Electrochemical Characterization of Charged Membranes from Different Materials and Structures via Membrane Potential Analysis
Abstract
:1. Introduction
2. Theoretical Background
- (i)
- Diffusion potential:
- (ii)
- Donnan potential [2]:
3. Materials and Methods
3.1. Materials
- -
- An anion-exchange membrane, specifically an AMX-Sb sample (Astom, Tokyo, Japan), consisting of a copolymer of styrene and divinylbenzene matrix with quaternary ammonium fixed groups [19].
- -
- Two commercial ion-exchange membranes provided by Ionics Iberica (Las Palmas de Gran Canaria, Spain); one membrane was positively charged (AR204-SZRA-412) and the other membrane was negatively charged (CR67-HMR-402). These membranes were prepared using vinyl monomer and acrylic fiber with –N+(CH3) or –SO3 radicals to provide them positive/negative characters [46], and they will be named hereafter as Ionics(+) and Ionics(−). To estimate possible changes in ion transport associated with membrane contact with acidic solutions, both samples were maintained for one year in a 0.a M H2SO4 solution, and they were denominated as Ionic(+)/H2SO4 and Ionic(−)/H2SO4, respectively.
- -
- A polymer inclusion membrane (PIM) was obtained using cellulose triacetate (CTA) as base-polymer and the ionic liquid AliquatCl (tricaprylmethylammonium chloride (C25H55N+Cl− or commercially, Aliquat 336) in proportions (in mass) of 70% CTA and 30% AliquatCl [10], and it was denominated as 70CTA/30AlqCl. This membrane was prepared by the research group of Dr. C. Fontás and Dr. E. Anticó, Analytical Chemical Department, Gerona University, Gerona, Spain.
- -
- A symmetric nanoporous alumina membrane was obtained via the two-step anodization process [37] using 0.3 M H2SO4 solution as the electrolyte and 40 V as the anodizing potential (similar to sample ALM-1), with external and internal (pore walls) surfaces being coated with an Al2O3 layer via the atomic layer deposition (ALD) method [47]; Al2O3 coating reduced pore-radii and porosity without modification of the surface nature (rp = 9 nm, Θ = 6% average values, see SEM pictures in the Supplementary Information document (Figure S4)). This modified membrane was called ALM-1/Al2O3, and it was obtained, as was the ALM-1 membrane, by Prof. V. de la Prida and Dr. V. Vega (Nanomembranes Laboratory, Oviedo University, Oviedo, Spain).
- -
- A negatively charged commercial membrane Nafion-112 (in protonated form) from Dupont (USA). This membrane, commonly used for fuel cell application, was modified by incorporation of the ionic liquid cation n-dodecyltrimethylammonium (DTA+) through a proton/cation exchange process, maintaining the Nafion membrane during 24 h in a 60% aqueous solution of the IL (C12H25N(CH3)3Cl or DTACl). This membrane was denominated as Nafion-112/DTA+, and it shows higher chemical stability than the Nafion-112 at temperatures higher than 80 °C [48].
- -
- Two experimental bio-based polymeric membranes—a microbial exopolysaccharide hydrophilic membrane (EPS sample, 103% swelling degree) composed of sugars (galactose (68%), glucose, mannose and rhamnose) and acyl groups (pyruvil, succynil and acetyl) [49]—and a Chitosane membrane (average contact angle: 58°) derived from chitin (the most abundant natural amino polysaccharide) [50]. These membranes were prepared at the Universidade Nova de Lisboa (Portugal) by the research groups of Prof. M.A.M. Reis (Chemistry Department) and Prof. I.M. Coelhoso (Chemical Engineering Department).
- -
- A highly hydrophilic regenerated cellulose membrane (RC–CE sample, from Cellophane Española, Burgos, Spain) modified via inclusion of silver nanoparticles (RC–CE/AgNPs membrane). The Ag NPs were supplied by Prof. M. López-Romero (Icon Nanotech, Málaga, Spain). The RC–CE/AgNPs membrane was obtained by introducing a piece of the RC–CE membrane into an aqueous solution of Ag nanoparticles for 1 h. Ag NPs are commonly included in the structure of polymeric membranes as a way to increase mechanical stability (strain–stress curves were shown as Supplementary Information document (Figure S5)) and biofouling reduction [51].
3.2. Membrane Potential Determination
4. Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
aj | Solution activity |
AgNPs | Silver nanoparticles |
ALM | Nanoporous alumina membrane |
AlqCl | AliquatCl (or C25H55N+Cl−) |
Cv | Solution concentration |
Ion concentration in the membrane | |
CTA | Cellulose triacetate |
Di | Ion diffusion coefficient in the membrane |
Ds | Salt diffusion coefficient in the membrane |
DTA+ | n-dodecyltrimethylammonium cation |
EIS | Electrochemical impedance spectroscopy |
EPS | Microbial exopolysaccharide membrane |
F | Faraday constant |
Ii | Current transport by ion i |
IT | Total current transport for cations and anions |
IS | Impedance spectroscopy |
Ks,i | Membrane partition coefficient |
P(i) | Ionic permselectivity |
PIM | Polymer inclusion membrane |
R | Gas constant |
RC | Regenerated cellulose |
RC–CE | Regenerated cellulose membrane |
rp | Membrane pore radii |
T | Temperature of the system |
ti | Ion transport number in the membrane |
toi | Ion transport number in solution |
TMS | Teorell–Meyer–Siever |
Xef | Effective membrane fixed charge concentration |
zi | Ion valency |
ΔΦmbr | Membrane potential |
ΔΦelect | Electrode potential |
ΔΦDon | Donnan potential |
ΔΦdif | Diffusion potential in the membrane |
ΔΦ°dif | Solution diffusion potential |
ΔE | Measured potential |
Θ | Membrane porosity |
References
- Mulder, M. Basic Principles of Membrane Technology; Kluwner Academic Publishers: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Lakshminarayanaiah, N. Transport Phenomena in Membranes; Academic Press Inc.: New York, NY, USA, 1970. [Google Scholar]
- Helfferich, F. Ion Exchange; McGraw-Hill: New York, NY, USA, 1962. [Google Scholar]
- Pourcelly, G.; Gavach, C. Perfluorinated Membranes. In Proton Conductors: Solids, Membranes and Gels: Materials and Devices; Colomban, P., Ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Zhang, B.; Fan, L.; Ambre, R.B.; Liu, T.; Meng, Q.; Timmer, B.J.J. Advancing Proton Exchange Membrane Electrolyzers with Molecular Catalysts. Joule 2020, 4, 1408–1444. [Google Scholar] [CrossRef]
- Das, G.; Choi, J.-H.; Nguyen, P.K.T.; Kim, D.-J.; Yoon, J.S. Anion Exchange Membranes for Fuel Cell Application: A Review. Polymers 2022, 14, 1197. [Google Scholar] [CrossRef] [PubMed]
- Kotoka, F.; Merino-Garcia, I.; Velizarov, S. Surface Modifications of Anion Exchange Membranes for an Improved Reverse Electrodialysis Process Performance: A Review. Membranes 2020, 10, 160. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Nawaz, T.; Asghar, A.; Orhan, M.F.; Samreen, A.; Kannan, A.M. An overview of proton exchange membranes for fuel cells: Materials and manufacturing. Int. J. Hydrog. Energy 2022, 44, 19086–19131. [Google Scholar]
- Nebavskaya, X.; Sarapulova, V.; Butylskii, D.; Larchet, C.; Pismenskaya, N. Electrochemical Properties of Homogeneous and Heterogeneous Anion Exchange Membranes Coated with Cation Exchange Polyelectrolyte. Membranes 2019, 9, 13. [Google Scholar] [CrossRef]
- Güell, R.; Anticó, E.; Kolev, S.D.; Benavente, J.; Salvadó, V.; Fontàs, C. Development and characterization of polymer inclusion membranes for the separation and speciation of inorganic as species. J. Membr. Sci. 2011, 383, 88–95. [Google Scholar] [CrossRef]
- Mareev, S.; Gorobchenko, A.; Ivanov, D.A.; Anokhin, D.; Nikonenko, V. Ion and Water Transport in Ion-Exchange Membranes for Power Generation Systems: Guidelines for Modeling. Int. J. Mol. Sci. 2022, 24, 34. [Google Scholar] [CrossRef]
- Kingsbury, R.; Wang, J.; Coronell, O. Comparison of water and salt transport properties of ion exchange, reverse osmosis, and nanofiltration membranes for desalination and energy applications. J. Membr. Sci. 2020, 604, 117998. [Google Scholar] [CrossRef]
- Benavente, J.; Romero, V.; Vázquez, M.I.; Anticó, E.; Fontàs, C. Electrochemical Characterization of a Polymer Inclusion Membrane Made of Cellulose Triacetate and Aliquat and Its Application to Sulfonamides separation. Separation 2018, 5, 5. [Google Scholar] [CrossRef]
- Kim, M.; Kim, T. Integration of nanoporous membranes into microfluidic devices: Electrokinetic bio-sample pre-concentration. Analyst 2013, 138, 6007–6015. [Google Scholar] [CrossRef]
- Tang, B.; Bensdas, S.; Krajka, V.; May, T.; Moritz, A.; Constantinou, I.; Reichi, S.; Dietzel, A. Self-loading microfluids platform with ultra-thin nanoporous membrane for organ-on-chip wafer-level processing. Front. Sens. 2022, 3, 974895. [Google Scholar] [CrossRef]
- Epsztein, R.; DuChanois, R.M.; Ritt, C.L.; Noy, A.; Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 2020, 15, 426–436. [Google Scholar] [CrossRef]
- Sollner, K. The electrochemistry of porous membranes, with particular reference to ion exchange membranes and their use in model studies of biophysical interest. J. Macromol. Sci. 1969, 3, 1–86. [Google Scholar] [CrossRef]
- Boldini, A.; Porfiri, M. A non-ideal solution theory for the mechanics and electrochemistry of charged membranes. Comput. Mater. 2022, 8, 44. [Google Scholar] [CrossRef]
- Benavente, J. Electrical Characterization of Membranes. In Monitoring and Visualizing Membrane-Based Processes; Güell, C., Ferrando, M., López, F., Eds.; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Kozmai, A.; Sarapulova, V.; Sharafan, M.; Melkonian, K.; Rusinova, T.; Kozmai, Y.; Pismenskaya, N.; Dammak, L.; Nikonenko, V. Electrochemical Impedance Spectroscopy of Anion-Exchange Membrane AMX-Sb Fouled by Red Wine Components. Membranes 2021, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Szymczyk, A.; Dirir, Y.I.; Picot, M.; Nicolas, I.; Barrière, F. Advanced electrokinetic characterization of composite porous membranes. J. Membr. Sci. 2013, 429, 44–51. [Google Scholar] [CrossRef]
- Yaroshchuk, A.; Bruening, M.L.; Zholkovskiv, E. Modelling nanofiltration of electrolyte solutions. Adv. Colloid Interface Sci. 2019, 268, 39–63. [Google Scholar] [CrossRef]
- Ariza, M.J.; Benavente, J. Streaming potential along the surface of polysulfone membranes: A comparative study between two different experimental systems and determination of electrokinetic and adsorption parameters. J. Membr. Sci. 2001, 190, 119–132. [Google Scholar] [CrossRef]
- Escoda, A.; Lanteri, Y.; Fievet, P.; Déon, S.; Szymczyk, A. Determining the dielectric constant inside pores of nanofiltration membranes from membrane potential measurements. Langmuir 2010, 26, 14628–14635. [Google Scholar] [CrossRef]
- Benavente, J. Use of Impedance Spectroscopy for Characterization of Modified Membranes in Membrane Modification: Technology and Applications; Hilal, N., Knayet, M., Wright, C.J., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 21–40. [Google Scholar]
- Macdonald, J.R.; Johnson, W.B. Fundamentals of Impedance Spectroscopy in Impedance Spectroscopy: Theory, Experiment, and Applications, 3rd ed.; Wiley Online Library: Hoboken, NJ, USA, 2018. [Google Scholar]
- Ariza, M.J.; Cañas, A.; Benavente, J. Electrical and surface chemical characterizations of the active layer of composite polyamide/polysulphone nanofiltration commercial membranes. Surf. Interface Anal. 2000, 32, 425–429. [Google Scholar] [CrossRef]
- De Lara, R.; Benavente, J. Use of hydrodynamic and electrical measurements to determine protein fouling mechanisms for microfiltration membranes with different structures and materials. Sep. Purif. Technol. 2009, 66, 517–524. [Google Scholar] [CrossRef]
- González, A.S.; Vega, V.; Cuevas, A.L.; Martínez de Yuso, M.V.; Prida, V.M.; Benavente, J. Surface Modification of Nanoporous Anodic Alumina during Self-Catalytic Atomic Layer Deposition of Silicon Dioxide from (3-Aminopropyl)Triethoxysilane. Materials 2021, 14, 5052. [Google Scholar] [CrossRef] [PubMed]
- Peláez, L.; Romero, V.; Escalera, S.; Ibramova, S.; Stibius, K.; Benavente, J.; Hélix-Nielsen, C. Electrochemical characterization of hydrogels for biomimetic applications. Polym. Adv. Technol. 2011, 12, 1381–1388. [Google Scholar] [CrossRef]
- Benavente, J.; Muñoz, A.; Heredia, A.; Cañas, A. Fixed charge and transport numbers in isolated pepper fruit cuticles from membrane potential measurements: Donnan and diffusion potential contributions. Colloids Surf. 1999, 159, 423–430. [Google Scholar] [CrossRef]
- Teorell, T. Transport phenomena in membranes. Discuss. Faraday Soc. 1956, 21, 9–26. [Google Scholar] [CrossRef]
- Meyer, K.H.; Sievers, J.F. La perméabilité des membranes I. Théorie de la perméabilité ionique. Helv. Chim. Acta 1936, 19, 649–664. [Google Scholar] [CrossRef]
- Acosta, L.K.; Law, C.S.; Santos, A.; Ferré-Borrull, J.; Marsal, L.F. Tuning intrinsic photoluminescence from light-emitting multispectral nanoporous anodic alumina photonic crystals. APL Photonics 2022, 7, 026108. [Google Scholar] [CrossRef]
- Kipke, S.; Schmid, G. Nanoporous alumina membranes as diffusion controlling systems. Adv. Funct. Mater. 2014, 14, 1184–1190. [Google Scholar] [CrossRef]
- Robinson, R.A.; Stokes, R.H. Electrolyte Solutions, 2nd ed.; Dover Publications Incorporated: New York, NY, USA, 2012. [Google Scholar]
- Masuda, H.; Fukuda, K. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science 1995, 268, 1466–1468. [Google Scholar] [CrossRef]
- Romero, V.; Vega, V.; García, J.; Zierold, R.; Nielsch, K.; Prida, V.M.; Hernando, B.; Benavente, J. Changes in morphology and ionic transport induced by ALD SiO2 coating of nanoporous alumina membranes. ACS Appl. Mater. Interfaces 2013, 5, 3556–3564. [Google Scholar] [CrossRef]
- Tavakolian, M.; Jafari, S.M.; van de Ven, T.G.M. A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials. Nano-Micro Lett. 2020, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Gotturk, P.A.; Sujanani, R.; Qian, J.; Wang, Y.; Katz, L.E.; Freeman, B.D.; Crumlin, E.J. The Donnan potential revealed. Nat. Commun. 2022, 13, 5880. [Google Scholar] [CrossRef]
- Szymczyk, A.; Fievet, P. Ion transport through nanofiltration membranes: The steric, electric and dielectric exclusion model. Desalination 2006, 200, 122–124. [Google Scholar] [CrossRef]
- Lanteri, Y.; Szymczyk, A.; Fievet, P. Influence of Steric, Electric, and Dielectric Effects on Membrane Potential. Langmuir 2008, 24, 7955–7962. [Google Scholar] [CrossRef]
- Demish, H.-U.; Pusch, W. Electric and electrokinetic transport properties of homogeneous weak ion exchange membranes. J. Colloid Interface Sci. 1979, 69, 247–270. [Google Scholar] [CrossRef]
- Filippov, A.N.; Starov, V.M.; Konomemko, N.A.; Berezina, N.P. Asymmetry of diffusion permeability of bilayers membranes. Adv. Colloids Interface Sci. 2008, 139, 29–39. [Google Scholar] [CrossRef]
- Kimura, Y.; Lim, H.J.; Iijima, T. Membrane potentials of charged cellulosic membranes. J. Membr. Sci. 1984, 18, 285–296. [Google Scholar] [CrossRef]
- Nieto Castillo, A.; García-Delgado, R.A.; Cala Rivero, V. Electrokinetic treatment of soils contaminated by tannery waste. Electrochim. Acta 2012, 86, 110–114. [Google Scholar] [CrossRef]
- George, S.M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- De Yuso, M.D.V.M.; Cuberes, M.T.; Romero, V.; Neves, L.; Coelhoso, I.; Crespo, J.G.; Rodríguez-Castellón, E.; Benavente, J. Modification of a Nafion Membrane by N-Dodecyltrimethylammonium Cation Inclusion for Potential Application in DMFC. Int. J. Hydrog. Energy 2014, 39, 4023–4029. [Google Scholar] [CrossRef]
- Ferreira, A.R.V.; Torres, C.A.V.; Freitas, F.; Sevrin, C.; Gandis, C.; Reiss, M.A.M.; Alves, V.D.; Coelhoso, I.M. Characterization of biodegradable films from the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydr. Polym. 2011, 83, 1582–1590. [Google Scholar]
- Ferreira, A.R.V.; Torres, C.A.V.; Freitas, F.; Sevrin, C.; Gandis, C.; Reiss, M.A.M.; Alves, V.D.; Coelhoso, I.M. Development and characterization of bilayer films of FucoPol and chitosan. Carbohydr. Polym. 2016, 147, 8–15. [Google Scholar] [CrossRef]
- Benvente, J.; García, M.E.; Urbano, N.; López-Romero, J.M.; Contreras-Cáceres, R.C.; Casado-Rodríguez, M.A.; Hierrezuelo, J. Inclusion of silver nanoparticles for improving regenerated cellulose membrane performance and reduction of biofouling. Int. J. Biol. Macromol. 2017, 103, 758–763. [Google Scholar] [CrossRef]
- Kum, S.; Lawler, D.F.; Katz, L.E. Separation characteristics of cations and natural organic matter in electrodialysis. Sep. Purif. Technol. 2020, 250, 117070. [Google Scholar] [CrossRef]
- Park, J.-S.; Shin, M.S.; Sekhon, S.S.; Choi, Y.-W.; Yang, T.-H. Effect of annealing of Nafion recast membranes containing ionic liquids. J. Korean Electrochem. Soc. 2011, 14, 9–15. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Li, Y.C.; Liu, J.; He, J.; Wang, L.Y.; Lei, J.D. Recent Developments in High-Performance Nafion Membranes for Hydrogen Fuel Cells Applications. Pet. Sci. 2022, 19, 1371–1381. [Google Scholar] [CrossRef]
- Yan, N.; Sujanani, R.; Kamcev, J.; Galizia, M.; Jang, E.-S.; Paul, D.R.; Freeman, B.D. Influence of fixed charge concentration and water uptake on ion sorption in AMPS/PEGDA membranes. J. Membr. Sci. 2022, 644, 120171. [Google Scholar] [CrossRef]
Membrane | Xef (M) | t− | Error Fit (%) | P(−) (%) |
---|---|---|---|---|
AMX-Sb | +0.600 | 0.970 | 2.0 | 92.2 |
Ionics(+) | +0.220 | 0.960 | 2.8 | 89.6 |
Ionics(+)/H2SO4 | +0.210 | 0.960 | 5.2 | 89.6 |
70CTA/30AlqCl | +0.034 | 0.914 | 4.4 | 78.0 |
Chitosan | +0.012 | 0.820 | 9.5 | 53.3 |
ALM-1/Al2O3 | +0.040 | 0.860 | 2.2 | 63.6 |
Membrane | Xef (M) | t+ | Error Fit (%) | P(+) (%) |
---|---|---|---|---|
Ionics(−) | −0.350 | 0.954 | 9.8 | 92.5 |
Ionics(−)/H2SO4 | −0.300 | 0.932 | 10.2 | 88.9 |
Nafion-112 | −0.235 | 0.906 | 5.3 | 84.1 |
Nafion-112/DTA+ | −0.120 | 0.760 | 11.4 | 61.0 |
EPS | −0.180 | 0.868 | 7.5 | 78.5 |
RC–CE/AgNPs | −0.0184 | 0.702 | 9.6 | 51.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, V.; Gelde, L.; Benavente, J. Electrochemical Characterization of Charged Membranes from Different Materials and Structures via Membrane Potential Analysis. Membranes 2023, 13, 739. https://doi.org/10.3390/membranes13080739
Romero V, Gelde L, Benavente J. Electrochemical Characterization of Charged Membranes from Different Materials and Structures via Membrane Potential Analysis. Membranes. 2023; 13(8):739. https://doi.org/10.3390/membranes13080739
Chicago/Turabian StyleRomero, Virginia, Lourdes Gelde, and Juana Benavente. 2023. "Electrochemical Characterization of Charged Membranes from Different Materials and Structures via Membrane Potential Analysis" Membranes 13, no. 8: 739. https://doi.org/10.3390/membranes13080739
APA StyleRomero, V., Gelde, L., & Benavente, J. (2023). Electrochemical Characterization of Charged Membranes from Different Materials and Structures via Membrane Potential Analysis. Membranes, 13(8), 739. https://doi.org/10.3390/membranes13080739