Electrostatic Potentials Caused by the Release of Protons from Photoactivated Compound Sodium 2-Methoxy-5-nitrophenyl Sulfate at the Surface of Bilayer Lipid Membrane
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Theoretical Model
References
- Heberle, J.; Riesle, J.; Thiedemann, G.; Oesterhelt, D.; Dencher, N.A. Proton Migration Along the Membrane Surface and Retarded Surface to Bulk Transfer. Nature 1994, 370, 379–382. [Google Scholar] [CrossRef]
- Alexiev, U.; Mollaaghababa, R.; Scherrer, P.; Khorana, H.G.; Heyn, M.P. Rapid Long-Range Proton Diffusion Along the Surface of the Purple Membrane and Delayed Proton Transfer into the Bulk. Proc. Natl. Acad. Sci. USA 1995, 92, 372–376. [Google Scholar] [CrossRef]
- Cherepanov, D.A.; Feniouk, B.A.; Junge, W.; Mulkidjanian, A.Y. Low Dielectric Permittivity of Water at the Membrane Interface: Effect on the Energy Coupling Mechanism in Biological Membranes. Biophys. J. 2003, 85, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Georgievskii, Y.; Medvedev, E.S.; Stuchebrukhov, A.A. Proton Transport via the Membrane Surface. Biophys. J. 2002, 82, 2833–2846. [Google Scholar] [CrossRef] [Green Version]
- Agmon, N.; Bakker, H.J.; Campen, R.K.; Henchman, R.H.; Pohl, P.; Roke, S.; Thamer, M.; Hassanali, A. Protons and Hydroxide Ions in Aqueous Systems. Chem. Rev. 2016, 116, 7642–7672. [Google Scholar] [CrossRef]
- Zhang, C.; Knyazev, D.G.; Vereshaga, Y.A.; Ippoliti, E.; Nguyen, T.H.; Carloni, P.; Pohl, P. Water at Hydrophobic Interfaces Delays Proton Surface-to-Bulk Transfer and Provides a Pathway for Lateral Proton Diffusion. Proc. Natl. Acad. Sci. USA 2012, 109, 9744–9749. [Google Scholar] [CrossRef]
- Weichselbaum, E.; Osterbauer, M.; Knyazev, D.G.; Batishchev, O.V.; Akimov, S.A.; Hai, N.T.; Zhang, C.; Knor, G.; Agmon, N.; Carloni, P.; et al. Origin of Proton Affinity to Membrane/Water Interfaces. Sci. Rep. 2017, 7, 4553. [Google Scholar] [CrossRef] [Green Version]
- Serowy, S.; Saparov, S.M.; Antonenko, Y.N.; Kozlovsky, W.; Hagen, V.; Pohl, P. Structural Proton Diffusion Along Lipid Bilayers. Biophys. J. 2003, 84, 1031–1037. [Google Scholar] [CrossRef] [Green Version]
- Springer, A.; Hagen, V.; Cherepanov, D.A.; Antonenko, Y.N.; Pohl, P. Protons Migrate Along Interfacial Water Without Significant Contributions From Jumps Between Ionizable Groups on the Membrane Surface. Proc. Natl. Acad. Sci. USA 2011, 108, 14461–14466. [Google Scholar] [CrossRef]
- Cherepanov, D.A.; Junge, W.; Mulkidjanian, A.Y. Proton Transfer Dynamics at the Membrane/Water Interface: Dependence on the Fixed and Mobile PH Buffers, on the Size and Form of Membrane Particles, and on the Interfacial Potential Barrier. Biophys. J. 2004, 86, 665–680. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, T.; Voth, G.A. Properties of Hydrated Excess Protons Near Phospholipid Bilayers. J. Phys. Chem. 2010, 114, 592–603. [Google Scholar] [CrossRef]
- Weichselbaum, E.; Galimzyanov, T.; Batishchev, O.V.; Akimov, S.A.; Pohl, P. Proton Migration on Top of Charged Membranes. Biomolecules 2023, 13, 352. [Google Scholar] [CrossRef]
- Tashkin, V.Y.; Vishnyakova, V.E.; Shcherbakov, A.A.; Finogenova, O.A.; Ermakov, Y.A.; Sokolov, V.S. Changes of the Capacitance and Boundary Potential of a Bilayer Lipid Membrane Associated With a Fast Release of Protons on Its Surface. Biochem. (Mosc.) Suppl. Ser. A Membr. Cell Biol. 2019, 13, 155–160. [Google Scholar] [CrossRef]
- Ermakov, Y.A.; Sokolov, V.S. Boundary Potentials of Bilayer Lipid Membranes: Methods and Interpretations. In Planar Lipid Bilayers (BLMs) and Their Applications; Tien, H.T., Ottova-Leitmannova, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 7, Chapter 3. [Google Scholar]
- Sokolov, V.S.; Mirsky, V.M. Electrostatic Potentials of Bilayer Lipid Membranes: Basic Research and Analytical Applications. In Ultrathin Electrochemical Chemo- and Biosensors: Technology and Performance; Mirsky, V.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 2, Chapter 11. [Google Scholar]
- Sokolov, V.S.; Gavrilchik, A.N.; Kulagina, A.O.; Meshkov, I.N.; Pohl, P.; Gorbunova, Y.G. Voltage-Sensitive Styryl Dyes As Singlet Oxygen Targets on the Surface of Bilayer Lipid Membrane. J. Photochem. Photobiol. B 2016, 161, 162–169. [Google Scholar] [CrossRef]
- Mueller, P.; Rudin, D.O.; Tien, H.T.; Wescott, W.C. Methods for the Formation of Single Bimolecular Lipid Membranes in Aqueous Solution. J. Phys. Chem. 1963, 67, 534–535. [Google Scholar] [CrossRef]
- Konstantinova, A.N.; Sokolov, V.S.; Imenez-Munguia, I.; Finogenova, O.A.; Ermakov, Y.A.; Gorbunova, Y.G. Adsorption and Photodynamic Efficiency of Meso-Tetrakis(p-Sulfonatophenyl)Porphyrin on the Surface of Bilayer Lipid Membranes. J. Photochem. Photobiol. B 2018, 189, 74–80. [Google Scholar] [CrossRef]
- Cherny, V.V.; Simonova, M.V.; Sokolov, V.S.; Markin, V.S. Transport of the Neutral Form of Amphiphilic Drugs Through a Planar Bilayer Lipid Meembrane: The Role of the PH Gradient. Bioelectrochem. Bioenerg. 1990, 23, 17–26. [Google Scholar] [CrossRef]
- Antonenko, Y.N.; Yaguzhinsky, L. Generation of Potential in Lipid Bilayer Membranes As a Result of Proton-Transfer Reactions in the Unstirred Layers. J. Bioenerg. Biomembr. 1982, 14, 457–465. [Google Scholar] [CrossRef]
- Tashkin, V.; Shcherbakov, A.A.; Apell, H.-J.; Sokolov, V.S. The Competition Transport of Sodium Ions and Protons at the Cytoplasmic Side of Na,K-ATPase. Biochem. (Mosc.) Suppl. Ser. A Membr. Cell Biol. 2013, 30, 102–114. [Google Scholar]
- Cherny, V.V.; Sokolov, V.S.; Abidor, I.G. Determination of Surface Charge of Bilayer Lipid Membranes. Bioelectrochem. Bioenerg. 1980, 7, 413–420. [Google Scholar] [CrossRef]
- Pohl, E.E.; Peterson, U.; Sun, J.; Pohl, P. Changes of Intrinsic Membrane Potentials Induced by Flip-Flop of Long-Chain Fatty Acids. Biochemistry 2000, 39, 1834–1839. [Google Scholar] [CrossRef]
- Grit, M.; Crommelin, D.J.A. Chemical Stability of Liposomes” Implications for Their Physical Stability. Chem. Phys. Lipids 1993, 64, 3–18. [Google Scholar] [CrossRef]
- Petelska, A.D.; Figaszewski, Z.A. Effect of PH on the Interfacial Tension of Lipid Bilayer Membrane. Biophys. J. 2000, 78, 812–817. [Google Scholar] [CrossRef] [Green Version]
- Tatulian, S.A. Effect of Lipid Phase Transition on the Binding of Anions to Dimyristoylphosphatidylcholine Liposomes. Biochim. Biophys. Acta 1983, 736, 189–195. [Google Scholar] [CrossRef]
- Petrache, H.I.; Zemb, T.; Belloni, L.; Parsegian, V.A. Salt Screening and Specific Ion Adsorption Determine Neutral-Lipid Membrane Interactions. Proc. Natl. Acad. Sci. USA 2006, 103, 7982–7987. [Google Scholar] [CrossRef]
- Creux, P.; Lachaise, J.; Graciaa, A.; Beattie, J.K.; Djerdjev, A.M. Strong Specific Hydroxide Ion Binding at the Pristine Oil/Water and Air/Water Interfaces. J. Phys. Chem. B 2009, 113, 14146–14150. [Google Scholar] [CrossRef]
- Marinova, K.G.; Alargova, R.G.; Denkov, N.D.; Velev, O.D.; Petsev, D.N. Charging of Oil-Water Interfaces Due to Spontaneous Adsorption of Hydroxyl Ions. Langmuir 1996, 12, 2045–2051. [Google Scholar] [CrossRef]
- Takahashi, M. Zeta Potential of Microbubbles in Aqueous Solutions: Electrical Properties of the Gas-Water Interface. J. Phys. Chem. B 2005, 109, 21858–21864. [Google Scholar] [CrossRef]
- Batishchev, O.V.; Indenbom, A.V. Effect of Acidity on the Formation of Solvent-Free Lipid Bilayers. Russ. J. Electrochem. 2006, 42, 1107–1112. [Google Scholar] [CrossRef]
- Akimov, S.A.; Polynkin, M.A.; Imenez-Munguia, I.; Pavlov, K.V.; Batishchev, O.V. Phosphatidylcholine Membrane Fusion Is PH-Dependent. Int. J. Mol. Sci. 2018, 19, 1358. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolov, V.S.; Tashkin, V.Y.; Zykova, D.D.; Kharitonova, Y.V.; Galimzyanov, T.R.; Batishchev, O.V. Electrostatic Potentials Caused by the Release of Protons from Photoactivated Compound Sodium 2-Methoxy-5-nitrophenyl Sulfate at the Surface of Bilayer Lipid Membrane. Membranes 2023, 13, 722. https://doi.org/10.3390/membranes13080722
Sokolov VS, Tashkin VY, Zykova DD, Kharitonova YV, Galimzyanov TR, Batishchev OV. Electrostatic Potentials Caused by the Release of Protons from Photoactivated Compound Sodium 2-Methoxy-5-nitrophenyl Sulfate at the Surface of Bilayer Lipid Membrane. Membranes. 2023; 13(8):722. https://doi.org/10.3390/membranes13080722
Chicago/Turabian StyleSokolov, Valerij S., Vsevolod Yu. Tashkin, Darya D. Zykova, Yulia V. Kharitonova, Timur R. Galimzyanov, and Oleg V. Batishchev. 2023. "Electrostatic Potentials Caused by the Release of Protons from Photoactivated Compound Sodium 2-Methoxy-5-nitrophenyl Sulfate at the Surface of Bilayer Lipid Membrane" Membranes 13, no. 8: 722. https://doi.org/10.3390/membranes13080722
APA StyleSokolov, V. S., Tashkin, V. Y., Zykova, D. D., Kharitonova, Y. V., Galimzyanov, T. R., & Batishchev, O. V. (2023). Electrostatic Potentials Caused by the Release of Protons from Photoactivated Compound Sodium 2-Methoxy-5-nitrophenyl Sulfate at the Surface of Bilayer Lipid Membrane. Membranes, 13(8), 722. https://doi.org/10.3390/membranes13080722