Xe Recovery from Nuclear Power Plants Off-Gas Streams: Molecular Simulations of Gas Permeation through DD3R Zeolite Membrane
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. GCMC Adsorption
3.2. Gas Permeation
3.2.1. Pure Gas Krypton
3.2.2. Pure Gas Xenon
3.2.3. Equimolar Mixture of Krypton and Xenon
3.2.4. Mixtures of Krypton and Argon
3.2.5. Mixtures of Xenon and Argon
3.2.6. Ternary Mixture: Krypton, Xenon, and Argon
3.2.7. Diffusion in Pure Gases and Mixtures, Temperature, and Pressure Dependence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooley, I.; Efford, L.; Besley, E. Computational Predictions for Effective Separation of Xenon/Krypton Gas Mixtures in the MFM Family of Metal–Organic Frameworks. J. Phys. Chem. C 2022, 126, 11475–11486. [Google Scholar] [CrossRef]
- Banerjee, D.; Simon, C.M.; Plonka, A.M.; Motkuri, R.K.; Liu, J.; Chen, X.; Smit, B.; Parise, J.B.; Haranczyk, M.; Thallapally, P.K. Metal–Organic Framework with Optimally Selective Xenon Adsorption and Separation. Nat. Commun. 2016, 7, ncomms11831. [Google Scholar] [CrossRef]
- Kitani, S.; Takada, J. Adsorption of Krypton and Xenon on Various Adsorbents. J. Nucl. Sci. Technol. 1965, 2, 51–56. [Google Scholar] [CrossRef]
- Podosek, F.A.; Bernatowicz, T.J.; Kramer, F.E. Adsorption of Xenon and Krypton on Shales. Geochim. Et Cosmochim. Acta 1981, 45, 2401–2415. [Google Scholar] [CrossRef]
- Youn, H.S.; Meng, X.F.; Hess, G.B. Multilayer Adsorption of Xenon, Krypton, and Argon on Graphite: An Ellipsometric Study. Phys. Rev. B 1993, 48, 14556–14576. [Google Scholar] [CrossRef]
- Jameson, C.J.; Jameson, A.K.; Lim, H.-M. Competitive Adsorption of Xenon and Krypton in Zeolite NaA: 129Xe Nuclear Magnetic Resonance Studies and Grand Canonical Monte Carlo Simulations. J. Chem. Phys. 1997, 107, 4364–4372. [Google Scholar] [CrossRef]
- Munakata, K.; Fukumatsu, T.; Yamatsuki, S.; Tanaka, K.; Nishikawa, M. Adsorption Equilibria of Krypton, Xenon, Nitrogen and Their Mixtures on Molecular Sieve 5A and Activated Charcoal. J. Nucl. Sci. Technol. 1999, 36, 818–829. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Wang, X.; Andres-Garcia, E.; Du, P.; Giordano, L.; Wang, L.; Hong, Z.; Gu, X.; Murad, S.; et al. Xenon Recovery by DD3R Zeolite Membranes: Application in Anaesthetics. Angew. Chem. Int. Ed. 2019, 58, 15518–15525. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, T.; Zhang, P.; Yan, W.; Li, Y.; Peng, L.; Veerman, D.; Shi, M.; Gu, X.; Kapteijn, F. High-Silica CHA Zeolite Membrane with Ultra-High Selectivity and Irradiation Stability for Krypton/Xenon Separation. Angew. Chem. Int. Ed. 2021, 60, 9032–9037. [Google Scholar] [CrossRef]
- Wang, X.; (Separation Science Group, Argonne National Laboratory, Lemont, IL, USA). Unpublished Experimental Results of Kr/Xe Gas Permeation Through DD3R Zeolitic Membrane. Private communication, 2020. [Google Scholar]
- van de Graaf, J.M.; Kapteijn, F.; Moulijn, J.A. Methodological and Operational Aspects of Permeation Measurements on Silicalite-1 Membranes. J. Membr. Sci. 1998, 144, 87–104. [Google Scholar] [CrossRef]
- van den Bergh, J.; Zhu, W.; Gascon, J.; Moulijn, J.A.; Kapteijn, F. Separation and Permeation Characteristics of a DD3R Zeolite Membrane. J. Membr. Sci. 2008, 316, 35–45. [Google Scholar] [CrossRef]
- Bashmmakh, B.J.; Wang, X.; Jameson, C.J.; Murad, S. Understanding Separation Mechanisms of Monoatomic Gases, Such as Kr and Xe, via DD3R Zeolite Membrane Using Molecular Dynamics. Thermo 2022, 2, 56–73. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, Y.; Peng, L.; Zhang, C.; Wu, Z.; Gu, X.; Wang, X.; Murad, S. Fabrication and Stability Exploration of Hollow Fiber Mordenite Zeolite Membranes for Isopropanol/Water Mixture Separation. Microporous Mesoporous Mater. 2019, 274, 347–355. [Google Scholar] [CrossRef]
- Murad, S.; Jia, W.; Krishnamurthy, M. Ion-Exchange of Monovalent and Bivalent Cations with NaA Zeolite Membranes: A Molecular Dynamics Study. Mol. Phys. 2004, 102, 2103–2112. [Google Scholar] [CrossRef]
- Qu, F.; Shi, R.; Peng, L.; Zhang, Y.; Gu, X.; Wang, X.; Murad, S. Understanding the Effect of Zeolite Crystal Expansion/Contraction on Separation Performance of NaA Zeolite Membrane: A Combined Experimental and Molecular Simulation Study. J. Membr. Sci. 2017, 539, 14–23. [Google Scholar] [CrossRef]
- Hinkle, K.R.; Wang, X.; Gu, X.; Jameson, C.J.; Murad, S. Computational Molecular Modeling of Transport Processes in Nanoporous Membranes. Processes 2018, 6, 124. [Google Scholar] [CrossRef]
- Fei, S.; Alizadeh, A.; Hsu, W.-L.; Delaunay, J.-J.; Daiguji, H. Analysis of the Water Adsorption Mechanism in Metal–Organic Framework MIL-101(Cr) by Molecular Simulations. J. Phys. Chem. C 2021, 125, 26755–26769. [Google Scholar] [CrossRef]
- Thyagarajan, R.; Sholl, D.S. Molecular Simulations of CH4 and CO2 Diffusion in Rigid Nanoporous Amorphous Materials. J. Phys. Chem. C 2022, 126, 8530–8538. [Google Scholar] [CrossRef]
- Baerlocher, C.; McCusker, L.B. Database of Zeolite Structures. Available online: http://www.iza-structure.org/databases/ (accessed on 8 October 2021).
- Jmol Development Team Jmol: An Open-Source Java Viewer for Chemical Structures in 3D 2002. Available online: https://jmol.sourceforge.net/ (accessed on 8 October 2021).
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Michael Brown, W.; Crozier, P.S.; in ’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2021, 271, 108171. [Google Scholar] [CrossRef]
- Parkes, M.V.; Demir, H.; Teich-McGoldrick, S.L.; Sholl, D.S.; Greathouse, J.A.; Allendorf, M.D. Molecular Dynamics Simulation of Framework Flexibility Effects on Noble Gas Diffusion in HKUST-1 and ZIF-8. Microporous Mesoporous Mater. 2014, 194, 190–199. [Google Scholar] [CrossRef]
- Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed.; Computational Science Series; Academic Press: San Diego, CA, USA, 2002; ISBN 978-0-12-267351-1. [Google Scholar]
- Smith, J.M.; Van Ness, H.C.; Abbott, M.M.; Swihart, M.T. Introduction to Chemical Engineering Thermodynamics, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2018; ISBN 978-1-259-69652-7. [Google Scholar]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Borg, M.K.; Lockerby, D.A.; Ritos, K.; Reese, J.M. Multiscale Simulation of Water Flow through Laboratory-Scale Nanotube Membranes. J. Membr. Sci. 2018, 567, 115–126. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashmmakh, B.J.; Wang, X.; Jameson, C.J.; Murad, S. Xe Recovery from Nuclear Power Plants Off-Gas Streams: Molecular Simulations of Gas Permeation through DD3R Zeolite Membrane. Membranes 2023, 13, 768. https://doi.org/10.3390/membranes13090768
Bashmmakh BJ, Wang X, Jameson CJ, Murad S. Xe Recovery from Nuclear Power Plants Off-Gas Streams: Molecular Simulations of Gas Permeation through DD3R Zeolite Membrane. Membranes. 2023; 13(9):768. https://doi.org/10.3390/membranes13090768
Chicago/Turabian StyleBashmmakh, Bandar J., Xiaoyu Wang, Cynthia J. Jameson, and Sohail Murad. 2023. "Xe Recovery from Nuclear Power Plants Off-Gas Streams: Molecular Simulations of Gas Permeation through DD3R Zeolite Membrane" Membranes 13, no. 9: 768. https://doi.org/10.3390/membranes13090768
APA StyleBashmmakh, B. J., Wang, X., Jameson, C. J., & Murad, S. (2023). Xe Recovery from Nuclear Power Plants Off-Gas Streams: Molecular Simulations of Gas Permeation through DD3R Zeolite Membrane. Membranes, 13(9), 768. https://doi.org/10.3390/membranes13090768