6.5 | 37–40 | - | 35000 | 30 | [102] |
OLR 36.2 | ||||||||
HRT 24 | ||||||||
One-stage UASB | 1.5 | 40 | pH 4–9 | 79 | 0.239 | 22,000–23,000 | 200 | [103] |
OLR 6.1–9,6 | ||||||||
HRT 86.4–60 | ||||||||
One-stage UAF | 3.4 | 29 | pH 7.5 | 75.1 | 0.315 | 50,000 | 180 | [62] |
OLR 10 | ||||||||
HRT 120 | ||||||||
One-stage APBR | 87.5 | 35 | OLR 4.4 | 86.7 | 0.207 | - | - | [104] |
HRT 48 | ||||||||
One-stage AFBR | 300 | 30–37 | pH 5.05–7.35 | 60–70 | 0.386 | 60,000–70,000 | - | [105] |
OLR 20 | ||||||||
HRT 48–103.2 | ||||||||
One-stage AFBR | - | 35 | OLR 24.32 | 88 | 7.72 | - | - | [106] |
HRT 16.8 | ||||||||
One-stage FBR | 10,000 | 37 | pH 7 | 60–73 | 0.288 | 51,000–57,000 | 220 | [107] |
OLR 9.2 | ||||||||
HRT 79.2–60 | ||||||||
One-stage EGSB | 3.3 | 26 | pH 4.5–7 | 76 | 0.244 | 71,605 | 60 | [72] |
OLR 5.4 | ||||||||
HRT 168 | ||||||||
One-stage EGSB | 12 | 31 | pH 4.04–5.35 | 68 | 2.57 | 40,000–80,000 | 180 | [73] |
OLR 5.7 | ||||||||
HRT 206.4 | ||||||||
Two-stage FBR + CSTR | - | 35 | pH 7.5–8.2 | 67 | 0.315 | 45,000–60,000 | 365 | [108] |
OLR 21.3 | ||||||||
HRT 96 | ||||||||
Two-stage CSTR + FBR | 0.8 | 37 | pH 7.5 | 92 | 0.33 | 61,000 | 70 | [109] |
OLR 4.1 | ||||||||
HRT 120 | ||||||||
Two-stage APBR + ASTBR | 2.3 | 55 | pH 5.5–7.5 | 89 | 0.319 | 28,300 | 240 | [64] |
OLR 25 | ||||||||
HRT 180 | ||||||||
Two-stage UASB | 5.6–12.1 | 54–56 | pH 6.59–7.7 | 60 | 0.2 | 44,500 | 160 | [67] |
OLR 45 | ||||||||
HRT 24 | ||||||||
One-stage UASB | 120 | 22 | pH 4.2–7.75 | 90 | 0.299 | 19,220 | 700 | [110] |
OLR 20 | ||||||||
HRT 792 | ||||||||
One-stage EGSB | - | 20 | OLR 12.6 | 80 | - | 110,000–190,000 | - | [46] |
HRT 48 |
3.2. Physicochemical Treatment Systems
3.2.1. Coagulation–Flocculation
3.2.2. Advanced Oxidation Processes (AOPs)
3.2.3. Membrane Processes
4. Perspectives
Reactor | Wastewater | COD (mg/L) | T °C | HRT | Removal COD (%) | LCH4/gCOD | References |
---|---|---|---|---|---|---|---|
AnBRM | Sugarcane | 13,147 | 22 | 2.58 | 97.5 | - | [142] |
AnBRM | Sugarcane | 46,000 | 37 | 14 | 92 | 0.37 | [143] |
BRM | Sugarcane | 35,200 | 4 | 7 | 40 | - | [144] |
BRM | Sugarcane | 17,677 | 22 | 3.6 | 85 | - | [47] |
AnBRM | Sugarcane | 16,706 | 25 | 3.1 | 97 | >0.32 | [49] |
AnBRM | Synthetics | 4000 | 35 | 2 | 92 | 0.6 | [145] |
AnBRM | Food waste | 26,000 | 22 | 13 | 86 | 0.3 | [146] |
AnBRM | Dairy industry | 102,346 | 55 | 2.5 | 98.8 | 0.31 | [147] |
AnBRM | Swine wastewater | 7400 | 37 | 27 | 86 | 0.4 | [148] |
AnBRM | Agro-industry | 20,900 | 36 | 25 | 98 | 0.15 | [149] |
AnBRM | Fast food | 17,500 | 40 | 4.3 | 97 | 0.4 | [150] |
BRM | Brewery | 1710 | - | - | 87 | - | [151] |
AnBRM | Brewery | 15,500 | 35 | 3.5 | 99 | 0.11 | [152] |
AnBRM | Food waste | 73,670 | - | 30 | 99 | 0.51 | [153] |
5. Configuration of Membrane Bioreactors
6. Operating Conditions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Josephson, P.R. Fish Sticks, Sports Bras, and Aluminum Cans: The Politics of Everyday Technologies; JHU Press: Baltimore, MD, USA, 2015; ISBN 978-1-4214-1783-7. [Google Scholar]
- OECD; Food and Agriculture Organization of the United Nations. Perspectives Agricoles de l’OCDE et de la FAO 2019–2028; OECD Publishing: Paris, France, 2019; ISBN 978-92-64-31272-2. [Google Scholar]
- Chauhan, M.K.; Varun; Chaudhary, S.; Kumar, S.; Samar. Life Cycle Assessment of Sugar Industry: A Review. Renew. Sustain. Energy Rev. 2011, 15, 3445–3453. [Google Scholar] [CrossRef]
- Panhwar, A.; Kandhro, A.; Bhutto, S.; Brohi, N.; Naz, S.; Kabir, A.; Ahmed, K.; Iqbal, M.; Qaisar, S. Chemical Treatment Options of Wastewater from Sugarcane Industry and Its Priority Parameters Comparison as per Smart Rules of Sindh Environmental Protection Agency. Pak. J. Sci. 2021, 73, 7. [Google Scholar]
- Tshemese, Z.; Deenadayalu, N.; Linganiso, L.Z.; Chetty, M. An Overview of Biogas Production from Anaerobic Digestion and the Possibility of Using Sugarcane Wastewater and Municipal Solid Waste in a South African Context. Appl. Syst. Innov. 2023, 6, 13. [Google Scholar] [CrossRef]
- Figuier, L. Les Merveilles de L’industrie ou Description des Principales Industries Modernes: Industries Chimiques: Le Sucre, le Papier, les Papiers Prints, les Cuirs et les Peaux, le Caoutchouc et la Gutta-Percha, la Teinture; Furne, Jouvet et Cie: Paris, France, 1874. [Google Scholar]
- Levidow, L.; Birch, K.; Papaioannou, T. EU Agri-Innovation Policy: Two Contending Visions of the Bio-Economy. Crit. Policy Stud. 2012, 6, 40–65. [Google Scholar] [CrossRef]
- Cuezzo, A.M.; Araujo, P.Z.; Wheeler, J.; Mele, F.D. Modeling and Environmental Implications of Methanol Production from Biogenic CO2 in the Sugarcane Industry. J. CO2 Util. 2023, 67, 102301. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Filoso, S.; Aranha, C.D.B.; Ferraz, S.F.B.; Andrade, T.M.B.; Ravagnani, E.D.C.; Della Coletta, L.; de Camargo, P.B. Water Use in Sugar and Ethanol Industry in the State of São Paulo (Southeast Brazil). J. Sustain. Bioenergy Syst. 2013, 3, 33615. [Google Scholar] [CrossRef] [Green Version]
- Moraes, B.S.; Zaiat, M.; Bonomi, A. Anaerobic Digestion of Vinasse from Sugarcane Ethanol Production in Brazil: Challenges and Perspectives. Renew. Sustain. Energy Rev. 2015, 44, 888–903. [Google Scholar] [CrossRef]
- Ramjeawon, T. Life Cycle Assessment of Electricity Generation from Bagasse in Mauritius. J. Clean. Prod. 2008, 16, 1727–1734. [Google Scholar] [CrossRef]
- Hurtado, A.; Arroyave, C.; Peláez, C. Effect of Using Effluent from Anaerobic Digestion of Vinasse as Water Reuse on Ethanol Production from Sugarcane-Molasses. Environ. Technol. Innov. 2021, 23, 101677. [Google Scholar] [CrossRef]
- Kushwaha, J.P. A Review on Sugar Industry Wastewater: Sources, Treatment Technologies, and Reuse. Desalination Water Treat. 2015, 53, 309–318. [Google Scholar] [CrossRef]
- Jadhav, P.G.; Vaidya, N.G.; Dethe, S.B. Characterization and Comparative Study of Cane Sugar Industry WasteWater. Int. J. Chem. Phys. Sci. 2013, 2, 19–25. [Google Scholar]
- Sahu, O. Assessment of Sugarcane Industry: Suitability for Production, Consumption, and Utilization. Ann. Agrar. Sci. 2018, 16, 389–395. [Google Scholar] [CrossRef]
- Santoso, B.; Ammarullah, M.I.; Haryati, S.; Sofijan, A.; Bustan, M.D. Power and Energy Optimization of Carbon Based Lithium-Ion Battery from Water Spinach (Ipomoea aquatica). J. Ecol. Eng. 2023, 24, 213–223. [Google Scholar] [CrossRef]
- Hirani, A.H.; Javed, N.; Asif, M.; Basu, S.K.; Kumar, A. A Review on First- and Second-Generation Biofuel Productions. In Biofuels: Greenhouse Gas Mitigation and Global Warming: Next Generation Biofuels and Role of Biotechnology; Kumar, A., Ogita, S., Yau, Y.-Y., Eds.; Springer: New Delhi, India, 2018; pp. 141–154. ISBN 978-81-322-3763-1. [Google Scholar]
- Kumar, S.; Shrestha, P.; Abdul Salam, P. A Review of Biofuel Policies in the Major Biofuel Producing Countries of ASEAN: Production, Targets, Policy Drivers and Impacts. Renew. Sustain. Energy Rev. 2013, 26, 822–836. [Google Scholar] [CrossRef]
- Pramanik, A.; Sinha, A.; Chaubey, K.K.; Hariharan, S.; Dayal, D.; Bachheti, R.K.; Bachheti, A.; Chandel, A.K. Second-Generation Bio-Fuels: Strategies for Employing Degraded Land for Climate Change Mitigation Meeting United Nation-Sustainable Development Goals. Sustainability 2023, 15, 7578. [Google Scholar] [CrossRef]
- Gheewala, S.H.; Damen, B.; Shi, X. Biofuels: Economic, Environmental and Social Benefits and Costs for Developing Countries in Asia. WIREs Clim. Chang. 2013, 4, 497–511. [Google Scholar] [CrossRef]
- Grangeia, C.; Santos, L.; Lazaro, L.L.B. The Brazilian Biofuel Policy (RenovaBio) and Its Uncertainties: An Assessment of Technical, Socioeconomic and Institutional Aspects. Energy Convers. Manag. X 2022, 13, 100156. [Google Scholar] [CrossRef]
- Metcalf, W. Metcalf and Eddy Wastewater Engineering: Treatment and Reuse, 4th ed.; McGraw-Hill: Boston, MA, USA, 2003. [Google Scholar]
- Yan, L.; Ye, J.; Zhang, P.; Xu, D.; Wu, Y.; Liu, J.; Zhang, H.; Fang, W.; Wang, B.; Zeng, G. Hydrogen Sulfide Formation Control and Microbial Competition in Batch Anaerobic Digestion of Slaughterhouse Wastewater Sludge: Effect of Initial Sludge PH. Bioresour. Technol. 2018, 259, 67–74. [Google Scholar] [CrossRef]
- Poddar, P.K.; Sahu, O. Quality and Management of Wastewater in Sugar Industry. Appl. Water Sci. 2017, 7, 461–468. [Google Scholar] [CrossRef]
- Suarez, F.L.; Springfield, J.; Levitt, M.D. Identification of Gases Responsible for the Odour of Human Flatus and Evaluation of a Device Purported to Reduce This Odour. Gut 1998, 43, 100–104. [Google Scholar] [CrossRef]
- Asadi, M.; McPhedran, K. Estimation of Greenhouse Gas and Odour Emissions from a Cold Region Municipal Biological Nutrient Removal Wastewater Treatment Plant. J. Environ. Manag. 2021, 281, 111864. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Singh, D.A. Environmental Problems Related to Sugar Industries: A Case Study of Govind Sugar Mill Ltd., Aira, Lakhimpur Kheri. Int. J. Innov. Sci. Res. Technol. 2021, 6, 7. [Google Scholar]
- Khair, A.S.E.; Sunoko, H.R.; Elfaig, A.H.I. Physical wastewater from assalaya sugarcane factory: Reality and perception. J. Pendidik. IPA Indones. 2019, 8, 328–338. [Google Scholar]
- dos Reis, C.M.; Carosia, M.F.; Sakamoto, I.K.; Amâncio Varesche, M.B.; Silva, E.L. Evaluation of Hydrogen and Methane Production from Sugarcane Vinasse in an Anaerobic Fluidized Bed Reactor. Int. J. Hydrogen Energy 2015, 40, 8498–8509. [Google Scholar] [CrossRef]
- Buvaneswaril, S.; Damodarkumar, S.; Murugesan, S. Bioremediation Studies on Sugar-Mill Effluent by Selected Fungal Species. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 50–58. [Google Scholar]
- Sahu, O. Suitability of Aluminum Material on Sugar Industry Wastewater with Chemical and Electrochemical Treatment Processes. Int. J. Ind. Chem. 2019, 10, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Gu, Y.; Zhao, Y.; Wen, Z. Leachate Treatment Using a Demonstration Aged Refuse Biofilter. J. Environ. Sci. 2010, 22, 1116–1122. [Google Scholar] [CrossRef]
- Gunkel, G.; Kosmol, J.; Sobral, M.; Rohn, H.; Montenegro, S.; Aureliano, J. Sugar Cane Industry as a Source of Water Pollution—Case Study on the Situation in Ipojuca River, Pernambuco, Brazil. Water Air Soil Pollut. 2007, 180, 261–269. [Google Scholar] [CrossRef]
- Prata, F.; Lavorenti, A.; Regitano, J.B.; Tornisielo, V.L. Degradação e sorção de ametrina em dois solos com aplicação de vinhaça. Pesq. Agropec. Bras. 2001, 36, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Welch, E.B. Ecological Effect of Waste Water; Press Syndicate of the University of Cambridge: Singapore, 1998; p. 377. [Google Scholar]
- Sou/Dakouré, M.Y.; Mermoud, A.; Yacouba, H.; Boivin, P. Impacts of Irrigation with Industrial Treated Wastewater on Soil Properties. Geoderma 2013, 200–201, 31–39. [Google Scholar] [CrossRef]
- Cooper, J.; Antony, A.; Luiz, A.; Kavanagh, J.; Razmjou, A.; Chen, V.; Leslie, G. Characterisation of Dissolved Organic Matter in Fermentation Industry Effluents and Comparison with Model Compounds. Chemosphere 2019, 234, 630–639. [Google Scholar] [CrossRef]
- Sahu, O.; Dhanasekaran, P. Electrochemical Removal of Contaminates from Sugarcane Processing Industry Wastewater Using Copper Electrode. J. Iran. Chem. Soc. 2021, 18, 2101–2113. [Google Scholar] [CrossRef]
- David, C.; Arivazhagan, M.; Tuvakara, F. Decolorization of Distillery Spent Wash Effluent by Electro Oxidation (EC and EF) and Fenton Processes: A Comparative Study. Ecotoxicol. Environ. Saf. 2015, 121, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Fito, J.; Tefera, N.; Kloos, H.; Van Hulle, S.W.H. Anaerobic Treatment of Blended Sugar Industry and Ethanol Distillery Wastewater through Biphasic High Rate Reactor. J. Environ. Sci. Health Part A 2018, 53, 676–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naik, N.; Jagadeesh, K.S.; Noolvi, M.N. Enhanced Degradation of Melanoidin and Caramel in Biomethanated Distillery Spentwash by Microorganisms Isolated from Mangroves. Iran. J. Energy Environ. 2010, 1, 347–351. [Google Scholar]
- Lebron, Y.A.R.; Moreira, V.R.; Furtado, T.P.B.; da Silva, S.C.; Lange, L.C.; Amaral, M.C.S. Vinasse Treatment Using Hybrid Tannin-Based Coagulation-Microfiltration-Nanofiltration Processes: Potential Energy Recovery, Technical and Economic Feasibility Assessment. Sep. Purif. Technol. 2020, 248, 117152. [Google Scholar] [CrossRef]
- da Silva, S.C.; Moravia, M.C.S.A.; Couto, C.F. Combined process of ultrafiltration and nanofiltration for vinasse treatment with and without pre-coagulation. J. Water Process Eng. 2020, 36, 101326. [Google Scholar] [CrossRef]
- Vaquerizo, F.R.; Cruz-Salomon, A.; Valdovinos, E.R.; Pola-Albores, F.; Lagunas-Rivera, S.; Meza-Gordillo, R.; Ruiz Valdiviezo, V.M.; Simuta Champo, R.; Moreira-Acosta, J. Anaerobic Treatment of Vinasse from Sugarcane Ethanol Production in Expanded Granular Sludge Bed Bioreactor. J. Chem. Eng. Process. Technol. 2018, 9, 375. [Google Scholar] [CrossRef]
- Fito, J.; Tefera, N.; Van Hulle, S.W.H. Sugarcane Biorefineries Wastewater: Bioremediation Technologies for Environmental Sustainability. Chem. Biol. Technol. Agric. 2019, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Mohana, S.; Acharya, B.K.; Madamwar, D. Distillery Spent Wash: Treatment Technologies and Potential Applications. J. Hazard. Mater. 2009, 163, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Mota, V.T.; Santos, F.S.; Amaral, M.C.S. Two-Stage Anaerobic Membrane Bioreactor for the Treatment of Sugarcane Vinasse: Assessment on Biological Activity and Filtration Performance. Bioresour. Technol. 2013, 146, 494–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garika, N.S.; Dwarapureddi, B.K.; Karnena, M.K.; Dash, S.; Raj, A.; Saritha, V. Efficacy of Natural Coagulants in Treating Sugar Industry Effluents. Pollution 2022, 8, 331–340. [Google Scholar] [CrossRef]
- Santos, F.S.; Ricci, B.C.; França Neta, L.S.; Amaral, M.C.S. Sugarcane Vinasse Treatment by Two-Stage Anaerobic Membrane Bioreactor: Effect of Hydraulic Retention Time on Changes in Efficiency, Biogas Production and Membrane Fouling. Bioresour. Technol. 2017, 245, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.K.; Mohana, S.; Madamwar, D. Anaerobic Treatment of Distillery Spent Wash—A Study on Upflow Anaerobic Fixed Film Bioreactor. Bioresour. Technol. 2008, 99, 4621–4626. [Google Scholar] [CrossRef] [PubMed]
- Fito, J.; Tefera, N.; Van Hulle, S.W.H. An Integrated Treatment Technology for Blended Wastewater of the Sugar Industry and Ethanol Distillery. Environ. Process. 2019, 6, 475–491. [Google Scholar] [CrossRef]
- Christofoletti, C.A.; Escher, J.P.; Correia, J.E.; Marinho, J.F.U.; Fontanetti, C.S. Sugarcane Vinasse: Environmental Implications of Its Use. Waste Manag. 2013, 33, 2752–2761. [Google Scholar] [CrossRef]
- Asha, D.M.; Ramanjaneyulu, M. Economic Analysis of Production of Alcohol, Power and Biocompost in Sugar Industry of Karnataka. Int. J. Adv. Res. 2020, 9, 144–151. [Google Scholar]
- Egounlety, M.; Aworh, O.C. Effect of Soaking, Dehulling, Cooking and Fermentation with Rhizopus oligosporus on the Oligosaccharides, Trypsin Inhibitor, Phytic Acid and Tannins of Soybean (Glycine max Merr.), Cowpea (Vigna unguiculata L. Walp) and Groundbean (Macrotyloma geocarpa Harms). J. Food Eng. 2003, 56, 249–254. [Google Scholar] [CrossRef]
- Driessen, W.; Vereijken, T. Recent developments in biological treatment of brewery effluent. In Proceedings of the Institute and Guild of Brewing Convention, Livingstone, Zambia, 2–7 March 2003. [Google Scholar]
- Chan, Y.J.; Chong, M.F.; Law, C.L.; Hassell, D.G. A Review on Anaerobic–Aerobic Treatment of Industrial and Municipal Wastewater. Chem. Eng. J. 2009, 155, 1–18. [Google Scholar] [CrossRef]
- Rajeshwari, K.V.; Balakrishnan, M.; Kansal, A.; Lata, K.; Kishore, V.V.N. State-of-the-Art of Anaerobic Digestion Technology for Industrial Wastewater Treatment. Renew. Sustain. Energy Rev. 2000, 4, 135–156. [Google Scholar] [CrossRef]
- de Oliveira Cruz, L.M.; Gomes, B.G.L.A.; Tonetti, A.L.; Figueiredo, I.C.S. Using Coconut Husks in a Full-Scale Decentralized Wastewater Treatment System: The Influence of an Anaerobic Filter on Maintenance and Operational Conditions of a Sand Filter. Ecol. Eng. 2019, 127, 454–459. [Google Scholar] [CrossRef]
- Barros, A.R.; Adorno, M.A.T.; Sakamoto, I.K.; Maintinguer, S.I.; Varesche, M.B.A.; Silva, E.L. Performance Evaluation and Phylogenetic Characterization of Anaerobic Fluidized Bed Reactors Using Ground Tire and Pet as Support Materials for Biohydrogen Production. Bioresour. Technol. 2011, 102, 3840–3847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, L.M.D.O.; Stefanutti, R.; Filho, B.C.; Tonetti, A.L. Coconut Shells as Filling Material for Anaerobic Filters. SpringerPlus 2013, 2, 655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodík, I.; Herdová, B.; Kratochvíl, K. The Application of Anaerobic Filter for Municipal Wastewater Treatment. Chem. Pap.-Slovak Acad. Sci. 2000, 5, 159–164. [Google Scholar]
- Cabrera-Díaz, A.; Pereda-Reyes, I.; Dueñas-Moreno, J.; Véliz-Lorenzo, E.; Díaz-Marrero, M.A.; Menéndez-Gutiérrez, C.L.; Oliva-Merencio, D.; Zaiat, M. Combined Treatment of Vinasse by an Upflow Anaerobic Filter-Reactor and Ozonation Process. Braz. J. Chem. Eng. 2016, 33, 753–762. [Google Scholar] [CrossRef] [Green Version]
- Lettinga, G.; Hobma, S.W.; Hulshoff Pol, L.W.; De Zeeuw, W.; De Jong, P.; Grin, P.; Roersma, R. Design, Operation and Economy of Anaerobic Treatment. In Proceedings of the a Specialized Seminar of the IWAPRC, Copenhagen, Denmark, 16–18 June 1982; pp. 177–195. [Google Scholar]
- Fuess, L.T.; Kiyuna, L.S.M.; Ferraz, A.D.N.; Persinoti, G.F.; Squina, F.M.; Garcia, M.L.; Zaiat, M. Thermophilic Two-Phase Anaerobic Digestion Using an Innovative Fixed-Bed Reactor for Enhanced Organic Matter Removal and Bioenergy Recovery from Sugarcane Vinasse. Appl. Energy 2017, 189, 480–491. [Google Scholar] [CrossRef] [Green Version]
- Lettinga, G.; van Velsen, A.F.M.; Hobma, S.W.; de Zeeuw, W.; Klapwijk, A. Use of the Upflow Sludge Blanket (USB) Reactor Concept for Biological Wastewater Treatment, Especially for Anaerobic Treatment. Biotechnol. Bioeng. 1980, 22, 699–734. [Google Scholar] [CrossRef]
- Contreras-Contreras, J.A.; Bernal-González, M.; Solís-Fuentes, J.A.; del Carmen Durán-Domínguez-de-Bazúa, M. Polyphenols from Sugarcane Vinasses, Quantification, and Removal Using Activated Carbon After Biochemical Treatment in Laboratory-Scale Thermophilic Upflow Anaerobic Sludge Blanket Reactors. Water Air Soil Pollut. 2020, 231, 401. [Google Scholar] [CrossRef]
- de Barros, V.G.; Duda, R.M.; Vantini, J.D.S.; Omori, W.P.; Ferro, M.I.T.; de Oliveira, R.A. Improved Methane Production from Sugarcane Vinasse with Filter Cake in Thermophilic UASB Reactors, with Predominance of Methanothermobacter and Methanosarcina Archaea and Thermotogae Bacteria. Bioresour. Technol. 2017, 244, 371–381. [Google Scholar] [CrossRef]
- Harada, H.; Uemura, S.; Chen, A.-C.; Jayadevan, J. Anaerobic Treatment of a Recalcitrant Distillery Wastewater by a Thermophilic UASB Reactor. Bioresour. Technol. 1996, 55, 215–221. [Google Scholar] [CrossRef]
- Sánchez Riera, F.; Córdoba, P.; Siñeriz, F. Use of the UASB Reactor for the Anaerobic Treatment of Stillage from Sugar Cane Molasses. Biotechnol. Bioeng. 1985, 27, 1710–1716. [Google Scholar] [CrossRef] [PubMed]
- Lettinga, G. Anaerobic Digestion and Wastewater Treatment Systems. Antonie Leeuwenhoek 1995, 67, 3–28. [Google Scholar] [CrossRef] [PubMed]
- Bernal, A.P.; de Menezes, C.A.; Silva, E.L. A New Side-Looking at the Dark Fermentation of Sugarcane Vinasse: Improving the Carboxylates Production in Mesophilic EGSB by Selection of the Hydraulic Retention Time and Substrate Concentration. Int. J. Hydrogen Energy 2021, 46, 12758–12770. [Google Scholar] [CrossRef]
- Cruz-Salomón, A.; Ríos-Valdovinos, E.; Pola-Albores, F.; Meza-Gordillo, R.; Lagunas-Rivera, S.; Ruíz-Valdiviezo, V.M. Anaerobic Treatment of Agro-Industrial Wastewaters for COD Removal in Expanded Granular Sludge Bed Bioreactor. Biofuel Res. J. 2017, 4, 715–720. [Google Scholar] [CrossRef]
- López, I.; Borzacconi, L.; Passeggi, M. Anaerobic Treatment of Sugar Cane Vinasse: Treatability and Real-Scale Operation. J. Chem. Technol. Biotechnol. 2018, 93, 1320–1327. [Google Scholar] [CrossRef]
- Dague, R.R.; Habben, C.E.; Pidaparti, S.R. Initial Studies on the Anaerobic Sequencing Batch Reactor. In Water Science & Technology; IWA Publishing: London, UK, 1992; Available online: https://iwaponline.com/wst/article-abstract/26/9-11/2429/27291/Initial-Studies-on-the-Anaerobic-Sequencing-Batch (accessed on 3 February 2022).
- Elreedy, A.; Fujii, M.; Tawfik, A. Psychrophilic Hydrogen Production from Petrochemical Wastewater via Anaerobic Sequencing Batch Reactor: Techno-Economic Assessment and Kinetic Modelling. Int. J. Hydrogen Energy 2019, 44, 5189–5202. [Google Scholar] [CrossRef]
- Sung, S.; Dague, R.R. Laboratory Studies on the Anaerobic Sequencing Batch Reactor. Water Environ. Res. 1995, 67, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, M.Z.; Bilal, M.; Tariq, A.; Iqbal, H.M.N.; Alghamdi, H.A.; Cheng, H. Bio-Purification of Sugar Industry Wastewater and Production of High-Value Industrial Products with a Zero-Waste Concept. Crit. Rev. Food Sci. Nutr. 2021, 61, 3537–3554. [Google Scholar] [CrossRef]
- Tauseef, S.M.; Abbasi, T.; Abbasi, S.A. Energy Recovery from Wastewaters with High-Rate Anaerobic Digesters. Renew. Sustain. Energy Rev. 2013, 19, 704–741. [Google Scholar] [CrossRef]
- Sara, M.; Mehdi, A.M.; Amir, H.; Afshin, T. Anaerobic Biofilm Reactor System Efficiency in Sugar Cane Industry Wastewater Treatment. J. Health Syst. Res. 2010, 6, 1002–1014. [Google Scholar]
- Kee, W.-C.; Wong, Y.-S.; Ong, S.-A.; Lutpi, N.A.; Sam, S.-T.; Chai, A.; Ng, H.-H. Insights into Modified Sequencing Batch Reactor for the Treatment of Sugarcane Vinasse: Role of Recirculation Process. Int. J. Environ. Sci. Technol. 2022, 19, 12289–12302. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.; Ye, H.; Lee, E.; Shin, C.; McCarty, P.L.; Bae, J. Anaerobic Fluidized Bed Membrane Bioreactor for Wastewater Treatment. Environ. Sci. Technol. 2011, 45, 576–581. [Google Scholar] [CrossRef]
- Pérez, M.; Romero, L.I.; Sales, D. Comparative Performance of High Rate Anaerobic Thermophilic Technologies Treating Industrial Wastewater. Water Res. 1998, 32, 559–564. [Google Scholar] [CrossRef]
- Ramos, L.R.; Silva, E.L. Continuous Hydrogen Production from Cofermentation of Sugarcane Vinasse and Cheese Whey in a Thermophilic Anaerobic Fluidized Bed Reactor. Int. J. Hydrogen Energy 2018, 43, 13081–13089. [Google Scholar] [CrossRef]
- Ramos, L.R.; Silva, E.L. Thermophilic Hydrogen and Methane Production from Sugarcane Stillage in Two-Stage Anaerobic Fluidized Bed Reactors. Int. J. Hydrogen Energy 2020, 45, 5239–5251. [Google Scholar] [CrossRef]
- Siqueira, L.M.; Damiano, E.S.G.; Silva, E.L. Influence of Organic Loading Rate on the Anaerobic Treatment of Sugarcane Vinasse and Biogás Production in Fluidized Bed Reactor. J. Environ. Sci. Health Part A 2013, 48, 1707–1716. [Google Scholar] [CrossRef]
- Mousavian, S.; Seyedsalehi, M.; Paladino, O.; Sharifi, P.; Kyzas, G.Z.; Dionisi, D.; Takdastan, A. Determining Biokinetic Coefficients for the Upflow Anaerobic Sludge Blanket Reactor Treating Sugarcane Wastewater in Hot Climate Conditions. Int. J. Environ. Sci. Technol. 2019, 16, 2231–2238. [Google Scholar] [CrossRef] [Green Version]
- Fonkou, T.; Fonteh, M.F.; Kanouo, M.D.; Akoa, A. Performances des filtres plantes de Echinochloa pyramidalis dans l’épuration des eaux usées de distillerie en Afrique subsaharienne. Tropicultura 2010, 28, 69–76. [Google Scholar]
- Kaushik, G. Bioremediation of Industrial Effluents: Distillery Effluent. In Applied Environmental Biotechnology: Present Scenario and Future Trends; Kaushik, G., Ed.; Springer: New Delhi, India, 2015; pp. 19–32. ISBN 978-81-322-2123-4. [Google Scholar]
- Lima, V.D.O.; de Barros, V.G.; Duda, R.M.; de Oliveira, R.A. Anaerobic Digestion of Vinasse and Water Treatment Plant Sludge Increases Methane Production and Stability of UASB Reactors. J. Environ. Manag. 2022, 327, 116451. [Google Scholar] [CrossRef]
- Oliveira, C.A.; Fuess, L.T.; Soares, L.A.; Damianovic, M.H.R.Z. Thermophilic Biohydrogen Production from Sugarcane Molasses under Low PH: Metabolic and Microbial Aspects. Int. J. Hydrogen Energy 2020, 45, 4182–4192. [Google Scholar] [CrossRef]
- Barcelos, S.T.V.; Ferreira, I.F.L.; Costa, R.B.; Magalhães Filho, F.J.C.; Ribeiro, A.A.; Cereda, M.P. Startup of UASB Reactor with Limestone Fixed Bed Operating in the Thermophilic Range Using Vinasse as Substrate. Renew. Energy 2022, 196, 610–616. [Google Scholar] [CrossRef]
- Janke, L.; Weinrich, S.; Leite, A.F.; Sträuber, H.; Nikolausz, M.; Nelles, M.; Stinner, W. Pre-Treatment of Filter Cake for Anaerobic Digestion in Sugarcane Biorefineries: Assessment of Batch versus Semi-Continuous Experiments. Renew. Energy 2019, 143, 1416–1426. [Google Scholar] [CrossRef]
- Barrera, E.L.; Spanjers, H.; Romero, O.; Rosa, E.; Dewulf, J. Characterization of the Sulfate Reduction Process in the Anaerobic Digestion of a Very High Strength and Sulfate Rich Vinasse. Chem. Eng. J. 2014, 248, 383–393. [Google Scholar] [CrossRef]
- de Barros, V.G.; Duda, R.M.; de Oliveira, R.A. Biomethane Production from Vinasse in Upflow Anaerobic Sludge Blanket Reactors Inoculated with Granular Sludge. Braz. J. Microbiol. 2016, 47, 628–639. [Google Scholar] [CrossRef] [Green Version]
- Santana Junior, A.E.; Duda, R.M.; Oliveira, R.A. de Improving the Energy Balance of Ethanol Industry with Methane Production from Vinasse and Molasses in Two-Stage Anaerobic Reactors. J. Clean. Prod. 2019, 238, 117577. [Google Scholar] [CrossRef]
- Madaleno, L.L.; de Barros, V.G.; Kesserling, M.A.; Teixeira, J.R.; Duda, R.M.; de Oliveira, R.A. The Recycling of Biodigested Vinasse in an Upflow Anaerobic Sludge Blanket Reactor Is a Feasible Approach for the Conservation of Freshwater in the Biofuel Ethanol Industry. J. Clean. Prod. 2020, 262, 121196. [Google Scholar] [CrossRef]
- Ferreira, T.B.; Rego, G.C.; Ramos, L.R.; de Menezes, C.A.; Soares, L.A.; Sakamoto, I.K.; Varesche, M.B.A.; Silva, E.L. HRT Control as a Strategy to Enhance Continuous Hydrogen Production from Sugarcane Juice under Mesophilic and Thermophilic Conditions in AFBRs. Int. J. Hydrogen Energy 2019, 44, 19719–19729. [Google Scholar] [CrossRef]
- Djalma Nunes Ferraz Júnior, A.; Wenzel, J.; Etchebehere, C.; Zaiat, M. Effect of Organic Loading Rate on Hydrogen Production from Sugarcane Vinasse in Thermophilic Acidogenic Packed Bed Reactors. Int. J. Hydrogen Energy 2014, 39, 16852–16862. [Google Scholar] [CrossRef]
- España-Gamboa, E.I.; Mijangos-Cortés, J.O.; Hernández-Zárate, G.; Maldonado, J.A.D.; Alzate-Gaviria, L.M. Methane Production by Treating Vinasses from Hydrous Ethanol Using a Modified UASB Reactor. Biotechnol. Biofuels 2012, 5, 82. [Google Scholar] [CrossRef] [Green Version]
- De Albuquerque, J.N.; Orellana, M.R.; Ratusznei, S.M.; Rodrigues, J.A.D. Thermophilic biomethane production by vinasse in an AnSBBR: Start-up strategy and performance optimization. Braz. J. Chem. Eng. 2019, 36, 717–731. [Google Scholar] [CrossRef] [Green Version]
- Sunil Kumar, G.; Gupta, S.K.; Singh, G. Biodegradation of Distillery Spent Wash in Anaerobic Hybrid Reactor. Water Res. 2007, 41, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Nunes Ferraz Júnior, A.D.; Etchebehere, C.; Zaiat, M. Mesophilic Hydrogen Production in Acidogenic Packed-Bed Reactors (APBR) Using Raw Sugarcane Vinasse as Substrate: Influence of Support Materials. Anaerobe 2015, 34, 94–105. [Google Scholar] [CrossRef]
- Janke, L.; Leite, A.F.; Batista, K.; Silva, W.; Nikolausz, M.; Nelles, M.; Stinner, W. Enhancing Biogas Production from Vinasse in Sugarcane Biorefineries: Effects of Urea and Trace Elements Supplementation on Process Performance and Stability. Bioresour. Technol. 2016, 217, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Díaz, A.; Pereda-Reyes, I.; Oliva-Merencio, D.; Lebrero, R.; Zaiat, M. Anaerobic Digestion of Sugarcane Vinasse Through a Methanogenic UASB Reactor Followed by a Packed Bed Reactor. Appl Biochem. Biotechnol. 2017, 183, 1127–1145. [Google Scholar] [CrossRef] [PubMed]
- de Bazúa, C.D.; Cabrero, M.A.; Poggi, H.M. Vinasses Biological Treatment by Anaerobic and Aerobic Processes: Laboratory and Pilot-Plant Tests. Bioresour. Technol. 1991, 35, 87–93. [Google Scholar] [CrossRef]
- Balaguer, M.D.; Vicent, M.T.; París, J.M. Anaerobic Fluidized Bed Reactor with Sepiolite as Support for Anaerobic Treatment of Vinasse. Biotechnol. Lett. 1992, 14, 433–438. [Google Scholar] [CrossRef]
- Bories, A.; Raynal, J.; Bazile, F. Anaerobic Digestion of High-Strength Distillery Wastewater (Cane Molasses Stillage) in a Fixed-Film Reactor. Biol. Wastes 1988, 23, 251–267. [Google Scholar] [CrossRef]
- Goyal, S.K.; Seth, R.; Handa, B.K. Diphasic Fixed-Film Biomethanation of Distillery Spentwash. Bioresour. Technol. 1996, 56, 239–244. [Google Scholar] [CrossRef]
- Lalov, I.G.; Krysteva, M.A.; Phelouzat, J.-L. Improvement of Biogas Production from Vinasse via Covalently Immobilized Methanogens. Bioresour. Technol. 2001, 79, 83–85. [Google Scholar] [CrossRef]
- Del Nery, V.; Alves, I.; Zamariolli Damianovic, M.H.R.; Pires, E.C. Hydraulic and Organic Rates Applied to Pilot Scale UASB Reactor for Sugar Cane Vinasse Degradation and Biogas Generation. Biomass Bioenergy 2018, 119, 411–417. [Google Scholar] [CrossRef]
- Freitas, T.K.F.S.; Almeida, C.A.; Manholer, D.D.; Geraldino, H.C.L.; de Souza, M.T.F.; Garcia, J.C. Review of Utilization Plant-Based Coagulants as Alternatives to Textile Wastewater Treatment. In Detox Fashion: Waste Water Treatment; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-981-10-4779-4. [Google Scholar]
- Matilainen, A.; Vepsäläinen, M.; Sillanpää, M. Natural Organic Matter Removal by Coagulation during Drinking Water Treatment: A Review. Adv. Colloid Interface Sci. 2010, 159, 189–197. [Google Scholar] [CrossRef]
- Sher, F.; Malik, A.; Liu, H. Industrial Polymer Effluent Treatment by Chemical Coagulation and Flocculation. J. Environ. Chem. Eng. 2013, 1, 684–689. [Google Scholar] [CrossRef]
- Jaiyeola, A.T.; Bwapwa, J.K. Treatment Technology for Brewery Wastewater in a Water-Scarce Country: A Review. S. Afr. J. Sci. 2016, 112, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olafadehan, O.A.; Jinadu, O.W. Treatment of brewery wastewater effluent using activated carbon prepared from coconut shell. Int. J. Appl. Sci. Technol. 2012, 2, 165–178. [Google Scholar]
- Bahrodin, M.B.; Zaidi, N.S.; Kadier, A.; Hussein, N.; Syafiuddin, A.; Boopathy, R. A Novel Natural Active Coagulant Agent Extracted from the Sugarcane Bagasse for Wastewater Treatment. Appl. Sci. 2022, 12, 7972. [Google Scholar] [CrossRef]
- Iwuozor, K.O.; Oyekunle, I.P.; Oladunjoye, I.O.; Ibitogbe, E.M.; Olorunfemi, T.S. A Review on the Mitigation of Heavy Metals from Aqueous Solution Using Sugarcane Bagasse. Sugar Tech 2022, 24, 1167–1185. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment—A Critical Review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Oturan, M.A.; Aaron, J.-J. Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641. [Google Scholar] [CrossRef]
- Zaviska, F.; Drogui, P.; Mercier, G.; Blais, J.-F. Procédés d’oxydation avancée dans le traitement des eaux et des effluents industriels: Application à la dégradation des polluants réfractaires. J. Water Sci. 2009, 22, 535–564. [Google Scholar] [CrossRef] [Green Version]
- Apollo, S.; Onyango, M.S.; Ochieng, A. An Integrated Anaerobic Digestion and UV Photocatalytic Treatment of Distillery Wastewater. J. Hazard. Mater. 2013, 261, 435–442. [Google Scholar] [CrossRef]
- Thanapimmetha, A.; Srinophakun, P.; Amat, S.; Saisriyoot, M. Decolorization of Molasses-Based Distillery Wastewater by Means of Pulse Electro-Fenton Process. J. Environ. Chem. Eng. 2017, 5, 2305–2312. [Google Scholar] [CrossRef]
- Jungbauer, A.; Hahn, R. Chapter 22 Ion-Exchange Chromatography. In Methods in Enzymology, 2nd ed.; Burgess, R.R., Deutscher, M.P., Eds.; Guide to Protein Purification; Academic Press: Cambridge, MA, USA, 2009; Volume 463, pp. 349–371. [Google Scholar]
- Modrogan, C.; Alexandra, R.M.; Oanamari Daniela, O.; Costache, C.; Apostol, G. Ion exchange processes on weak acid resins for wastewater containing cooper ions treatment. Environ. Eng. Manag. J. 2015, 14, 449–454. [Google Scholar] [CrossRef]
- Somboot, P.; Thuangchon, S.; Phungsai, P.; Ratpukdi, T. Application of Amberlite and Magnetic Ion-Exchange Resins for Dissolved Organic Matter Removal in Sugar Mill Effluent. Eng. Appl. Sci. Res. 2022, 49, 103111. [Google Scholar] [CrossRef]
- De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and Adsorption Capacities of Low-Cost Sorbents for Wastewater Treatment: A Review. Sustain. Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef] [Green Version]
- Berland, J.-M. Juery Rapport Sur Les Procédés Membranaires Pour Le Traitement de l’Eau (Epuration Des Eaux Usées); Office International de l’Eau: Paris, France, 2002; p. 71. [Google Scholar]
- Ortiz Basurto, R.I. Caracterisation de l’Aguamiel et Fractionnement des Fructanes de jus d’Agave par Technologie Membranaire. Ph.D. Thesis, Universite Montpellier II, Montpellier, France, 2008. [Google Scholar]
- Ahoulé, D. Performances Comparatives des Techniques de Nanofiltration et d’Osmose Inverse Pour le Traitement d’Eau de Consommation Contaminée à l’Arsenic au Burkina Faso. Ph.D. Thesis, Université Montpellier, Montpellier, France, 2016. [Google Scholar]
- Baker, R.W. Membranes Technology and Applications, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2004. [Google Scholar]
- Cui, Z.F.; Jiang, Y.; Field, R.W. Chapter 1—Fundamentals of Pressure-Driven Membrane Separation Processes. In Membrane Technology; Cui, Z.F., Muralidhara, H.S., Eds.; Butterworth-Heinemann: Oxford, UK, 2010; pp. 1–18. ISBN 978-1-85617-632-3. [Google Scholar]
- Chang, S. Application of Submerged Hollow Fiber Membrane in Membrane Bioreactors: Filtration Principles, Operation, and Membrane Fouling. Desalination 2011, 283, 31–39. [Google Scholar] [CrossRef]
- Skouteris, G.; Hermosilla, D.; López, P.; Negro, C.; Blanco, Á. Anaerobic Membrane Bioreactors for Wastewater Treatment: A Review. Chem. Eng. J. 2012, 198–199, 138–148. [Google Scholar] [CrossRef]
- Lin, H.; Peng, W.; Zhang, M.; Chen, J.; Hong, H.; Zhang, Y. A Review on Anaerobic Membrane Bioreactors: Applications, Membrane Fouling and Future Perspectives. Desalination 2013, 314, 169–188. [Google Scholar] [CrossRef]
- Mutamim, N.S.A.; Noor, Z.Z.; Hassan, M.A.A.; Yuniarto, A.; Olsson, G. Membrane Bioreactor: Applications and Limitations in Treating High Strength Industrial Wastewater. Chem. Eng. J. 2013, 225, 109–119. [Google Scholar] [CrossRef]
- Maaz, M.; Yasin, M.; Aslam, M.; Kumar, G.; Atabani, A.E.; Idrees, M.; Anjum, F.; Jamil, F.; Ahmad, R.; Khan, A.L.; et al. Anaerobic Membrane Bioreactors for Wastewater Treatment: Novel Configurations, Fouling Control and Energy Considerations. Bioresour. Technol. 2019, 283, 358–372. [Google Scholar] [CrossRef] [PubMed]
- Gander, M.; Jefferson, B.; Judd, S. Aerobic MBRs for Domestic Wastewater Treatment: A Review with Cost Considerations. Sep. Purif. Technol. 2000, 18, 119–130. [Google Scholar] [CrossRef]
- Metcalf, E. Wastewater Engineering: Treatment and Reuse, 4th ed.; McGraw-Hill: Boston, MA, USA, 2014. [Google Scholar]
- Marafon, A.C.; Salomon, K.R.; Amorim, E.L.C.; Peiter, F.S. Chapter 10—Use of Sugarcane Vinasse to Biogas, Bioenergy, and Biofertilizer Production. In Sugarcane Biorefinery, Technology and Perspectives; Santos, F., Rabelo, S.C., De Matos, M., Eichler, P., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 179–194. ISBN 978-0-12-814236-3. [Google Scholar]
- Tauviqirrahman, M.; Jamari, J.; Susilowati, S.; Pujiastuti, C.; Setiyana, B.; Pasaribu, A.H.; Ammarullah, M.I. Performance Comparison of Newtonian and Non-Newtonian Fluid on a Heterogeneous Slip/No-Slip Journal Bearing System Based on CFD-FSI Method. Fluids 2022, 7, 225. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Hartono, R.; Supriyono, T.; Santoso, G.; Sugiharto, S.; Permana, M.S. Polycrystalline Diamond as a Potential Material for the Hard-on-Hard Bearing of Total Hip Prosthesis: Von Mises Stress Analysis. Biomedicines 2023, 11, 951. [Google Scholar] [CrossRef]
- Silva, A.F.R.; Magalhães, N.C.; Cunha, P.V.M.; Amaral, M.C.S.; Koch, K. Influence of COD/SO42−Ratio on Vinasse Treatment Performance by Two-Stage Anaerobic Membrane Bioreactor. J. Environ. Manag. 2020, 259, 110034. [Google Scholar] [CrossRef]
- Turker, M.; Dereli, R.K. Long Term Performance of a Pilot Scale Anaerobic Membrane Bioreactor Treating Beet Molasses Based Industrial Wastewater. J. Environ. Manag. 2021, 278, 111403. [Google Scholar] [CrossRef]
- Satyawali, Y.; Balakrishnan, M. Performance Enhancement with Powdered Activated Carbon (PAC) Addition in a Membrane Bioreactor (MBR) Treating Distillery Effluent. J. Hazard. Mater. 2009, 170, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wu, C.; Zhang, J.; Han, S.; Peng, Y.; Song, X. Impacts of Lipids on the Performance of Anaerobic Membrane Bioreactors for Food Wastewater Treatment. J. Membr. Sci. 2023, 666, 121104. [Google Scholar] [CrossRef]
- Saha, S.; Hussain, A.; Lee, J.; Lee, E.; Lee, H.-S. An Integrated Leachate Bed Reactor—Anaerobic Membrane Bioreactor System (LBR-AnMBR) for Food Waste Stabilization and Biogas Recovery. Chemosphere 2023, 311, 137054. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Sun, B.; Song, L.; Qin, Y.; Luo, J.; Zhu, A.; Li, Y.-Y. Organic Transformation, Lactic Acid Metabolism, and Membrane Performance in High-Rate Methanogenic Treatment of Dairy Processing Wastewater Using Thermophilic High-Solid Anaerobic Membrane Bioreactor. Chem. Eng. J. 2023, 455, 140780. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, J.; Xu, Q.; Yang, E.; Yang, T.; Shi, L.; Liu, Z.; Yu, H.; Cao, J.; Zhou, Q.; et al. Swine Wastewater Treatment Using Combined Up-Flow Anaerobic Sludge Blanket and Anaerobic Membrane Bioreactor: Performance and Microbial Community Diversity. Bioresour. Technol. 2023, 373, 128606. [Google Scholar] [CrossRef]
- Kalantzis, D.; Daskaloudis, I.; Lacoere, T.; Stasinakis, A.S.; Lekkas, D.F.; De Vrieze, J.; Fountoulakis, M.S. Granular Activated Carbon Stimulates Biogas Production in Pilot-Scale Anaerobic Digester Treating Agro-Industrial Wastewater. Bioresour. Technol. 2023, 376, 128908. [Google Scholar] [CrossRef]
- Mahat, S.B.; Omar, R.; Che Man, H.; Mohamad Idris, A.I.; Mustapa Kamal, S.M.; Idris, A.; Shreeshivadasan, C.; Jamali, N.S.; Abdullah, L.C. Performance of Dynamic Anaerobic Membrane Bioreactor (DAnMBR) with Phase Separation in Treating High Strength Food Processing Wastewater. J. Environ. Chem. Eng. 2021, 9, 105245. [Google Scholar] [CrossRef]
- Muhamad Ng, S.N.; Idrus, S.; Ahsan, A.; Tuan Mohd Marzuki, T.N.; Mahat, S.B. Treatment of Wastewater from a Food and Beverage Industry Using Conventional Wastewater Treatment Integrated with Membrane Bioreactor System: A Pilot-Scale Case Study. Membranes 2021, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Sawadogo, B.; Konaté, Y.; Wahab, A.; Lesage, G.; Heran, M.; Zaviska, F.; Karambiri, H. Anaerobic Membrane Bioreactor Coupled with Nanofiltration Applied to the Treatment of Beverage Industry Wastewater under Soudano-Sahelian Climatic Conditions. JMSR 2022, 8. [Google Scholar] [CrossRef]
- Cheng, H.; Li, Y.; Li, L.; Chen, R.; Li, Y.-Y. Long-Term Operation Performance and Fouling Behavior of a High-Solid Anaerobic Membrane Bioreactor in Treating Food Waste. Chem. Eng. J. 2020, 394, 124918. [Google Scholar] [CrossRef]
- Lesjean, B.; Huisjes, E.H. Survey of the European MBR Market: Trends and Perspectives. Desalination 2008, 231, 71–81. [Google Scholar] [CrossRef]
- Yang, W.; Cicek, N.; Ilg, J. State-of-the-Art of Membrane Bioreactors: Worldwide Research and Commercial Applications in North America. J. Membr. Sci. 2006, 270, 201–211. [Google Scholar] [CrossRef]
- Musa, M.; Idrus, S.; Che Man, H.; Nik Daud, N. Wastewater Treatment and Biogas Recovery Using Anaerobic Membrane Bioreactors (AnMBRs): Strategies and Achievements. Energies 2018, 11, 1675. [Google Scholar] [CrossRef] [Green Version]
- Grasmick, A.; Cabassud, C.; Sperandio, M.; Wisniewski, C. Bioréacteurs à Membranes et Traitement Des Eaux Usées. Chim. Verte 2007, 1–18. [Google Scholar] [CrossRef]
- Shin, C.; Kim, K.; McCarty, P.L.; Kim, J.; Bae, J. Integrity of Hollow-Fiber Membranes in a Pilot-Scale Anaerobic Fluidized Membrane Bioreactor (AFMBR) after Two-Years of Operation. Sep. Purif. Technol. 2016, 162, 101–105. [Google Scholar] [CrossRef]
- Jalilnejad, E.; Sadeghpour, P.; Ghasemzadeh, K. 1—Advances in Membrane Bioreactor Technology. In Current Trends and Future Developments on (Bio-) Membranes; Basile, A., Ghasemzadeh, K., Jalilnejad, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–29. ISBN 978-0-12-816822-6. [Google Scholar]
- Shahid, M.K.; Kashif, A.; Rout, P.R.; Aslam, M.; Fuwad, A.; Choi, Y.; Banu, J.B.; Park, J.H.; Kumar, G. A Brief Review of Anaerobic Membrane Bioreactors Emphasizing Recent Advancements, Fouling Issues and Future Perspectives. J. Environ. Manag. 2020, 270, 110909. [Google Scholar] [CrossRef]
- Gagnaire, J.; Moulin, P.; Marrot, B. Bioréacteurs à Membranes: Un Intérêt Grandissant. Eau Ind. Nuis. 2008, 314, 64–74. [Google Scholar]
- Tchobanoglous, G.; Franklin, B.; Stensel, D. Wastewater Engineering, Treatment and Reuse; McGraraw-Hill, Inc.: New York, NY, USA, 2003. [Google Scholar]
- Maleki, E.; Bokhary, A.; Leung, K.; Liao, B.Q. Long-Term Performance of a Submerged Anaerobic Membrane Bioreactor Treating Malting Wastewater at Room Temperature (23 ± 1 °C). J. Environ. Chem. Eng. 2019, 7, 103269. [Google Scholar] [CrossRef]
- Sawadogo, B.; Konaté, Y.; Lesage, G.; Zaviska, F.; Monnot, M.; Heran, M.; Karambiri, H. Brewery Wastewater Treatment Using MBR Coupled with Nanofiltration or Electrodialysis: Biomass Acclimation and Treatment Efficiency. Water Sci. Technol. 2018, 77, 2624–2634. [Google Scholar] [CrossRef] [PubMed]
- Kulesha, O.; Maletskyi, Z.; Ratnaweera, H. State-of-the-Art of Membrane Flux Enhancement in Membrane Bioreactor. Cogent Eng. 2018, 5, 1489700. [Google Scholar] [CrossRef]
- Orantes, J.; Wisniewski, C.; Heran, M.; Grasmick, A. The Influence of Operating Conditions on Permeability Changes in a Submerged Membrane Bioreactor. Sep. Purif. Technol. 2006, 52, 60–66. [Google Scholar] [CrossRef]
- Huang, Z.; Ong, S.L.; Ng, H.Y. Submerged Anaerobic Membrane Bioreactor for Low-Strength Wastewater Treatment: Effect of HRT and SRT on Treatment Performance and Membrane Fouling. Water Res. 2011, 45, 705–713. [Google Scholar] [CrossRef]
- Balcıoğlu, G.; Yilmaz, G.; Gönder, Z.B. Evaluation of Anaerobic Membrane Bioreactor (AnMBR) Treating Confectionery Wastewater at Long-Term Operation under Different Organic Loading Rates: Performance and Membrane Fouling. Chem. Eng. J. 2021, 404, 126261. [Google Scholar] [CrossRef]
- Seyhi, B.; Droguil, P.; Buelna, G.; Blais, J.-F.; Heran, M. État Actuel des Connaissances des Procédés de Bioréacteur à Membrane Pour le Traitement et la Réutilisation des Eaux Usées Industrielles et Urbaines. J. Water Sci. 2021, 24, 283–310. Available online: https://www.erudit.org/en/journals/rseau/1900-v1-n1-rseau5004724/1006478ar/abstract/ (accessed on 21 January 2022).
- Chen, H.; Chang, S.; Guo, Q.; Hong, Y.; Wu, P. Brewery Wastewater Treatment Using an Anaerobic Membrane Bioreactor. Biochem. Eng. J. 2016, 105, 321–331. [Google Scholar] [CrossRef]
- Stuckey, D.C. Recent Developments in Anaerobic Membrane Reactors. Bioresour. Technol. 2012, 122, 137–148. [Google Scholar] [CrossRef]
- Cirja, M.; Ivashechkin, P.; Schäffer, A.; Corvini, P.F.X. Factors Affecting the Removal of Organic Micropollutants from Wastewater in Conventional Treatment Plants (CTP) and Membrane Bioreactors (MBR). Rev. Environ. Sci. Biotechnol. 2008, 7, 61–78. [Google Scholar] [CrossRef]
- Delgado, S.; Villarroel, R.; González, E.; Morales, M. Aerobic Membrane Bioreactor for Wastewater Treatment—Performance Under Substrate-Limited Conditions. In Biomass: Detection, Production and Usage; InTech: Haverhill, MA, USA, 2011. [Google Scholar]
- Ashadullah, A.K.M.; Shafiquzzaman, M.; Haider, H.; Alresheedi, M.; Azam, M.S.; Ghumman, A.R. Wastewater Treatment by Microalgal Membrane Bioreactor: Evaluating the Effect of Organic Loading Rate and Hydraulic Residence Time. J. Environ. Manag. 2021, 278, 111548. [Google Scholar] [CrossRef] [PubMed]
- Abuabdou, S.M.A.; Ahmad, W.; Aun, N.C.; Bashir, M.J.K. A Review of Anaerobic Membrane Bioreactors (AnMBR) for the Treatment of Highly Contaminated Landfill Leachate and Biogas Production: Effectiveness, Limitations and Future Perspectives. J. Clean. Prod. 2020, 255, 120215. [Google Scholar] [CrossRef]
- Skouteris, G.; Rodriguez-Garcia, G.; Reinecke, S.F.; Hampel, U. The Use of Pure Oxygen for Aeration in Aerobic Wastewater Treatment: A Review of Its Potential and Limitations. Bioresour. Technol. 2020, 312, 123595. [Google Scholar] [CrossRef]
- Song, W.; Xie, B.; Huang, S.; Zhao, F.; Shi, X. 6—Aerobic Membrane Bioreactors for Industrial Wastewater Treatment. In Current Developments in Biotechnology and Bioengineering; Ng, H.Y., Ng, T.C.A., Ngo, H.H., Mannina, G., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 129–145. ISBN 978-0-12-819809-4. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nouhou Moussa, A.W.; Sawadogo, B.; Konate, Y.; Sidibe, S.d.S.; Heran, M. Critical State of the Art of Sugarcane Industry Wastewater Treatment Technologies and Perspectives for Sustainability. Membranes 2023, 13, 709. https://doi.org/10.3390/membranes13080709
Nouhou Moussa AW, Sawadogo B, Konate Y, Sidibe SdS, Heran M. Critical State of the Art of Sugarcane Industry Wastewater Treatment Technologies and Perspectives for Sustainability. Membranes. 2023; 13(8):709. https://doi.org/10.3390/membranes13080709
Chicago/Turabian StyleNouhou Moussa, Abdoul Wahab, Boukary Sawadogo, Yacouba Konate, Sayon dit Sadio Sidibe, and Marc Heran. 2023. "Critical State of the Art of Sugarcane Industry Wastewater Treatment Technologies and Perspectives for Sustainability" Membranes 13, no. 8: 709. https://doi.org/10.3390/membranes13080709
APA StyleNouhou Moussa, A. W., Sawadogo, B., Konate, Y., Sidibe, S. d. S., & Heran, M. (2023). Critical State of the Art of Sugarcane Industry Wastewater Treatment Technologies and Perspectives for Sustainability. Membranes, 13(8), 709. https://doi.org/10.3390/membranes13080709