Exploring the Role of Drug Repurposing in Bridging the Hypoxia–Depression Connection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preliminary Screening of Drugs with Potential for Repurposing in the Treatment of Depression
2.3. Cell Culture
2.4. Cell Treatments
2.5. Cell Morphology Visualization
2.6. MTT Assay
2.7. Hypoxia Models
2.8. Statistical and Data Analyses
3. Results
3.1. Drugs with Potential for Repurposing in Depression Treatment
3.2. The Effect of the Hypoxia Incubator Chamber on SH-SY5Y Cellular Viability and Morphology
3.3. The Effect of the Hypoxia Incubator Chamber on SH-SY5Y Cellular Viability and Morphology after Drug Application
3.4. The Effect of Chemically Induced Hypoxia with Cobalt Chloride on SH-SY5Y Cellular Viability and Morphology
3.5. The Effect of Chemically Induced Hypoxia with Cobalt Chloride on SH-SY5Y Cellular Viability and Morphology after Drug Application
3.6. The effect of Echinomycin and the Combination of Echinomycin with Cobalt Chloride on SH-SY5Y Cellular Viability and Morphology
3.7. The Effect of Echinomycin and the Combination of Echinomycin with Cobalt Chloride on SH-SY5Y Cellular Viability and Morphology after Drug Application
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñoz-Sánchez, J.; Chánez-Cárdenas, M.E. The use of cobalt chloride as a chemical hypoxia model. J. Appl. Toxicol. 2019, 39, 556–570. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Chandel, N.S.; Simon, M.C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 2020, 21, 268–283. [Google Scholar] [CrossRef] [PubMed]
- Bhutta, B.S.; Alghoula, F.; Berim, I. Hypoxia. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Akyuva, Y.; Nazıroğlu, M. Resveratrol attenuates hypoxia-induced neuronal cell death, inflammation and mitochondrial oxidative stress by modulation of TRPM2 channel. Sci. Rep. 2020, 10, 6449. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, J.; Niedermeier, M.; Hüfner, K.; van den Burg, E.; Kopp, M.; Stoop, R.; Burtscher, M.; Gatterer, H.; Millet, G.P. The interplay of hypoxic and mental stress: Implications for anxiety and depressive disorders. Neurosci. Biobehav. Rev. 2022, 138, 104718. [Google Scholar] [CrossRef]
- Kanekar, S.; Bogdanova, O.V.; Olson, P.R.; Sung, Y.H.; D’Anci, K.E.; Renshaw, P.F. Hypobaric Hypoxia Induces Depression-like Behavior in Female Sprague-Dawley Rats, but not in Males. High Alt. Med. Biol. 2015, 16, 52. [Google Scholar] [CrossRef]
- Young, S.N. Elevated incidence of suicide in people living at altitude, smokers and patients with chronic obstructive pulmonary disease and asthma: Possible role of hypoxia causing decreased serotonin synthesis. J. Psychiatry Neurosci. 2013, 38, 423. [Google Scholar] [CrossRef]
- Kious, B.M.; Kondo, D.G.; Renshaw, P.F. Living High and Feeling Low: Altitude, Suicide, and Depression. Harv. Rev. Psychiatry 2018, 26, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.; DeLorenzo, C.; Choudhury, S.; Parsey, R.V. The 5-HT1A receptor in Major Depressive Disorder. Eur. Neuropsychopharmacol. 2016, 26, 397. [Google Scholar] [CrossRef]
- Dutta, A.; Sarkar, P.; Shrivastava, S.; Chattopadhyay, A. Effect of Hypoxia on the Function of the Human Serotonin1A Receptor. ACS Chem. Neurosci. 2022, 13, 1456–1466. [Google Scholar] [CrossRef]
- Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Prim. 2016, 2, 16065. [Google Scholar] [CrossRef]
- Hellwig-Bürgel, T.; Stiehl, D.P.; Wagner, A.E.; Metzen, E.; Jelkmann, W. Review: Hypoxia-inducible factor-1 (HIF-1): A novel transcription factor in immune reactions. J. Interferon Cytokine Res. 2005, 25, 297–310. [Google Scholar] [CrossRef]
- Lee, J.W.; Bae, S.H.; Jeong, J.W.; Kim, S.H.; Kim, K.W. Hypoxia-inducible factor (HIF-1)alpha: Its protein stability and biological functions. Exp. Mol. Med. 2004, 36, 1–12. [Google Scholar] [CrossRef]
- Kang, I.; Kondo, D.; Kim, J.; Lyoo, I.K.; Yurgelun-Todd, D.; Hwang, J.; Renshaw, P.F. Elevating the level of hypoxia inducible factor may be a new potential target for the treatment of depression. Med. Hypotheses 2021, 146, 110398. [Google Scholar] [CrossRef] [PubMed]
- Zenko, M.Y.; Юpьeвич, З.M.; Rybnikova, E.A.; Aлeкcaндpoвнa, P.E. Antidepressant-like action of hypoxic postconditioning is accompanied by the up-regulation of hippocampal HIF-1α and erythropoietin. Med. Acad. J. 2019, 19, 41–46. [Google Scholar] [CrossRef]
- Li, G.; Zhao, M.; Cheng, X.; Zhao, T.; Feng, Z.; Zhao, Y.; Fan, M.; Zhu, L. FG-4592 Improves Depressive-Like Behaviors through HIF-1-Mediated Neurogenesis and Synapse Plasticity in Rats. Neurotherapeutics 2020, 17, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.S.; Vale, N. Antidepressants in Alzheimer’s Disease: A Focus on the Role of Mirtazapine. Pharmaceuticals 2021, 14, 930. [Google Scholar] [CrossRef]
- Ebada, M.E. Drug repurposing may generate novel approaches to treating depression. J. Pharm. Pharmacol. 2017, 69, 1428–1436. [Google Scholar] [CrossRef]
- Correia, A.S.; Silva, I.; Oliveira, J.C.; Reguengo, H.; Vale, N. Serotonin Type 3 Receptor Is Potentially Involved in Cellular Stress Induced by Hydrogen Peroxide. Life 2022, 12, 1645. [Google Scholar] [CrossRef]
- Kimmey, B.A.; Ostroumov, A.; Dani, J.A. 5-HT2A receptor activation normalizes stress-induced dysregulation of GABAergic signaling in the ventral tegmental area. Proc. Natl. Acad. Sci. USA 2019, 116, 27028–27034. [Google Scholar] [CrossRef]
- Kong, D.; Park, E.J.; Stephen, A.G.; Calvani, M.; Cardellina, J.H.; Monks, A.; Fisher, R.J.; Shoemaker, R.H.; Melillo, G. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res. 2005, 65, 9047–9055. [Google Scholar] [CrossRef]
- Bae, S.; Jeong, H.J.; Cha, H.J.; Kim, K.; Choi, Y.M.; An, I.S.; Koh, H.J.; Lim, D.J.; Lee, S.J.; An, S. The hypoxia-mimetic agent cobalt chloride induces cell cycle arrest and alters gene expression in U266 multiple myeloma cells. Int. J. Mol. Med. 2012, 30, 1180–1186. [Google Scholar] [CrossRef]
- Correia, A.S.; Fraga, S.; Teixeira, J.P.; Vale, N. Cell Model of Depression: Reduction of Cell Stress with Mirtazapine. Int. J. Mol. Sci. 2022, 23, 4942. [Google Scholar] [CrossRef]
- Lee, H.S.; Jeong, G.S. Protective Effects of 6,7,4′-Trihydroxyflavanone on Hypoxia-Induced Neurotoxicity by Enhancement of HO-1 through Nrf2 Signaling Pathway. Antioxidants 2021, 10, 341. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.Y.; Yoo, J.Y.; Kim, H.B.; Baik, T.K.; Lee, J.H.; Woo, R.S. Neuregulin-1 Protects Neuronal Cells Against Damage due to CoCl2-Induced Hypoxia by Suppressing Hypoxia-Inducible Factor-1α and P53 in SH-SY5Y Cells. Int. Neurourol. J. 2019, 23, S111–S118. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, J.; Li, H.; Wang, X.; Zhu, L.; Fan, M.; Wang, X. Hypoxia Promotes Dopaminergic Differentiation of Mesenchymal Stem Cells and Shows Benefits for Transplantation in a Rat Model of Parkinson’s Disease. PLoS ONE 2013, 8, e54296. [Google Scholar] [CrossRef]
- Vlaminck, B.; Toffoli, S.; Ghislain, B.; Demazy, C.; Raes, M.; Michiels, C. Dual effect of echinomycin on hypoxia-inducible factor-1 activity under normoxic and hypoxic conditions. FEBS J. 2007, 274, 5533–5542. [Google Scholar] [CrossRef]
- Jantas, D. Cell-based systems of depression: An overview. In Herbal Medicine in Depression; Springer: Cham, Switzerland, 2016; pp. 75–117. [Google Scholar] [CrossRef]
- McKeown, S.R. Defining normoxia, physoxia and hypoxia in tumours—Implications for treatment response. Br. J. Radiol. 2014, 87, 20130676. [Google Scholar] [CrossRef] [PubMed]
- Wagatsuma, A.; Arakawa, M.; Matsumoto, H.; Matsuda, R.; Hoshino, T.; Mabuchi, K. Cobalt chloride, a chemical hypoxia-mimicking agent, suppresses myoblast differentiation by downregulating myogenin expression. Mol. Cell. Biochem. 2020, 470, 199–214. [Google Scholar] [CrossRef]
- McGarry, T.; Biniecka, M.; Veale, D.J.; Fearon, U. Hypoxia, oxidative stress and inflammation. Free Radic. Biol. Med. 2018, 125, 15–24. [Google Scholar] [CrossRef]
- Correia, A.S.; Cardoso, A.; Vale, N.; Correia, A.S.; Cardoso, A.; Vale, N. Significant Differences in the Reversal of Cellular Stress Induced by Hydrogen Peroxide and Corticosterone by the Application of Mirtazapine or L-Tryptophan. Int. J. Transl. Med. 2022, 2, 482–505. [Google Scholar] [CrossRef]
- Sun, Y.Z.; Cai, N.; Liu, N.N. Celecoxib Down-Regulates the Hypoxia-Induced Expression of HIF-1α and VEGF Through the PI3K/AKT Pathway in Retinal Pigment Epithelial Cells. Cell. Physiol. Biochem. 2017, 44, 1640–1650. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Yamagata, H.; Uchida, S.; Otsuki, K.; Hobara, T.; Higuchi, F.; Abe, N.; Watanabe, Y. The alteration of hypoxia inducible factor-1 (HIF-1) and its target genes in mood disorder patients. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 43, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Nofziger, J.L.; Paxos, C.; Emshoff, J.; Mullen, C. Evaluation of dextromethorphan with select antidepressant therapy for the treatment of depression in the acute care psychiatric setting. Ment. Health Clin. 2019, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.P.; Traynelis, S.F.; Siffert, J.; Pope, L.E.; Matsumoto, R.R. Pharmacology of dextromethorphan: Relevance to dextromethorphan/quinidine (Nuedexta®) clinical use. Pharmacol. Ther. 2016, 164, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Zanos, P.; Gould, T.D. Mechanisms of Ketamine Action as an Antidepressant. Mol. Psychiatry 2018, 23, 801. [Google Scholar] [CrossRef]
- Tiger, M.; Veldman, E.R.; Ekman, C.J.; Halldin, C.; Svenningsson, P.; Lundberg, J. A randomized placebo-controlled PET study of ketamine’s effect on serotonin1B receptor binding in patients with SSRI-resistant depression. Transl. Psychiatry 2020, 10, 159. [Google Scholar] [CrossRef]
- Kapur, S.; Seeman, P. NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors-implications for models of schizophrenia. Mol. Psychiatry 2002, 7, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Mechanism of Action of Quetiapine—Psychopharmacology Institute. Available online: https://psychopharmacologyinstitute.com/publication/mechanism-of-action-of-quetiapine-2109 (accessed on 5 January 2023).
- Chernoloz, O.; El Mansari, M.; Blier, P. Effects of sustained administration of quetiapine alone and in combination with a serotonin reuptake inhibitor on norepinephrine and serotonin transmission. Neuropsychopharmacology 2012, 37, 1717–1728. [Google Scholar] [CrossRef]
- Lochner, M.; Thompson, A.J. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors. Neuropharmacology 2016, 108, 220–228. [Google Scholar] [CrossRef]
- Abbasi, S.H.; Hosseini, F.; Modabbernia, A.; Ashrafi, M.; Akhondzadeh, S. Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: Randomized double-blind placebo-controlled study. J. Affect. Disord. 2012, 141, 308–314. [Google Scholar] [CrossRef]
- Kim, K.J.; Jeun, S.H.; Sung, K.W. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells. Korean J. Physiol. Pharmacol. 2017, 21, 169–177. [Google Scholar] [CrossRef] [PubMed]
Drug | Molecular Weight (g/mol) | Diffusion Coefficient (cm2/s×05) | LogP | LogD | Solubility (mg/mL) | BBB Permeability |
---|---|---|---|---|---|---|
Mirtazapine | 265.36 | 0.782 | 2.659 | 2.282 | 0.269 | High |
TCB-2 | 234.50 | 0.893 | 2.341 | 0.251 | 4.469 | High |
Dextromethorphan | 271.41 | 0.760 | 3.806 | 2.280 | 0.088 | High |
Ketamine | 237.73 | 0.849 | 2.602 | 2.552 | 0.148 | High |
Quetiapine | 406.00 | 0.646 | 2.701 | 1.993 | 0.359 | High |
Scopolamine | 301.00 | 0.771 | 1.372 | 1.152 | 3.557 | High |
Celecoxib | 381.38 | 0.701 | 3.808 | 3.807 | 0.006 | High |
Lamotrigine | 259.06 | 0.917 | 1.998 | 1.998 | 0.029 | High |
Drug | Targets Connected to Depression | References |
---|---|---|
Mirtazapine | Adrenergic α2, 5-HT2A and 5-HT3 receptors | [16] |
TCB-2 | 5-HT2A | [19] |
Dextromethorphan | NMDA, Sigma 1 and AMPA receptors, SERT | [35,36] |
Ketamine | AMPA, 5-HT2, 5-HT1B and D2 receptor, BDNF | [37,38,39] |
Quetiapine | 5-HT2A and 5-HT1A receptors | [40,41] |
Scopolamine | 5-HT3 and AMPA receptors | [42,19] |
Celecoxib | IL-6 levels | [43] |
Lamotrigine | 5-HT3 receptor, Voltage-sensitive sodium channel | [19,44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, A.S.; Marques, L.; Cardoso, A.; Vale, N. Exploring the Role of Drug Repurposing in Bridging the Hypoxia–Depression Connection. Membranes 2023, 13, 800. https://doi.org/10.3390/membranes13090800
Correia AS, Marques L, Cardoso A, Vale N. Exploring the Role of Drug Repurposing in Bridging the Hypoxia–Depression Connection. Membranes. 2023; 13(9):800. https://doi.org/10.3390/membranes13090800
Chicago/Turabian StyleCorreia, Ana Salomé, Lara Marques, Armando Cardoso, and Nuno Vale. 2023. "Exploring the Role of Drug Repurposing in Bridging the Hypoxia–Depression Connection" Membranes 13, no. 9: 800. https://doi.org/10.3390/membranes13090800
APA StyleCorreia, A. S., Marques, L., Cardoso, A., & Vale, N. (2023). Exploring the Role of Drug Repurposing in Bridging the Hypoxia–Depression Connection. Membranes, 13(9), 800. https://doi.org/10.3390/membranes13090800