MID-FTIR-PLS Chemometric Analysis of Cr(VI) from Aqueous Solutions Using a Polymer Inclusion Membrane-Based Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Preparation of PIMs
2.3. Liquid-Solid Extraction
2.4. Metal Quantification
2.5. Measuring Infrared Spectra
2.6. Development of the Chemometric Model
3. Results and Discussion
3.1. PIM Composition
3.2. Optimization of the Extraction Time
3.3. Influence of pH
3.4. Influence of the Initial Metal Concentration
3.4.1. Adsorption Isotherm
3.4.2. Distribution Quotient
3.4.3. Extraction Percent
3.4.4. Enrichment Factor
3.5. Determination of the Extraction Equilibrium
3.6. Chemometric Analyses
3.6.1. PCA
3.6.2. Selection of the Spectral Wavelength Range
3.6.3. PLS Modeling
3.7. Model Validation and Application
3.7.1. Figures of Merit (FOM) [53,54,55]
Accuracy (RMSE)
Selectivity (sel)
Sensitivity (sen)
Limit of Detection (LD)
Limit of Quantitation (LQ)
- β0 = 0,
- β1 = 1,
- b0 = observed abscissa,
- b1 = observed slope,
- and .
3.7.2. Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Aliquat 336 | Methyltrioctylammonium chloride |
Cal | Calibration |
CTA | Cellulose triacetate |
CV | Cross-validation |
D | Distribution coefficient |
E | Enrichment factor |
E% | Extraction percentage |
FAAS | Flame atomic absorption spectroscopy |
FOM | Figures of merit |
FTIR | Fourier-transform infrared spectroscopy |
iPLS | Interval PLS |
IR | Infrared spectroscopy |
ISOs | Ion-selective optodes |
Kext | Extraction constant |
LD | Limit of detection |
LQ | Limit of quantitation |
MES | 2-(N-morpholino) ethanesulfonic acid |
MID-FTIR | Mid Fourier transform infrared spectroscopy |
NAS | Net analyte signal |
NPOE | 2-nitrophenyl octyl ether |
PCA | Principal component analysis |
PIM(s) | Polymer inclusion membrane(s) |
PLS | Partial least squares |
R2 | Determination coefficient |
RMSEC | Root mean square error of calibration |
RMSECV | Root mean square error of cross-validation |
RMSEP | Root mean square error of prediction |
RSD | Relative standard deviation |
sel | Selectivity |
sen | Sensitivity |
SIR | Solvent-impregnated resins |
SLM | Supported liquid membranes |
SX | Solvent extraction |
TRIS | Tris(hydroxymethyl)aminomethane |
VIS | Visible spectroscopy |
References
- Georgaki, M.-N.; Charalambous, M.; Kazakis, N.; Talias, M.A.; Georgakis, C.; Papamitsou, T.; Mytiglaki, C. Chromium in Water and Carcinogenic Human Health Risk. Environments 2023, 10, 33. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Dutta, S.K.; Sikder, J.; Mandal, M.K. Computational and experimental study of chromium (VI) removal in direct contact membrane distillation. J. Membr. Sci. 2014, 450, 447–456. [Google Scholar] [CrossRef]
- Chromium in Drinking Water. United States Environmental Protection Agency (EPA). Available online: https://www.epa.gov/sdwa/chromium-drinking-water (accessed on 13 June 2023).
- Chromium in Drinking-Water. World Health Organization. Available online: https://cdn.who.int/media/docs/default-source/wash-documents/wash-chemicals/chromium.pdf?sfvrsn=37abd598_6 (accessed on 13 June 2023).
- Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.T. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 5438. [Google Scholar] [CrossRef] [PubMed]
- Vaiopoulou, E.; Gikas, P. Regulations for chromium emissions to the aquatic environment in Europe and elsewhere. Chemosphere 2020, 254, 126876. [Google Scholar] [CrossRef] [PubMed]
- Parks, J.L.; McNeill, L.; Frey, M.; Eaton, A.D.; Haghani, A.; Ramirez, L.; Edwards, M. Determination of total chromium in environmental water samples. Water Res. 2004, 38, 2827–2838. [Google Scholar] [CrossRef]
- Capitán-Vallvey, L.F.; Palma, A.J. Recent developments in handheld and portable optosensing—A review. Anal. Chim. Acta 2011, 696, 27–46. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Castro, K.; Hargreaves, M.; Moens, L.; Madariaga, J.M.; Edwards, H.G.M. Comparative study of mobile Raman instrumentation for art analysis. Anal. Chim. Acta 2007, 588, 108–116. [Google Scholar] [CrossRef]
- Du, X.; Xie, X. Ion-Selective optodes: Alternative approaches for simplified fabrication and signaling. Sens. Actuators B Chem. 2021, 335, 129368. [Google Scholar] [CrossRef]
- Scindia, Y.M.; Pandey, A.K.; Reddy, A.V.R.; Manohar, S.B. Chemically selective membrane optode for Cr(VI) determination in aqueous samples. Anal. Chim. Acta 2004, 515, 311–321. [Google Scholar] [CrossRef]
- Carrington, N.A.; Thomas, G.H.; Rodman, D.L.; Beach, D.B.; Xue, Z.-L. Optical determination of Cr(VI) using regenerable, functionalized sol-gel monoliths. Anal. Chim. Acta 2007, 581, 232–240. [Google Scholar] [CrossRef]
- Castilleja-Rivera, W.L.; Hinojosa-Reyes, L.; Guzmán-Mar, J.L.; Hernández-Ramírez, A.; Ruíz-Ruíz, E.; Cerda, V. Sensitive determination of chromium(VI)in paint samples using a membrane optode coupled to a multisyringe flow injection system. Talanta 2012, 99, 730–736. [Google Scholar] [CrossRef]
- Munandar, R. A Cellulose Triacetate-Based Optode Membrane for Cr(VI) Detection in Water: Fabrication and Characterization. Bachelor’s Thesis, IPB University, Bogor, Indonesia, 2022. [Google Scholar]
- Keskin, B.; Zeytuncu-Gökoğlu, B.; Koyuncu, I. Polymer inclusion membrane applications for transport of metal ions: A critical review. Chemosphere 2021, 279, 130604. [Google Scholar] [CrossRef] [PubMed]
- Ulewicz, M. Polymer Membranes in Separation Process. Membranes 2021, 11, 831. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.I.G.S.; Cattrall, R.W.; Kolev, S.D. Polymer inclusion membranes (PIMs) in chemical analysis—A review. Anal. Chim. Acta 2017, 987, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Salazar, E.; Ortiz, M.I.; Urtiaga, A.M.; Irabien, J.A. Equilibrium and Kinetics of Cr(V1) Extraction with Aliquat 336. Ind. Eng. Chem. Res. 1992, 31, 1516–1522. [Google Scholar] [CrossRef]
- Senol, A. Amine extraction of chromium(VI) from aqueous acidic solutions. Sep. Purif. Technol. 2004, 36, 63–75. [Google Scholar] [CrossRef]
- Kozlowski, C.; Walkowiak, W. Applicability of liquid membranes in chromium(VI) transport with amines as ion carriers. J. Membr. Sci. 2005, 266, 143–150. [Google Scholar] [CrossRef]
- Kabaya, N.; Arda, M.; Saha, B.; Streat, M. Removal of Cr(VI) by solvent impregnated resins (SIR) containing aliquat 336. React. Funct. Polym. 2003, 54, 103–115. [Google Scholar] [CrossRef]
- Wojcik, G.; Hubicki, Z.; Ryczkowski, J. Investigations of Chromium(III) and (VI) Ions Sorption on SIR by using Photoacoustic and DRS Methods. Acta Phys. Pol. A 2009, 116, 432–434. [Google Scholar] [CrossRef]
- Kebiche-Senhadji, O.; Tingry, S.; Seta, P.; Benamor, M. Selective extraction of Cr(VI) over metallic species by polymer inclusion membrane (PIM) using anion (Aliquat 336) as carrier. Desalination 2010, 258, 59–65. [Google Scholar] [CrossRef]
- Gherasim, C.V.; Bourceanu, G. Removal of chromium(VI) from aqueous solutions using a polyvinyl-chloride inclusion membrane: Experimental study and modelling. Chem. Eng. J. 2013, 220, 24–34. [Google Scholar] [CrossRef]
- Kagaya, S.; Maeno, T.; Ito, K.; Gemmei-Ide, M.; Cattrall, R.W.; Kolev, S.D. Improvement of chromium(VI) extraction from acidic solutions using a poly(vinyl chloride)-based polymer inclusion membrane with Aliquat 336 as the carrier. Anal. Sci. 2017, 33, 643–646. [Google Scholar] [CrossRef]
- Semghouni, H.; Bey, S.; Figoli, A.; Criscuoli, A.; Russo, F.; Mohamed, B.; Drioli, E. Chromium(VI) Removal by Polyvinyl Chloride(PVC)/Aliquat-336 Polymeric Inclusion Membranes in a Multiframe Flat Sheet Membrane Module. Appl. Sci. 2019, 9, 2994. [Google Scholar] [CrossRef]
- Sellami, F.; Kebiche-Senhadji, O.; Marais, S.; Couvrat, N.; Fatyeyeva, K. Polymer inclusion membranes based on CTA/PBAT blend containing Aliquat 336 as extractant for removal of Cr(VI): Efficiency, stability and selectivity. React. Funct. Polym. 2019, 139, 120–132. [Google Scholar] [CrossRef]
- Sellami, F.; Kebiche-Senhadji, O.; Marais, S.; Colasse, L.; Fatyeyeva, K. Enhanced removal of Cr(VI) by polymer inclusion membrane based on poly(vinylidene fluoride) and Aliquat 336. Sep. Purif. Technol. 2020, 248, 117038. [Google Scholar] [CrossRef]
- Bahrami, S.; Reza Yaftian, M.; Najvak, P.; Dolatyari, L.; Shayani-Jam, H.; Kolev, S.D. PVDF-HFP based polymer inclusion membranes containing Cyphos® IL 101 and Aliquat® 336 for the removal of Cr(VI) from sulfate solutions. Sep. Purif. Technol. 2020, 250, 117251. [Google Scholar] [CrossRef]
- González-Albarrán, R.; de Gyves, J.; Rodríguez de San Miguel, E. Determination of Cadmium (II) in Aqueous Solutions by In Situ MID-FTIR-PLS Analysis Using a Polymer Inclusion Membrane-Based Sensor: First Considerations. Molecules 2020, 25, 3436. [Google Scholar] [CrossRef]
- Mohd Suah, F.B.; Ahmad, M.; Heng, L.Y. A novel polymer inclusion membrane based optode for sensitive determination of Al3+. Spectrochim. Acta A 2015, 144, 81–87. [Google Scholar] [CrossRef]
- Ngarisan, N.I.; Zanariah, C.W.; Ngah, C.W.; Ahmad, M.; Kuswandi, B. Optimization of polymer inclusion membranes (PIMs) preparation for immobilization of Chrome Azurol S for optical sensing of aluminum (III). Sens. Actuator B Chem. 2014, 203, 465–470. [Google Scholar] [CrossRef]
- Mohd Suah, F.B.; Ahmad, M.; Heng, L.Y. Highly sensitive fluorescence optode for aluminium(III) based on non-plasticized polymer inclusion membrane. Sens. Actuators B Chem. 2014, 201, 490–495. [Google Scholar] [CrossRef]
- O’Rourke, M.; Duffy, N.; De Marco, R.; Potter, I. Electrochemical Impedance Spectroscopy—A Simple Method for the Characterization of Polymer Inclusion Membranes Containing Aliquat 336. Membranes 2011, 1, 132–148. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document—pH. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, 2015. (Catalogue No H144-28/2016E-PDF). Available online: https://www.canada.ca/content/dam/hc-sc/documents/services/publications/healthy-living/guidelines-canadian-drinking-water-quality-guideline-technical-document-ph-eng.pdf (accessed on 15 July 2023).
- Oh, J.-K.; Lee, H.-Y.; Kim, S.-G. Solvent Extraction of Chromium from Dilute Aqueous Solution. Geosyst. Eng. 2000, 3, 49–52. [Google Scholar] [CrossRef]
- Ncibi, M.C. Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. J. Hazard. Mater. 2008, 153, 207–212. [Google Scholar] [CrossRef]
- Malek, A.; Farooq, S. Comparison of isotherms models for hydrocarbon adsorption on activated carbon. AIChE J. 1996, 42, 3191–3201. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, D.; Zheng, Y.; Liang, S.; Liu, Z. Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J. Hazard. Mater. 2009, 167, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Kislik, V.S. Solvent Extraction: Classical and Novel Approaches, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 44–45. [Google Scholar]
- Senol, A. Extractive removal of Cr(VI) from aqueous acidic media by aliquat 336/xylene system: Optimization and modelling of equilibrium. Indian J. Chem. Technol. 2017, 24, 269–283. [Google Scholar]
- Bulbul, O.; Filoglu, G.; Zorlu, T.; Altuncul, H.; Freire-Aradas, A.; Söchtig, J.; Ruiz, Y.; Klintschar, M.; Triki-Fendri, S.; Rebai, A.; et al. Inference of biogeographical ancestry across central regions of Eurasia. Int. J. Leg. Med. 2015, 130, 73–79. [Google Scholar] [CrossRef]
- Tay, G.K.; Henschel, A.; Daw Elbait, G.; Al Safar, H.S. Genetic Diversity and Low Stratification of the Population of the United Arab Emirates. Front. Genet. 2020, 11, 608. [Google Scholar] [CrossRef]
- El Haddad, J.; de Miollis, F.; Bou Sleiman, J.; Canioni, L.; Mounaix, P.; Bousquet, B. Chemometrics applied to quantitative analysis of ternary mixtures by Terahertz spectroscopy. Anal. Chem. 2014, 86, 4927–4933. [Google Scholar] [CrossRef]
- Mancilla-Rico, A.J.; Rodríguez de San Miguel, E. Simultaneous determination of Cu(II), Zn(II), and Pb(II) from aqueous solutions using a polymer inclusion membrane (PIM) based-sensor with 1-(2-pyridylazo)-2-naphthol (PAN) as chromophore and chemometric methods. Front. Anal. Sci. 2022, 2, 971352. [Google Scholar] [CrossRef]
- Nørgaard, L.; Saudland, A.; Wagner, J.; Nielsen, J.P.; Munck, L.; Engelsen, S.B. Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy. App. Spectrosc. 2000, 54, 413–419. [Google Scholar] [CrossRef]
- Nunes, S.; Ramacciotti, F.; Neves, A.; Angelin, E.M.; Ramos, A.M.; Roldão, E.; Wallaszkovits, N.; Armijo, A.A.; Melo, M.J. A diagnostic tool for assessing the conservation condition of cellulose nitrate and acetate in heritage collections: Quantifying the degree of substitution by infrared spectroscopy. Herit. Sci. 2020, 8, 33. [Google Scholar] [CrossRef]
- Naz, G.; Othaman, Z.; Shamsuddin, M.; Ghoshal, S.K. Aliquat 336 stabilized multi-faceted gold nanoparticles with minimal ligand density. App. Surf. Sci. 2016, 363, 74–82. [Google Scholar] [CrossRef]
- Fontàs, C.; Vera, R.; Anticó, E.; Martínez de Yuso, M.d.V.; Rodríguez-Castellón, E.; Benavente, J. New Insights on the Effects of Water on Polymer Inclusion Membranes Containing Aliquat 336 Derivatives as Carriers. Membranes 2022, 12, 192. [Google Scholar] [CrossRef] [PubMed]
- van der Vegt, N.F.A.; Haldrup, K.; Roke, S.; Zheng, J.; Lund, M.; Bakker, H.J. Water-Mediated Ion Pairing: Occurrence and Relevance. Chem. Rev. 2016, 116, 7626–7641. [Google Scholar] [CrossRef]
- Kalidhasan, S.; Santhana, A.; Kumar, K.; Rajesh, V.; Rajesha, N. An efficient ultrasound assisted approach for the impregnation of room temperature ionic liquid onto Dowex 1×8 resin matrix and its application toward the enhanced adsorption of chromium (VI). J. Hazard. Mater. 2012, 213–214, 249–257. [Google Scholar] [CrossRef]
- Olivieri, A.C.; Faber, N.M.; Ferré, J.; Boqué, R.; Kalivas, J.H.; Mark, H. Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report). Pure Appl. Chem. 2006, 78, 633–661. [Google Scholar] [CrossRef]
- Braga, J.W.B.; Trevizan, L.C.; Nunes, L.C.; Rufini, I.A.; Santos, D., Jr.; Krug, F.J. Comparison of univariate and multivariate calibration for the determination of micronutrients in pellets of plant materials by laser induced breakdown spectrometry. Spectrochim. Acta B 2010, 65, 66–74. [Google Scholar] [CrossRef]
- de Carvalho Rocha, W.F.; Nogueira, R.; Vaz, B.G. Validation of model of multivariate calibration: An application to the determination of biodiesel blend levels in diesel by near-infrared spectroscopy. J. Chemometr. 2012, 26, 456–461. [Google Scholar] [CrossRef]
- Lorber, A. Error propagation and figures of merit for quantification by solving matrix equations. Anal. Chem. 1986, 58, 1167–1172. [Google Scholar] [CrossRef]
- Ferreira, M.H.; Braga, J.W.B.; Sena, M.M. Development and validation of a chemometric method for direct determination of hydrochlorothiazide in pharmaceutical samples by diffuse reflectance near infrared spectroscopy. Microchem. J. 2013, 109, 158–164. [Google Scholar] [CrossRef]
- Gherasim, C.V.; Bourceanu, G.; Olariu, R.J.; Arsene, C. A novel polymer inclusion membrane applied in chromium (VI) separation from aqueous solutions. J. Hazard. Mater. 2011, 197, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Sreevani, I.; Reddy, P.R.; Reddy, V.K. Rapid and Simple Spectrophotometric Determination of Traces of Chromium (VI) in Wastewater Samples and in Soil samples by using 2-Hydroxy, 3-Methoxy Benzaldehyde Thiosemicarbazone (HMBATSC). IOSR J. App. Phys. 2013, 3, 40–45. [Google Scholar] [CrossRef]
- Lace, A.; Ryan, D.; Bowkett, M.; Cleary, J. Chromium Monitoring in Water by Colorimetry Using Optimised 1,5-Diphenylcarbazide Method. Int. J. Environ. Res. Public Health 2019, 16, 1803. [Google Scholar] [CrossRef]
- Revanasiddappa, H.D.; Kiran Kumar, T.N. Spectrophotometric Determination of Trace Amounts of Chromium with Citrazinic Acid. J. Anal. Chem. 2001, 56, 1084–1088. [Google Scholar] [CrossRef]
- Sun, X.; Li, B.; Qi, A.; Tian, C.; Han, J.; Shi, Y.; Lin, B.; Chen, L. Improved assessment of accuracy and performance using a rotational paper-based device for multiplexed detection of heavy metals. Talanta 2018, 178, 426–431. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
qmax | 0.188 mmol/g |
KL | 2199 cm3/mmol |
Reduced Chi-Sqr | 0.02628 |
Adjusted R2 | 0.90717 |
ANOVA: | |
Regression sum of squares | 0.0247 |
Residual sum of squares | 0.0024 |
Regression mean square | 0.0123 |
Residual mean square | 0.00048 |
F-value | 25.6361 |
p-value | 0.0023 |
RL | |
---|---|
6.81 | 0.0064 |
14.53 | 0.0031 |
20.65 | 0.0021 |
27.10 | 0.0016 |
36.74 | 0.0012 |
40.73 | 0.0010 |
48.70 | 0.0009 |
X-Block | y-Block | |||
---|---|---|---|---|
Component | This Component | Total | This Component | Total |
1 | 93.23 | 93.23 | 10.71 | 10.71 |
2 | 6.00 | 99.24 | 14.71 | 25.41 |
3 | 0.48 | 99.72 | 51.55 | 76.96 |
4 | 0.23 | 99.95 | 7.35 | 84.31 |
5 | 0.03 | 99.98 | 3.30 | 87.62 |
6 | 0.01 | 99.99 | 7.49 | 95.10 |
7 | 0.00 | 99.99 | 2.07 | 97.17 |
FOM | Results | |
---|---|---|
Accuracy | RMSEC | 3.73115 |
RMSECV | 6.82685 | |
RMSEP | 3.3229 | |
Bias | −1.91847 × 10−13 (Cal) | |
0.185947 (CV) | ||
R2 | 0.98145 (Cal) | |
0.940902 (CV) | ||
Recovery% | 104.02 ± 4.12 * (Test) | |
sen | 0.00001547 ppb | |
γ | 3.8 ppb | |
γ−1 | 0.6 ppb−1 | |
sel | 0.0155 | |
Linear range | 5.8–100 ppb | |
LD | 1.9 ppb | |
LQ | 5.8 ppb |
Detection Method | Carrier/Chromophore | Linear Range | pH | LD | LQ | Reference |
---|---|---|---|---|---|---|
Colorimetry | 2-hydroxy, 3-methoxy benzaldehyde thiosemicarbazone | 0.260–2.60 μg/cm3 | 6 | 0.014 μg/cm3 | 0.041 μg/cm3 | [59] |
Colorimetry | 1,5-diphenylcarbazide | 0.03–3 μg/cm3 | 2.2 | 0.023 μg/cm3 | 0.076 μg/cm3 | [60] |
Colorimetry | diazonium salt and citrazinic acid | 0.2–1.5 μg/cm3 | Alkaline medium | 0.04 μg/cm3 | [61] | |
Rotational microfluidic paper-based device | 1,5-diphenylcarbazide | 0.5–10 μg/cm3 | Very acidic | 0.18 μg/cm3 | [62] | |
Sol-gel monoliths | pyridine-functionalized sol-gel monoliths and diphenylcarbazide | 1 | about 0.010 μg/cm3 | [12] | ||
Optode | aliquat 336 and 1,5-diphenylcarbazide | 0.020–0.397 μg/cm3 | 3 | 0.011 μg/cm3 | 0.013 μg/cm3 | [11] |
Optode | 1,5-diphenylcarbazide | 0.0024–1 μg/cm3 | 1 | 0.0007 μg/cm3 | 0.0024 μg/cm3 | [13] |
Optode | aliquat 336 and 1,5-diphenylcarbazide | 0.02–0.40 μg/cm3 | 3 | 0.0055 μg/cm3 | 0.0165 μg/cm3 | [14] |
FTIR optode | aliquat 336 | 0.0058–0.1 μg/cm3 | 6 | 0.0019 μg/cm3 | 0.0058 μg/cm3 | This work |
Sample | Measured (ppb) | Predicted (ppb) | Recovery% | RMSEP | p-Value |
---|---|---|---|---|---|
Test 1 | 13 | 13.99 | 107.66 | ||
Test 2 | 20 | 23.57 | 117.86 | ||
Test 3 | 36 | 37.25 | 103.47 | ||
Test 4 | 40 | 42.32 | 105.81 | ||
Test 5 | 63 | 63.23 | 100.37 | ||
Test 6 | 73 | 75.85 | 103.90 | ||
Test 7 | 80 | 77.89 | 97.48 | ||
Test 8 | 86 | 89.07 | 103.57 | ||
Test 9 | 90 | 90.90 | 101.01 | ||
Test 10 | 100 | 99.00 | 99.00 | ||
Average | 104.02 | ||||
3.3229 | 0.0611 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez de la Peña, A.; Rodríguez de San Miguel, E.; de Gyves, J. MID-FTIR-PLS Chemometric Analysis of Cr(VI) from Aqueous Solutions Using a Polymer Inclusion Membrane-Based Sensor. Membranes 2023, 13, 740. https://doi.org/10.3390/membranes13080740
Martínez de la Peña A, Rodríguez de San Miguel E, de Gyves J. MID-FTIR-PLS Chemometric Analysis of Cr(VI) from Aqueous Solutions Using a Polymer Inclusion Membrane-Based Sensor. Membranes. 2023; 13(8):740. https://doi.org/10.3390/membranes13080740
Chicago/Turabian StyleMartínez de la Peña, Armando, Eduardo Rodríguez de San Miguel, and Josefina de Gyves. 2023. "MID-FTIR-PLS Chemometric Analysis of Cr(VI) from Aqueous Solutions Using a Polymer Inclusion Membrane-Based Sensor" Membranes 13, no. 8: 740. https://doi.org/10.3390/membranes13080740
APA StyleMartínez de la Peña, A., Rodríguez de San Miguel, E., & de Gyves, J. (2023). MID-FTIR-PLS Chemometric Analysis of Cr(VI) from Aqueous Solutions Using a Polymer Inclusion Membrane-Based Sensor. Membranes, 13(8), 740. https://doi.org/10.3390/membranes13080740