Strategies to Mitigate Biofouling of Nanocomposite Polymer-Based Membranes in Contact with Blood
Abstract
:1. Introduction
2. Protein Adsorption onto the Membrane Surface
3. Bacteria Adhesion
4. Interactions with Blood Cells
5. Methods of Anticoagulation
6. Methods for Analyzing Biofilm on Membranes
6.1. Flow Cytometry
6.2. X-ray Photoelectron Spectroscopy
6.3. Time of Flight SIMS
6.4. Scanning Electron Microscopy
6.5. 16S rRNA Sequencing
7. Characteristics of Membranes for CRRT
8. Modifications of Polymer-Based Membranes
8.1. Graphene Modification Possibilities
8.2. Carbon Nanotubes Modification Possibilities
8.3. Silica Nanoparticles Modification Possibilities
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AKI | acute kidney injury |
APTT | activated partial thromboplastin time |
CNTs | carbon nanotubes |
CRRT | continuous renal replacement therapy |
CVD | chemical vapor deposition |
DIC | disseminated intravascular coagulation |
EPS | extracellular polymeric substance |
EVOH | ethylene vinyl alcohol |
FCM | flow cytometry |
GO | graphene oxide |
GOM | graphene oxide-based membranes |
HD | hemodialysis |
HMSN | hollow mesoporous silica nanoparticles |
LBL | layer by layer |
MF | microfiltration |
MMM | mixed matrix membrane |
MSCRAMMs | microbial surface components recognizing adhesive matrix molecules |
MSN | mesoporous silica nanoparticles |
MWCNTs | multi-walled carbon nanotubes |
PAN | polyacrylonitrile |
PES | polyethersulfone |
PMA | phosphomolybdic acid |
PMMA | polymethylmethacrylate |
PSf | polysulfone |
PTFE | polytetrafluoroethylene |
RGO | reduced graphene oxide |
ROS | reactive oxygen species |
SEM | scanning electron microscopy |
SEM-RR | scanning electron microscopy-ruthenium red |
SIMS | secondary ion mass spectrometry |
SLS | sodium lignosulfonate |
SNPs | silica nanoparticles |
SWCNTs | single-walled carbon nanotubes |
ToF-SIMS | time-of-flight SIMS |
UF | ultrafiltration |
UFH | unfractionated heparin |
VLA-5 | very late antigen 5 |
VPSEM | variable pressure scanning electron microscopy |
XPS | X-ray photoelectron spectroscopy |
References
- Zawada, A.M.; Lang, T.; Ottillinger, B.; Kircelli, F.; Stauss-Grabo, M.; Kennedy, J.P. Impact of Hydrophilic Modification of Synthetic Dialysis Membranes on Hemocompatibility and Performance. Membranes 2022, 12, 932. [Google Scholar] [CrossRef] [PubMed]
- Peldszus, S.; Hallé, C.; Peiris, R.H.; Hamouda, M.; Jin, X.; Legge, R.L.; Budman, H.; Moresoli, C.; Huck, P.M. Reversible and Irreversible Low-Pressure Membrane Foulants in Drinking Water Treatment: Identification by Principal Component Analysis of Fluorescence EEM and Mitigation by Biofiltration Pretreatment. Water Res. 2011, 45, 5161–5170. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-L.; Lee, D.-J.; Lai, J.-Y. Filtration Blocking Laws: Revisited. J. Taiwan Inst. Chem. Eng. 2011, 42, 506–508. [Google Scholar] [CrossRef]
- Chellam, S.; Cogan, N.G. Colloidal and Bacterial Fouling during Constant Flux Microfiltration: Comparison of Classical Blocking Laws with a Unified Model Combining Pore Blocking and EPS Secretion. J. Membr. Sci. 2011, 382, 148–157. [Google Scholar] [CrossRef]
- AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G.A. A Review on Membrane Biofouling: Prediction, Characterization, and Mitigation. Membranes 2022, 12, 1271. [Google Scholar] [CrossRef]
- Eshed, L.; Yaron, S.; Dosoretz, C.G. Effect of Permeate Drag Force on the Development of a Biofouling Layer in a Pressure-Driven Membrane Separation System. Appl. Environ. Microbiol. 2008, 74, 7338–7347. [Google Scholar] [CrossRef]
- Wang, F.; Tarabara, V.V. Pore Blocking Mechanisms during Early Stages of Membrane Fouling by Colloids. J. Colloid Interface Sci. 2008, 328, 464–469. [Google Scholar] [CrossRef]
- Kimura, K.; Tanaka, K.; Watanabe, Y. Microfiltration of Different Surface Waters with/without Coagulation: Clear Correlations between Membrane Fouling and Hydrophilic Biopolymers. Water Res. 2014, 49, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Bonomini, M.; Piscitani, L.; Di Liberato, L.; Sirolli, V. Biocompatibility of Surface-Modified Membranes for Chronic Hemodialysis Therapy. Biomedicines 2022, 10, 844. [Google Scholar] [CrossRef]
- Vroman, L.; Adams, A.; Fischer, G.; Munoz, P. Interaction of High Molecular Weight Kininogen, Factor XII, and Fibrinogen in Plasma at Interfaces. Blood 1980, 55, 156–159. [Google Scholar] [CrossRef]
- Brash, J.L.; Horbett, T.A.; Latour, R.A.; Tengvall, P. The Blood Compatibility Challenge. Part 2: Protein Adsorption Phenomena Governing Blood Reactivity. Acta Biomater. 2019, 94, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Jaffer, I.H.; Weitz, J.I. The Blood Compatibility Challenge. Part 1: Blood-Contacting Medical Devices: The Scope of the Problem. Acta Biomater. 2019, 94, 2–10. [Google Scholar] [CrossRef]
- Bixler, G.D.; Bhushan, B. Biofouling: Lessons from Nature. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2012, 370, 2381–2417. [Google Scholar] [CrossRef]
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.-F.; Alarcon, E.I. Bacterial Biofilm Formation on Implantable Devices and Approaches to Its Treatment and Prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef]
- Tuson, H.H.; Weibel, D.B. Bacteria-Surface Interactions. Soft Matter 2013, 9, 4368–4380. [Google Scholar] [CrossRef]
- Donlan, R. Biofilms and Device-Associated Infections. Emerg. Infect. Dis. 2001, 7, 277–281. [Google Scholar] [CrossRef]
- Jahn, K.; Kohler, T.P.; Swiatek, L.-S.; Wiebe, S.; Hammerschmidt, S. Platelets, Bacterial Adhesins and the Pneumococcus. Cells 2022, 11, 1121. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ye, H.; Zheng, X.; Zheng, Z.; Chen, W.; Yu, X. Increased Risk of Catheter-related Infection in Critically Ill Patients given Catecholamine Inotropes during Continuous Renal Replacement Therapy. Hemodial. Int. 2022, 26, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.-C.; Siedlecki, C.A. Bacterial Cell–Biomaterials Interactions. In Handbook of Biomaterials Biocompatibility; Elsevier: Amsterdam, The Netherlands, 2020; pp. 11–42. ISBN 978-0-08-102967-1. [Google Scholar]
- Cho, J.-A.; Roh, Y.J.; Son, H.R.; Choi, H.; Lee, J.-W.; Kim, S.J.; Lee, C.-H. Assessment of the Biofilm-Forming Ability on Solid Surfaces of Periprosthetic Infection-Associated Pathogens. Sci. Rep. 2022, 12, 18669. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, D.; von Holy, A. Bacterial Biofilms within the Clinical Setting: What Healthcare Professionals Should Know. J. Hosp. Infect. 2006, 64, 313–325. [Google Scholar] [CrossRef]
- Yadav, M.K.; Song, J.-J.; Singh, B.P.; Vidal, J.E. Microbial Biofilms and Human Disease: A Concise Review. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–13. ISBN 978-0-444-64279-0. [Google Scholar]
- Bellis, S.L. Advantages of RGD Peptides for Directing Cell Association with Biomaterials. Biomaterials 2011, 32, 4205–4210. [Google Scholar] [CrossRef]
- Ucuzian, A.A.; Greisler, H.P. 7.29 Vascular Grafts. In Comprehensive Biomaterials II; Elsevier: Amsterdam, The Netherlands, 2017; pp. 591–611. ISBN 978-0-08-100692-4. [Google Scholar]
- Beumer, S.; IJsseldijk, M.J.W.; de Groot, P.G.; Sixma, J.J. Platelet Adhesion to Fibronectin in Flow: Dependence on Surface Concentration and Shear Rate, Role of Platelet Membrane Glycoproteins GP IIb/IIIa and VLA-5, and Inhibition by Heparin. Blood 1994, 84, 3724–3733. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.; Galanakis, D.; Liu, Y.; Ramek, A.; Fields, A.; Ba, X.; Simon, M.; Rafailovich, M.H. Control of Anti-Thrombogenic Properties: Surface-Induced Self-Assembly of Fibrinogen Fibers. Available online: https://pubs.acs.org/doi/pdf/10.1021/bm2015976 (accessed on 1 February 2023).
- Karkar, A.; Ronco, C. Prescription of CRRT: A Pathway to Optimize Therapy. Ann. Intensive Care 2020, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- van de Wetering, J.; Westendorp, R.G.; van der Hoeven, J.G.; Stolk, B.; Feuth, J.D.; Chang, P.C. Heparin Use in Continuous Renal Replacement Procedures: The Struggle between Filter Coagulation and Patient Hemorrhage. J. Am. Soc. Nephrol. JASN 1996, 7, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Tolwani, A.J.; Wille, K.M. The Clinical Application of CRRT—Current status: Anticoagulation for Continuous Renal Replacement Therapy. Semin. Dial. 2009, 22, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Kindgen-Milles, D.; Brandenburger, T.; Dimski, T. Regional Citrate Anticoagulation for Continuous Renal Replacement Therapy. Curr. Opin. Crit. Care 2018, 24, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Boulos, L.; Prévost, M.; Barbeau, B.; Coallier, J.; Desjardins, R. LIVE/DEAD BacLight: Application of a New Rapid Staining Method for Direct Enumeration of Viable and Total Bacteria in Drinking Water. J. Microbiol. Methods 1999, 37, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wan, K.; Zhu, J.; Ye, C.; Chabi, K.; Yu, X. Detection and Distribution of Vbnc/Viable Pathogenic Bacteria in Full-Scale Drinking Water Treatment Plants. J. Hazard. Mater. 2021, 406, 124335. [Google Scholar] [CrossRef]
- Dixon, M.B.; Lasslett, S.; Pelekani, C. Destructive and Non-Destructive Methods for Biofouling Analysis Investigated at the Adelaide Desalination Pilot Plant. Desalination 2012, 296, 61–68. [Google Scholar] [CrossRef]
- Dec, W.; Mosiałek, M.; Socha, R.P.; Jaworska-Kik, M.; Simka, W.; Michalska, J. Characterization of Desulfovibrio Desulfuricans Biofilm on High-Alloyed Stainless Steel: XPS and Electrochemical Studies. Mater. Chem. Phys. 2017, 195, 28–39. [Google Scholar] [CrossRef]
- Yuan, S.J.; Pehkonen, S.O. Microbiologically Influenced Corrosion of 304 Stainless Steel by Aerobic Pseudomonas NCIMB 2021 Bacteria: AFM and XPS Study. Colloids Surf. B Biointerfaces 2007, 59, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Touboul, D.; Brunelle, A. What More Can TOF-SIMS Bring than Other MS Imaging Methods? Bioanalysis 2016, 8, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Vickerman, J.C. ToF-SIMS—An Overview. In ToF-SIMS: Surface Analysis by Mass Spectrometry; Surface Spectra/IM Publications: Chichester, UK, 2001; pp. 1–40. [Google Scholar]
- Priester, J.H.; Horst, A.M.; Van De Werfhorst, L.C.; Saleta, J.L.; Mertes, L.A.K.; Holden, P.A. Enhanced Visualization of Microbial Biofilms by Staining and Environmental Scanning Electron Microscopy. J. Microbiol. Methods 2007, 68, 577–587. [Google Scholar] [CrossRef]
- Walker, J.T.; Verran, J.; Boyd, R.D.; Percival, S. [16] Microscopy Methods to Investigate Structure of Potable Water Biofilms. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2001; Volume 337, pp. 243–255. ISBN 978-0-12-182238-5. [Google Scholar]
- Weber, K.; Delben, J.; Bromage, T.G.; Duarte, S. Comparison of SEM and VPSEM Imaging Techniques with Respect to Streptococcus Mutans Biofilm Topography. FEMS Microbiol. Lett. 2014, 350, 175–179. [Google Scholar] [CrossRef]
- Song, C.; Yang, C.-M.; Sun, X.-F.; Xia, P.-F.; Qin, J.; Guo, B.-B.; Wang, S.-G. Influences of Graphene Oxide on Biofilm Formation of Gram-Negative and Gram-Positive Bacteria. Environ. Sci. Pollut. Res. 2018, 25, 2853–2860. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S RRNA Gene Sequencing for Species and Strain-Level Microbiome Analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Recent Progresses in Polymeric Hollow Fiber Membrane Preparation, Characterization and Applications—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S138358661300155X (accessed on 23 June 2023).
- Mollahosseini, A.; Abdelrasoul, A.; Shoker, A. A Critical Review of Recent Advances in Hemodialysis Membranes Hemocompatibility and Guidelines for Future Development. Mater. Chem. Phys. 2020, 248, 122911. [Google Scholar] [CrossRef]
- Raharjo, Y.; Zainol Abidin, M.N.; Ismail, A.F.; Fahmi, M.Z.; Saiful; Elma, M.; Santoso, D.; Haula’, H.; Habibi, A.R. Dialysis Membranes for Acute Kidney Injury. Membranes 2022, 12, 325. [Google Scholar] [CrossRef]
- Liao, Z.; Klein, E.; Poh, C.; Huang, Z.; Lu, J.; Hardy, P.; Gao, D. Measurement of Hollow Fiber Membrane Transport Properties in Hemodialyzers. J. Membr. Sci. 2005, 256, 176–183. [Google Scholar] [CrossRef]
- Kaleekkal, N.J.; Thanigaivelan, A.; Tarun, M.; Mohan, D. A Functional PES Membrane for Hemodialysis—Preparation, Characterization and Biocompatibility. Chin. J. Chem. Eng. 2015, 23, 1236–1244. [Google Scholar] [CrossRef]
- Sinha, M.K.; Purkait, M.K. Preparation and Characterization of Novel Pegylated Hydrophilic PH Responsive Polysulfone Ultrafiltration Membrane. J. Membr. Sci. 2014, 464, 20–32. [Google Scholar] [CrossRef]
- Miao, S.; Cao, X.; Lu, M.; Liu, X. Tailoring Micro/Nano-Materials with Special Wettability for Biomedical Devices. Biomed. Technol. 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Yin, K.; Wu, J.; Deng, Q.; Wu, Z.; Wu, T.; Luo, Z.; Jiang, J.; Duan, J.-A. Tailoring Micro/Nanostructured Porous Polytetrafluoroethylene Surfaces for Dual-Reversible Transition of Wettability and Transmittance. Chem. Eng. J. 2022, 434, 134756. [Google Scholar] [CrossRef]
- Cao, G.; Yan, J.; Ning, X.; Zhang, Q.; Wu, Q.; Bi, L.; Zhang, Y.; Han, Y.; Guo, J. Antibacterial and Antibiofilm Properties of Graphene and Its Derivatives. Colloids Surf. B Biointerfaces 2021, 200, 111588. [Google Scholar] [CrossRef]
- Yadav, N.; Dubey, A.; Shukla, S.; Saini, C.P.; Gupta, G.; Priyadarshini, R.; Lochab, B. Graphene Oxide-Coated Surface: Inhibition of Bacterial Biofilm Formation Due to Specific Surface–Interface Interactions. ACS Omega 2017, 2, 3070–3082. [Google Scholar] [CrossRef]
- Agarwalla, S.V.; Ellepola, K.; Sorokin, V.; Ihsan, M.; Silikas, N.; Neto, A.C.; Seneviratne, C.J.; Rosa, V. Antimicrobial-Free Graphene Nanocoating Decreases Fungal Yeast-to-Hyphal Switching and Maturation of Cross-Kingdom Biofilms Containing Clinical and Antibiotic-Resistant Bacteria. Biomater. Biosyst. 2022, 8, 100069. [Google Scholar] [CrossRef]
- Basile, C.; Davenport, A.; Mitra, S.; Pal, A.; Stamatialis, D.; Chrysochou, C.; Kirmizis, D. Frontiers in Hemodialysis: Innovations and Technological Advances. Artif. Organs 2021, 45, 175–182. [Google Scholar] [CrossRef]
- Kidambi, P.R.; Jang, D.; Idrobo, J.; Boutilier, M.S.H.; Wang, L.; Kong, J.; Karnik, R. Nanoporous Atomically Thin Graphene Membranes for Desalting and Dialysis Applications. Adv. Mater. 2017, 29, 1700277. [Google Scholar] [CrossRef]
- Rajavel, K.; Gomathi, R.; Manian, S.; Rajendra Kumar, R.T. In Vitro Bacterial Cytotoxicity of CNTs: Reactive Oxygen Species Mediate Cell Damage Edges over Direct Physical Puncturing. Langmuir 2014, 30, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Nitodas, S.F.; Das, M.; Shah, R. Applications of Polymeric Membranes with Carbon Nanotubes: A Review. Membranes 2022, 12, 454. [Google Scholar] [CrossRef]
- Nechifor, G.; Voicu, S.I.; Nechifor, A.C.; Garea, S. Nanostructured Hybrid Membrane Polysulfone-Carbon Nanotubes for Hemodialysis. Desalination 2009, 241, 342–348. [Google Scholar] [CrossRef]
- Kang, S.; Herzberg, M.; Rodrigues, D.F.; Elimelech, M. Antibacterial Effects of Carbon Nanotubes: Size Does Matter! Langmuir 2008, 24, 6409–6413. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, L.; Shan, B.; Xie, C.; Liu, C.; Cui, F.; Li, G. Preparation and Characterization of SLS-CNT/PES Ultrafiltration Membrane with Antifouling and Antibacterial Properties. J. Membr. Sci. 2018, 548, 459–469. [Google Scholar] [CrossRef]
- Shi, H.; Liu, H.; Luan, S.; Shi, D.; Yan, S.; Liu, C.; Li, R.K.Y.; Yin, J. Effect of Polyethylene Glycol on the Antibacterial Properties of Polyurethane/Carbon Nanotube Electrospun Nanofibers. RSC Adv. 2016, 6, 19238–19244. [Google Scholar] [CrossRef]
- Abidin, M.N.Z.; Goh, P.S.; Ismail, A.F.; Othman, M.H.D.; Hasbullah, H.; Said, N.; Kadir, S.H.S.A.; Kamal, F.; Abdullah, M.S.; Ng, B.C. Development of Biocompatible and Safe Polyethersulfone Hemodialysis Membrane Incorporated with Functionalized Multi-Walled Carbon Nanotubes. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 572–582. [Google Scholar] [CrossRef]
- Cha, B.G.; Kim, J. Functional Mesoporous Silica Nanoparticles for Bio-imaging Applications. WIREs Nanomed. Nanobiotechnol. 2019, 11, e1515. [Google Scholar] [CrossRef]
- Manzano, M.; Vallet-Regí, M. Mesoporous Silica Nanoparticles for Drug Delivery. Adv. Funct. Mater. 2020, 30, 1902634. [Google Scholar] [CrossRef]
- Croissant, J.G.; Fatieiev, Y.; Almalik, A.; Khashab, N.M. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Adv. Healthc. Mater. 2018, 7, 1700831. [Google Scholar] [CrossRef]
- Pallavi, P.; Harini, K.; Alshehri, S.; Ghoneim, M.M.; Alshlowi, A.; Gowtham, P.; Girigoswami, K.; Shakeel, F.; Girigoswami, A. From Synthetic Route of Silica Nanoparticles to Theranostic Applications. Processes 2022, 10, 2595. [Google Scholar] [CrossRef]
- Downing, M.A.; Jain, P.K. Mesoporous Silica Nanoparticles: Synthesis, Properties, and Biomedical Applications. In Nanoparticles for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 267–281. ISBN 978-0-12-816662-8. [Google Scholar]
- Wu, H.; Tang, B.; Wu, P. Optimizing Polyamide Thin Film Composite Membrane Covalently Bonded with Modified Mesoporous Silica Nanoparticles. J. Membr. Sci. 2013, 428, 341–348. [Google Scholar] [CrossRef]
- Rabajczyk, A.; Zielecka, M.; Cygańczuk, K.; Pastuszka, Ł.; Jurecki, L. Nanometals-Containing Polymeric Membranes for Purification Processes. Materials 2021, 14, 513. [Google Scholar] [CrossRef]
Name | Size | Blood/Serum Concentration |
---|---|---|
Low molecular weight | ||
urea | 60 Da | 15–40 mg/dL |
creatinine | 113 Da | depends on the patient sex and age, 0.6–1.3 mg/dL |
uric acid | 168 Da | 3–7 mg/dL |
Middle molecular weight | ||
Parathyroid hormone | 9.5 kDa | 15–65 pg/mL |
Beta-2-microglobulin | 11.8 Da | <1.8 mg/L |
myoglobin | 18 kDa | <70–110 µg/L |
Il-6 | 23.7 kDa | <1.8 pg/mL |
Properties | Graphene | CNTs | SNPs |
---|---|---|---|
antibacterial mechanism | physical damage, ROS independent oxidative stress, wrapping and trapping | oxidative stress, metabolism disruption | vector for releasing antibacterial substances |
membrane modification | coating, graphene oxide-based membranes, mixed matrix membrane | mixed matrix membrane, vertically aligned CNTs | coating, mixed matrix membrane |
biocompatibility | high | high | high |
surface hydrophilicity | increased | increased | increased |
tested in HD membranes | no | no | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójtowicz, D.; Stodolak-Zych, E. Strategies to Mitigate Biofouling of Nanocomposite Polymer-Based Membranes in Contact with Blood. Membranes 2023, 13, 762. https://doi.org/10.3390/membranes13090762
Wójtowicz D, Stodolak-Zych E. Strategies to Mitigate Biofouling of Nanocomposite Polymer-Based Membranes in Contact with Blood. Membranes. 2023; 13(9):762. https://doi.org/10.3390/membranes13090762
Chicago/Turabian StyleWójtowicz, Dominika, and Ewa Stodolak-Zych. 2023. "Strategies to Mitigate Biofouling of Nanocomposite Polymer-Based Membranes in Contact with Blood" Membranes 13, no. 9: 762. https://doi.org/10.3390/membranes13090762
APA StyleWójtowicz, D., & Stodolak-Zych, E. (2023). Strategies to Mitigate Biofouling of Nanocomposite Polymer-Based Membranes in Contact with Blood. Membranes, 13(9), 762. https://doi.org/10.3390/membranes13090762