Iron Control in Liquid Effluents: Pseudo-Emulsion Based Hollow Fiber Membrane with Strip Dispersion Technology with Pseudo-Protic Ionic Liquid (RNH3+HSO4−) as Mobile Carrier
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Liquid-Liquid Extraction Experiments (Generation of the PPIL)
2.2.2. Membrane Operation
3. Results and Discussion
3.1. Generation of the Pseudo-Protic Ionic Liquid (PPIL)
3.2. Hollow Fiber Membrane Experiments
3.2.1. Influence of the Feed Phase Flow on Iron(III) Permeation
3.2.2. Influence of the Pseudo-Emulsion Phase Flow on Iron(III) Permeation
3.2.3. Influence of the Strip Solution Composition on Iron(III) Permeation
3.2.4. Influence of the Sulphuric Acid Concentration in the Feed Phase on Iron(III) Permeation
3.2.5. Influence of the Initial Iron(III) Concentration in the Feed Phase on Metal Extraction
3.2.6. Influence of the Carrier Concentration on Iron(III) Permeation
3.2.7. Estimation of Diffusional Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atchudan, R.; Edison, T.N.J.I.; Perumal, S.; Vinodh, R.; Sundramoorthy, A.K.; Babu, R.S.; Lee, Y.R. Leftover kiwi fruit peel-derived carbon dots as a highly selective fluorescent sensor for detection of ferric ion. Chemosensors 2021, 9, 166. [Google Scholar] [CrossRef]
- Alguacil, F.J. The removal of toxic metals from liquid effluents by ion exchange resins. Part XVI: Iron(III)/H+/Lewatit TP208. Rev. Metal. 2021, 57, e203. [Google Scholar] [CrossRef]
- Li, C.; Marin, L.; Chen, X. Chitosan based macromolecular probes for the selective detection and removal of Fe3+ ion. Int. J. Biol. Macromol. 2021, 186, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Samavati, Z.; Samavati, A.; Goh, P.S.; Fauzi Ismail, A.; Sohaimi Abdullah, M. A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater. Chem. Eng. Res. Des. 2023, 189, 530–571. [Google Scholar] [CrossRef]
- Kasikov, A.; Sokolov, A.; Shchelokova, E. Extraction of iron(III) from nickel chloride solutions by mixtures of aliphatic alcohols and ketones. Solvent Extr. Ion Exch. 2022, 40, 251–268. [Google Scholar] [CrossRef]
- Chukreev, C.G.; Dorozhko, V.A.; Afonin, M.A. Mathematical model of FeCl3 and HCl extraction in the FeCl3–HCl–H2O–undecan-1-ol system. Russian J. Gen. Chem. 2022, 92, 108–116. [Google Scholar] [CrossRef]
- Pavón, S.; Haneklaus, N.; Meerbach, K.; Bertau, M. Iron(III) removal and rare earth element recovery from a synthetic wet phosphoric acid solution using solvent extraction. Min. Eng. 2022, 182, 107569. [Google Scholar] [CrossRef]
- Wen, J.; Lee, M.S. Options to recover high-purity MnO2 from leach liquors of manganese dust containing Mn3O4 and iron and zinc oxide as minor impurities. Hydrometallurgy 2023, 218, 106056. [Google Scholar] [CrossRef]
- Cubova, K.; Semelova, M.; Nemec, M.; Benes, V. Liquid-liquid extraction of ferric ions into the ionic liquids. Minerals 2022, 12, 11. [Google Scholar] [CrossRef]
- Wang, H.; Huang, C.; Ma, S.; Guo, S.; Gong, B.; Ou, J. Fabrication of bifunctional macroporous adsorption resin via grafting carbon dot and application in the detection and adsorption of iron (III) ion. Mater. Today Comm. 2023, 34, 105220. [Google Scholar] [CrossRef]
- Arif, M. Extraction of iron (III) ions by core-shell microgel for in situ formation of iron nanoparticles to reduce harmful pollutants from water. J. Environ. Chem. Eng. 2023, 11, 109270. [Google Scholar] [CrossRef]
- Aljabarin, N. Chemical adsorption of iron ions from drinking water using Jordanian zeolitic tuff. Desalin. Water Treat. 2023, 281, 196–203. [Google Scholar] [CrossRef]
- Brishti, R.S.; Kundu, R.; Habib, M.A.; Ara, M.H. Adsorption of iron(III) from aqueous solution onto activated carbon of a natural source: Bombax ceiba fruit shell. Res. Chem. 2023, 5, 100727. [Google Scholar] [CrossRef]
- Zhao, Y.; Lai, G.S.; Li, C.; Wang, R. Acid-resistant polyamine hollow fiber nanofiltration membrane for selective separation of heavy metals and phosphorus. Chem. Eng. J. 2023, 453, 139825. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, Y.; Chen, K.; Xiao, K.; Yin, Y. Preparation and properties of phosphinic acid–functionalized polyacrylonitrile hollow fiber membrane for heavy metal adsorption. Environ. Sci. Poll. Res. 2023, 30, 31408–31420. [Google Scholar] [CrossRef]
- Arguillarena, A.; Margallo, M.; Arruti-Fernández, A.; Pinedo, J.; Gómez, P.; Ortiz, I.; Urtiaga, A. Circular economy in hot-dip galvanizing with zinc and iron recovery from spent pickling acids. RSC Adv. 2023, 13, 6481–6489. [Google Scholar] [CrossRef] [PubMed]
- Suren, S.; Punyain, W.; Maneeintr, K.; Nootong, K.; Pancharoen, U. The simultaneous elimination of arsenic and mercury ions via hollow fiber supported liquid membrane and their reaction mechanisms: Experimental and modeling based on DFT and generating function. Arabian J. Chem. 2023, 16, 104501. [Google Scholar] [CrossRef]
- Traiwongsa, N.; Suren, S.; Pancharoen, U.; Nootong, K.; Maneeintr, K.; Punyain, W.; Lothongkum, A.W. Mechanisms of mercury ions separation by non-toxic organic liquid membrane via DFT, thermodynamics, kinetics and mass transfer model. J. Ind. Eng. Chem. 2023, 117, 522–537. [Google Scholar] [CrossRef]
- Gu, J.; Zang, H.; Yao, S.; Wang, X.; Zhu, M.; Song, H. Study on degradation of benzothiazolium-based ionic liquids by UV-H2O2. Appl. Sci. 2020, 10, 894. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112038. [Google Scholar] [CrossRef]
- Ahrenberg, M.; Beck, M.; Neise, C.; Keßler, O.; Kragl, U.; Verevkin, S.P.; Schick, C. Vapor pressure of ionic liquids at low temperatures from AC-chip-calorimetry. Phys. Chem. Chem. Phys. 2016, 18, 21381–21390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.B.; Zhang, B.; Liu, S.-H.; Chen, C.-C. Flammability estimation of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Loss Prev. Process Ind. 2020, 66, 104196. [Google Scholar] [CrossRef]
- Chiappe, C.; Margari, P.; Mezzetta, A.; Pomelli, C.S.; Koutsoumpos, S.; Papamichael, M.; Giannios, P.; Moutzouris, K. Temperature effects on the viscosity and the wavelength-dependent refractive index of imidazolium-based ionic liquids with a phosphorus containing anion. Phys. Chem. Chem. Phys. 2017, 19, 8201–8209. [Google Scholar] [CrossRef] [PubMed]
- Mezzetta, A.; Perillo, V.; Guazzelli, L.; Chiappe, C. Thermal behavior analysis as a valuable tool for comparing ionic liquids of different classes. J. Therm. Anal. Calor. 2019, 38, 3335–3345. [Google Scholar] [CrossRef]
- Zhang, Q.; Cai, S.; Zhang, W.; Lan, Y.; Zhang, X. Density, viscosity, conductivity, refractive index and interaction study of binary mixtures of the ionic liquid 1–ethyl–3–methylimidazolium acetate with methyldiethanolamine. J. Mol. Liq. 2017, 233, 471–478. [Google Scholar] [CrossRef]
- Becherini, S.; Mezzetta, A.; Chiappe, C.; Guazzelli, L. Levulinate amidinium protic ionic liquids (PILs) as suitable media for the dissolution and levulination of cellulose. New J. Chem. 2019, 43, 4554–4561. [Google Scholar] [CrossRef]
- Karmakar, A.; Mukundan, R.; Yang, P.; Batista, E.R. Solubility model of metal complex in ionic liquids from first principle calculation. RSC Adv. 2019, 9, 18506–18526. [Google Scholar] [CrossRef]
- Bystrzanowska, M.; Pena-Pereira, F.; Marcinkowski, L.; Tobiszewski, L. How green are ionic liquids?—A multicriteria decision analysis approach. Ecotox. Environ. Safety 2019, 174, 455–458. [Google Scholar] [CrossRef]
- Marcionilio, S.M.L.O.; Araújo, D.M.; Nascimento, T.V.; Martínez-Huitle, C.A.; Linares, J.L. Evaluation of the toxicity reduction of an ionic liquid solution electrochemically treated using BDD films with different sp3/sp2 ratios. Electrochem. Comm. 2020, 118, 106792. [Google Scholar] [CrossRef]
- Castillo-Ramírez, C.; Janssen, C.H.C. Pseudo-protic ionic liquids for the extraction of metals relevant for urban mining. Ind. Eng. Chem. Res. 2023, 62, 627–636. [Google Scholar] [CrossRef]
- Kobrak, M.N.; Yager, K.G. X-Ray scattering and physicochemical studies of trialkylamine/carboxylic acid mixtures: Nanoscale structure in pseudoprotic ionic liquids and related solutions. Phys. Chem. Chem. Phys. 2018, 20, 18639–18646. [Google Scholar] [CrossRef] [PubMed]
- Patsos, N.; Lewis, K.; Picchioni, F.; Kobrak, M.N. Extraction of acids and bases from aqueous phase to a pseudoprotic ionic liquid. Molecules 2019, 24, 894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alguacil, F.J.; Robla, J.I. On the use of pseudo-protic ionic liquids to extract gold(III) from HCl solutions. Int. J. Mol. Sci. 2023, 24, 6305. [Google Scholar] [CrossRef] [PubMed]
- Wing, Q.; Shi, Y.; Yang, D.; Ning, P. Extraction of phenol from water with primary amine Primene JMT. Emerg. Contam. 2022, 8, 90–96. [Google Scholar] [CrossRef]
- Bohrer, M.P. Diffusional boundary layer resistance for membrane transport. Ind. Eng. Chem. Fundam. 1983, 22, 72–78. [Google Scholar] [CrossRef]
- Alguacil, F.J.; Martinez, S. Permeation of iron(III) by an immobilised liquid membrane using Cyanex 923 as mobile carrier. J. Membr. Sci. 2000, 176, 249–255. [Google Scholar] [CrossRef]
- Neplenbroek, A.M.; Bargeman, D.; Smolders, C.A. Mechanism of supported liquid membrane degradation: Emulsion formation. J. Membr. Sci. 1992, 67, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Shukla, J.P.; Misra, S.K. Carrier-mediated transport of uranyl ions across tributyl phosphate—Dodecane liquid membranes. J. Membr. Sci. 1991, 64, 93–102. [Google Scholar] [CrossRef]
- Gupta, S.K.; Rathore, N.S.; Sonawane, J.V.; Pabby, A.K.; Janardan, P.; Changrani, R.D.; Dey, P.K. Dispersion-free solvent extraction of U(VI) in macro amount from nitric acid solutions using hollow fiber contactor. J. Membr. Sci. 2007, 300, 131–136. [Google Scholar] [CrossRef]
- El Aamrani, F.Z.; Kumar, A.; Sastre, A.M. Kinetic modelling of the active transport of copper(II) across a liquid membrane using thiourea derivatives immobilized on microporous hydrophobic supports. New J. Chem. 1999, 23, 517–523. [Google Scholar] [CrossRef]
- Prasad, R.; Kiani, A.; Bhave, R.R.; Sirhar, K.K. Further studies on solvent extraction with immobilized interfaces in a microporous hydrophobic membrane. J. Membr. Sci. 1986, 26, 79–97. [Google Scholar] [CrossRef]
- Kumar, A.; Haddad, R.; Alguacil, F.J.; Sastre, A.M. Comparative performance of non-dispersive solvent extraction using a single module and the integrated membrane process with two hollow fiber contactors. J. Membr. Sci. 2005, 248, 1–14. [Google Scholar] [CrossRef]
- Urtiaga, A.M.; Ortiz, M.I.; Salazar, E.; Irabien, J.A. Supported liquid membrane for the separation-concentration of phenol. I. Viablility and mass-transfer evaluation. Ind. Eng. Che. Res. 1992, 31, 877–886. [Google Scholar] [CrossRef]
- Kumar, A.; Haddad, R.; Benzal, G.; Sastre, A.M. Use of modified membrane carrier system for recovery of gold cyanide from alkaline cyanide media using hollow fiber supported liquid membranes: Feasibility studies and mass transfer modelling. J. Membr. Sci. 2000, 174, 17–30. [Google Scholar] [CrossRef]
- Kumar Pabby, A.; Haddad, R.; Alguacil, F.J.; Sastre, A.M. Improved kinetics-based gold cyanide extraction with mixture of LIX 79 + TOPO utilizing hollow fiber membrane contactors. Chem. Eng. J. 2004, 100, 11–22. [Google Scholar] [CrossRef]
- Alguacil, F.J.; Alonso, M.; Lopez, F.; Lopez-Delgado, A. Uphill permeation of Cr(VI) using Hostarex A327 as ionophore by membrane-solvent extraction processing. Chemosphere 2008, 72, 684–689. [Google Scholar] [CrossRef]
Contactor length | 28 cm |
Contactor diameter | 8 cm |
Active area (A) | 1.4 m2 |
Number of fibers (n) | 10,000 |
Fiber internal diameter (di) | 24·10−3 cm |
Fiber outer diameter (do) | 30·10−3 cm |
Fiber wall thickness (dorg) | 3.0·10−2 cm |
Fiber length (L) | 15 cm |
Porosity (ε) | 30% |
Tortuosity (τ) | 3 |
Pore size | 3.0·10−6 cm |
Polymeric material | 3.0·10−6 cm |
[Amine], M | DH2SO4 |
---|---|
0.068 | 0.072 |
0.14 | 0.16 |
0.27 | 0.36 |
0.54 | 1.1 |
Feed Flow, cm3/min | P, cm/min |
---|---|
75 | 2.1·10–3 |
150 | 4.1·10−3 |
300 | 6.9·10−3 |
400 | 4.7·10−3 |
[H2SO4], M | P, cm/min | [Fe]st, g/L | a % Rst |
---|---|---|---|
0.5 | 9.9·10−4 | 1.4 | 50 |
1.5 | 1.5·10−3 | 2.9 | 72 |
3 | 2.8·10−3 | 4.2 | 75 |
[Fe]f,0, g/L | P, cm/min | J, mol/cm2·min | [Fe]st, g/L | a % Rst |
---|---|---|---|---|
0.01 | 9.6·10−3 | 1.7·10−9 | 0.06 | 84 |
0.1 | 7.5·10−3 | 1.3·10−8 | 0.45 | 80 |
1 | 2.8·10−3 | 5.0·10−8 | 4.2 | 75 |
[PPIL], M | P, cm/min | a % Rst |
---|---|---|
0.027 | 6.6·10−3 | 80 |
0.068 | 8.1·10−3 | 82 |
0.14 | 9.6·10−3 | 84 |
0.27 | 1.8·10−2 | 84 |
0.54 | 1.3·10−2 | 85 |
0.81 | 1.1·10−2 | 83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alguacil, F.J.; Robla, J.I. Iron Control in Liquid Effluents: Pseudo-Emulsion Based Hollow Fiber Membrane with Strip Dispersion Technology with Pseudo-Protic Ionic Liquid (RNH3+HSO4−) as Mobile Carrier. Membranes 2023, 13, 723. https://doi.org/10.3390/membranes13080723
Alguacil FJ, Robla JI. Iron Control in Liquid Effluents: Pseudo-Emulsion Based Hollow Fiber Membrane with Strip Dispersion Technology with Pseudo-Protic Ionic Liquid (RNH3+HSO4−) as Mobile Carrier. Membranes. 2023; 13(8):723. https://doi.org/10.3390/membranes13080723
Chicago/Turabian StyleAlguacil, Francisco Jose, and Jose Ignacio Robla. 2023. "Iron Control in Liquid Effluents: Pseudo-Emulsion Based Hollow Fiber Membrane with Strip Dispersion Technology with Pseudo-Protic Ionic Liquid (RNH3+HSO4−) as Mobile Carrier" Membranes 13, no. 8: 723. https://doi.org/10.3390/membranes13080723
APA StyleAlguacil, F. J., & Robla, J. I. (2023). Iron Control in Liquid Effluents: Pseudo-Emulsion Based Hollow Fiber Membrane with Strip Dispersion Technology with Pseudo-Protic Ionic Liquid (RNH3+HSO4−) as Mobile Carrier. Membranes, 13(8), 723. https://doi.org/10.3390/membranes13080723