Mitigating Membrane Fouling in Abattoir Wastewater Treatment: Integration of Pretreatment Step with Zwitterion Modified Graphene Oxide–Polyethersulfone Composite Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Graphene Oxide (GO)
2.2. Preparation of AEPPS Zwitterion
2.3. Preparation of AEPPS@GO
2.4. Fabrication of Membranes
2.5. Characterisation of the AEPPS@GO/PES Composite Membranes
2.6. Permeation and Rejection Studies
3. Results and Discussion
3.1. Characterisation of GO, AEPPS, and AEPPS@GO Nanocomposites
3.1.1. FTIR
3.1.2. Contact Angle
3.1.3. Water Uptake and Porosity Measurements
3.1.4. AFM
3.1.5. SEM
3.2. Membrane Application
3.2.1. Pure Water Flux (PWF)
3.2.2. Relative Fouling Propensity and Reusability Tests of Membranes
3.2.3. Characteristics and Quality of Abattoir Wastewater
3.2.4. FEEM Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nandomah, S.; Tetteh, I.K. Potential Ecological Risk Assessment of Heavy Metals Associated with Abattoir Liquid Waste: A Narrative and Systematic Review. Heliyon 2023, 9, e17359. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.; Dalhatou, S.; Wilson, J.; Kamdem, B.P.; Temitope, M.B.; Paumo, H.K.; Djelal, H.; Assadi, A.A.; Nguyen-tri, P.; Kane, A. Characterization of Slaughterhouse Wastewater and Development of Treatment Techniques: A Review. Processes 2022, 10, 1300. [Google Scholar] [CrossRef]
- Obi, C.C.; Nwabanne, J.T.; Igwegbe, C.A.; Ohale, P.E.; Okpala, C.O.R. Multi-Characteristic Optimization and Modeling Analysis of Electrocoagulation Treatment of Abattoir Wastewater Using Iron Electrode Pairs. J. Water Process Eng. 2022, 49, 103136. [Google Scholar] [CrossRef]
- Hakimi, M.H.; Jegatheesan, V.; Navaratna, D. The Potential of Adopting Struvite Precipitation as a Strategy for the Removal of Nutrients from Pre-AnMBR Treated Abattoir Wastewater. J. Environ. Manag. 2020, 259, 109783. [Google Scholar] [CrossRef] [PubMed]
- Okey-Onyesolu, C.F.; Chukwuma, E.C.; Okoye, C.C.; Onukwuli, O.D. Response Surface Methodology Optimization of Chito-Protein Synthesized from Crab Shell in Treatment of Abattoir Wastewater. Heliyon 2020, 6, e05186. [Google Scholar] [CrossRef]
- Oyeniran, D.O.; Sogbanmu, T.O.; Adesalu, T.A. Antibiotics, Algal Evaluations and Subacute Effects of Abattoir Wastewater on Liver Function Enzymes, Genetic and Haematologic Biomarkers in the Freshwater Fish, Clarias Gariepinus. Ecotoxicol. Environ. Saf. 2021, 212, 111982. [Google Scholar] [CrossRef]
- Alfonso-Muniozguren, P.; Hazzwan Bohari, M.; Sicilia, A.; Avignone-Rossa, C.; Bussemaker, M.; Saroj, D.; Lee, J. Tertiary Treatment of Real Abattoir Wastewater Using Combined Acoustic Cavitation and Ozonation. Ultrason. Sonochem. 2020, 64, 104986. [Google Scholar] [CrossRef]
- Alfonso-Muniozguren, P.; Lee, J.; Bussemaker, M.; Chadeesingh, R.; Jones, C.; Oakley, D.; Saroj, D. A Combined Activated Sludge-Filtration-Ozonation Process for Abattoir Wastewater Treatment. J. Water Process Eng. 2018, 25, 157–163. [Google Scholar] [CrossRef]
- Lawal, I.M.; Soja, U.B.; Mambo, A.D.; Kutty, S.R.M.; Jagaba, A.H.; Hayder, G.; Abubakar, S.; Umaru, I. Adsorption of Abattoir Wastewater Contaminants by Coconut Shell-Activated Carbon. Adv. Sci. Technol. Innov. 2023, 145–150. [Google Scholar] [CrossRef]
- Okey-Onyesolu, C.F.; Chukwuma, E.C.; Okoye, C.C.; Umobi, C.O. Application of Fish Bone Chitosan-Protein Bio-Coagulant for Abattoir Wastewater Treatment: Comparative Process Optimization and Evaluation. Waste Manag. Bull. 2023, 1, 49–59. [Google Scholar] [CrossRef]
- Wahyuni, F.; Aprilia, S.; Arahman, N.; Rahmah, K. Removal of COD and BOD from Animals’ Slaughterhouse Wastewater through Polyethersulfone/Cellulose Nano Crystals Membrane. Mater. Today Proc. 2022, 63, S101–S104. [Google Scholar] [CrossRef]
- Keskes, S.; Hmaied, F.; Gannoun, H.; Bouallagui, H.; Godon, J.J.; Hamdi, M. Performance of a Submerged Membrane Bioreactor for the Aerobic Treatment of Abattoir Wastewater. Bioresour. Technol. 2012, 103, 28–34. [Google Scholar] [CrossRef]
- Kumar Gautam, R.; Olubukola, A.; More, N.; Jegatheesan, V.; Muthukumaran, S.; Navaratna, D. Evaluation of Long-Term Operational and Treatment Performance of a High-Biomass Submerged Anaerobic Membrane Bioreactor Treating Abattoir Wastewater. Chem. Eng. J. 2023, 463, 142145. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, H.; Shi, L.; Wu, Z.; Zhang, S.; Wang, S.; Sun, H. Photocatalysis Coupling with Membrane Technology for Sustainable and Continuous Purification of Wastewater. Sep. Purif. Technol. 2024, 329, 125225. [Google Scholar] [CrossRef]
- Fatima, F.; Du, H.; Kommalapati, R.R. Treatment of Poultry Slaughterhouse Wastewater with Membrane Technologies: A Review. Water 2021, 13, 1905. [Google Scholar] [CrossRef]
- Mkilima, T.; Bazarbayeva, T.; Assel, K.; Nurkenovna, N.N.; Ostretsova, I.B.; Sultanseitovna, K.A.; Saule, M.; Samal, S. Pore Size in the Removal of Phosphorus and Nitrogen from Poultry Slaughterhouse Wastewater Using Polymeric Nanofiltration Membranes. Water 2022, 14, 2929. [Google Scholar] [CrossRef]
- Malmali, M.; Askegaard, J.; Sardari, K.; Eswaranandam, S.; Sengupta, A.; Wickramasinghe, S.R. Evaluation of Ultrafiltration Membranes for Treating Poultry Processing Wastewater. J. Water Process Eng. 2018, 22, 218–226. [Google Scholar] [CrossRef]
- Gutu, L.; Basitere, M.; Harding, T.; Ikumi, D.; Njoya, M.; Gaszynski, C. Multi-Integrated Systems for Treatment of Abattoir Wastewater: A Review. Water 2021, 13, 2462. [Google Scholar] [CrossRef]
- Özdemir, S.; Uzal, N.; Gökçek, Ö.B. Investigation of the Treatability of Pre-Coagulated Slaughterhouse Wastewater Using Dead-End Filtration. J. Chem. Technol. Biotechnol. 2021, 96, 1927–1935. [Google Scholar] [CrossRef]
- Goswami, K.P.; Pugazhenthi, G. Treatment of Poultry Slaughterhouse Wastewater Using Tubular Microfiltration Membrane with Fly Ash as Key Precursor. J. Water Process Eng. 2020, 37, 101361. [Google Scholar] [CrossRef]
- Kanagaraj, P.; Mohamed, I.M.A.; Huang, W.; Liu, C. Membrane Fouling Mitigation for Enhanced Water Flux and High Separation of Humic Acid and Copper Ion Using Hydrophilic Polyurethane Modified Cellulose Acetate Ultrafiltration Membranes. React. Funct. Polym. 2020, 150, 104538. [Google Scholar] [CrossRef]
- Jutaporn, P.; Cory, R.M.; Singer, P.C.; Coronell, O. Efficacy of Selected Pretreatment Processes in the Mitigation of Low-Pressure Membrane Fouling and Its Correlation to Their Removal of Microbial DOM. Chemosphere 2021, 277, 130284. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.; Grillini, V.; Mutavdžić Pavlović, D.; Verlicchi, P. Activated Carbon Coupled with Advanced Biological Wastewater Treatment: A Review of the Enhancement in Micropollutant Removal. Sci. Total Environ. 2021, 790, 148050. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Qi, F.; Li, H.; Shi, Z. The Activation of Carbon Materials to Control Airborne Pathogenic Bacteria in the Pig House by Efficient Adsorption. Biosyst. Eng. 2023, 236, 71–78. [Google Scholar] [CrossRef]
- Matebese, F.; Moutloali, R.M. Integrating Ultrafiltration Membranes with Flocculation and Activated Carbon Pretreatment Processes for Membrane Fouling Mitigation and Metal Ion Removal from Wastewater. ACS Omega 2023, 8, 9074–9085. [Google Scholar] [CrossRef]
- Li, D.; Yan, Y.; Wang, H. Recent Advances in Polymer and Polymer Composite Membranes for Reverse and Forward Osmosis Processes. Prog. Polym. Sci. 2016, 61, 104–155. [Google Scholar] [CrossRef]
- Li, K.; Liang, H.; Qu, F.; Shao, S.; Yu, H.; Han, Z.-S.; Du, X.; Li, G. Control of Natural Organic Matter Fouling of Ultrafiltration Membrane by Adsorption Pretreatment: Comparison of Mesoporous Adsorbent Resin and Powdered Activated Carbon. J. Memb. Sci. 2014, 471, 94–102. [Google Scholar] [CrossRef]
- Kim, J.; Cai, Z.; Benjamin, M.M. Effects of Adsorbents on Membrane Fouling by Natural Organic Matter. J. Memb. Sci. 2008, 310, 356–364. [Google Scholar] [CrossRef]
- Chae, H.R.; Lee, J.; Lee, C.H.; Kim, I.C.; Park, P.K. Graphene Oxide-Embedded Thin-Film Composite Reverse Osmosis Membrane with High Flux, Anti-Biofouling, and Chlorine Resistance. J. Memb. Sci. 2015, 483, 128–135. [Google Scholar] [CrossRef]
- Formentini-Schmitt, D.M.; Alves, Á.C.D.; Veit, M.T.; Bergamasco, R.; Vieira, A.M.S.; Fagundes-Klen, M.R. Ultrafiltration Combined with Coagulation/Flocculation/Sedimentation Using Moringa Oleifera as Coagulant to Treat Dairy Industry Wastewater. Water Air Soil Pollut. 2013, 224, 1682. [Google Scholar] [CrossRef]
- Peters, C.D.; Rantissi, T.; Gitis, V.; Hankins, N.P. Retention of Natural Organic Matter by Ultrafiltration and the Mitigation of Membrane Fouling through Pre-Treatment, Membrane Enhancement, and Cleaning—A Review. J. Water Process Eng. 2021, 44, 102374. [Google Scholar] [CrossRef]
- Du, Z.; Ji, M.; Li, R. Enhanced Membrane Fouling Control and Trace Organic Compounds Removal during Microfiltration by Coupling Coagulation and Adsorption in an Electric Field. Sci. Total Environ. 2021, 795, 148830. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Nan, J.; Ji, X.; Wu, F.; Ye, X.; Ge, Z. Effect of Adsorption and Coagulation Pretreatment Sequence on Ultrafiltration Membrane Fouling: Process Study and Targeted Prediction. Desalination 2022, 540, 115967. [Google Scholar] [CrossRef]
- Mahdavi, H.; Rahimi, A. Zwitterion Functionalized Graphene Oxide/Polyamide Thin Fi Lm Nanocomposite Membrane: Towards Improved Anti-Fouling Performance for Reverse Osmosis. Desalination 2018, 433, 94–107. [Google Scholar] [CrossRef]
- Chaabane, L.; Beyou, E.; Baouab, M.H.V. Preparation of a Novel Zwitterionic Graphene Oxide-Based Adsorbent to Remove of Heavy Metal Ions from Water: Modeling and Comparative Studies. Adv. Powder Technol. 2021, 32, 2502–2516. [Google Scholar] [CrossRef]
- Safarpour, M.; Khataee, A.; Vatanpour, V. Thin Film Nanocomposite Reverse Osmosis Membrane Modified by Reduced Graphene Oxide/TiO2 with Improved Desalination Performance. J. Memb. Sci. 2015, 489, 43–54. [Google Scholar] [CrossRef]
- Qu, K.; Yuan, Z.; Wang, Y.; Song, Z.; Gong, X.; Zhao, Y.; Mu, Q.; Zhan, Q.; Xu, W.; Wang, L. Structures, Properties, and Applications of Zwitterionic Polymers. ChemPhysMater 2022, 1, 294–309. [Google Scholar] [CrossRef]
- Ding, J.; Liang, H.; Zhu, X.; Xu, D.; Luo, X.; Wang, Z.; Bai, L. Surface Modification of Nanofiltration Membranes with Zwitterions to Enhance Antifouling Properties during Brackish Water Treatment: A New Concept of a “Buffer Layer”. J. Memb. Sci. 2021, 637, 119651. [Google Scholar] [CrossRef]
- Xabela, S.; Moutloali, R.M. 2-(N-3-Sulfopropyl-N,N-Dimethyl Ammonium)Ethyl Methacrylate Modified Graphene Oxide Embedded into Cellulose Acetate Ultrafiltration Membranes for Improved Performance. J. Appl. Polym. Sci. 2022, 139, 52336. [Google Scholar] [CrossRef]
- Matebese, F.; Moutloali, R.M. Greywater Reclamation: A Comparison of the Treatment Performance of UiO-66-NH2@GO Nanocomposites Membrane Filtration with and without Activated Carbon Pretreatment. J. Environ. Chem. Eng. 2021, 9, 104906. [Google Scholar] [CrossRef]
- An, Q.F.; Sun, W.D.; Zhao, Q.; Ji, Y.L.; Gao, C.J. Study on a Novel Nanofiltration Membrane Prepared by Interfacial Polymerization with Zwitterionic Amine Monomers. J. Memb. Sci. 2013, 431, 171–179. [Google Scholar] [CrossRef]
- Raseala, M.J.; Motsa, M.M.; Sigwadi, R.A.; Moutloali, R.M. Zwitterion Grafted Polyethersulfone Ultrafiltration Membranes Integrated with Coagulation Process for Fouling Mitigation in Sewage Wastewater Treatment. Chem. Eng. J. Adv. 2024, 18, 100594. [Google Scholar] [CrossRef]
- Jamil, T.S.; Nasr, R.A.; Abbas, H.A.; Ragab, T.I.M.; Xabela, S.; Mutloali, R. Low-Cost High Performance Polyamide Thin Film Composite (Cellulose Triacetate/Graphene Oxide) Membranes for Forward Osmosis Desalination from Palm Fronds. Membranes 2022, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Shahkaramipour, N.; Jafari, A.; Tran, T.; Stafford, C.M.; Cheng, C.; Lin, H. Maximizing the Grafting of Zwitterions onto the Surface of Ultrafiltration Membranes to Improve Antifouling Properties. J. Memb. Sci. 2020, 601, 117909. [Google Scholar] [CrossRef]
- Alarawi, A.; Busaleh, A.; Saleh, T.A.; Alharbi, B. High Thermal Stability of Foams Stabilized by Graphene Oxide and Zwitterionic Surfactant Nanocomposites for Fracturing Applications. Fuel 2023, 332, 126156. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, T.; Bao, R.; Li, T.; Wang, Y.; Li, D.; Li, X.; He, T. Zwitterionic Surface Modification of Forward Osmosis Membranes Using N-Aminoethyl Piperazine Propane Sulfonate for Grey Water Treatment. Process Saf. Environ. Prot. 2018, 116, 632–639. [Google Scholar] [CrossRef]
- Guo, Y.S.; Mi, Y.F.; Zhao, F.Y.; Ji, Y.L.; An, Q.F.; Gao, C.J. Zwitterions Functionalized Multi-Walled Carbon Nanotubes/Polyamide Hybrid Nanofiltration Membranes for Monovalent/Divalent Salts Separation. Sep. Purif. Technol. 2018, 206, 59–68. [Google Scholar] [CrossRef]
- Adib, H.; Raisi, A. Post-Synthesis Modification of Polyethersulfone Membrane by Grafting Hyperbranched Polyethylene Glycol for Oily Wastewater Treatment. Res. Chem. Intermed. 2020, 46, 3227–3245. [Google Scholar] [CrossRef]
- Acarer, S.; Pir, İ.; Tüfekci, M.; Erkoҫ, T.; Öztekin, V.; Güneş Durak, S.; Özҫoban, M.Ş.; Türkoğlu Demirkol, G.; Alhammod, M.; Çavuş, S.; et al. Characterisation and Modelling the Mechanics of Cellulose Nanofibril Added Polyethersulfone Ultrafiltration Membranes. Heliyon 2023, 9, e13086. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, R.; Tang, H.; Zhang, Z.; Xu, Z.; Li, N. Enhanced Antifouling and Separation Properties of Tröger’s Base Polymer Ultrafiltration Membrane via Ring-Opening Modification. J. Memb. Sci. 2020, 597, 117763. [Google Scholar] [CrossRef]
- Mohamed, H.; Hudziak, S.; Arumuganathan, V.; Meng, Z.; Coppens, M.O. Effects of Charge and Hydrophilicity on the Anti-Fouling Properties of Kidney-Inspired, Polyester Membranes. Mol. Syst. Des. Eng. 2020, 5, 1219–1229. [Google Scholar] [CrossRef]
- Ionita, M.; Pandele, A.M.; Crica, L.; Pilan, L. Improving the Thermal and Mechanical Properties of Polysulfone by Incorporation of Graphene Oxide. Compos. Part B Eng. 2014, 59, 133–139. [Google Scholar] [CrossRef]
- Makhetha, T.A.; Moutloali, R.M. Antifouling Properties of Cu(Tpa)@GO/PES Composite Membranes and Selective Dye Rejection. J. Memb. Sci. 2018, 554, 195–210. [Google Scholar] [CrossRef]
- Liu, J.; Zhan, Y.; Xu, T.; Shao, G. Preparation and Characterizations of Novel Zwitterionic Membranes. J. Memb. Sci. 2008, 325, 495–502. [Google Scholar] [CrossRef]
- Ma, W.; Chen, T.; Nanni, S.; Yang, L.; Ye, Z.; Rahaman, M.S. Zwitterion-Functionalized Graphene Oxide Incorporated Polyamide Membranes with Improved Antifouling Properties. Langmuir 2019, 35, 1513–1525. [Google Scholar] [CrossRef]
- Gao, P.; Jin, P.; Dumas, R.; Huang, J.; Asha, A.B.; Narain, R.; Vankelecom, I.; Van der Bruggen, B.; Yang, X. High-Performance Zwitterionic Membranes via an Adhesive Prebiotic Chemistry-Inspired Coating Strategy: A Demonstration in Dye/Salt Fractionation. J. Memb. Sci. 2023, 676, 121572. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.; Xu, W.; Xu, Z.; Zhang, G. Preparation of a CAB−GO/PES Mixed Matrix Ultrafiltration Membrane and Its Antifouling Performance. Membranes 2023, 13, 241. [Google Scholar] [CrossRef]
- Li, W.; Hua, T.; Zhou, Q.; Zhang, S.; Li, F. Treatment of Stabilized Landfill Leachate by the Combined Process of Coagulation/Flocculation and Powder Activated Carbon Adsorption. Desalination 2010, 264, 56–62. [Google Scholar] [CrossRef]
- Sher, F.; Hanif, K.; Rafey, A.; Khalid, U.; Zafar, A.; Ameen, M.; Lima, E.C. Removal of Micropollutants from Municipal Wastewater Using Different Types of Activated Carbons. J. Environ. Manag. 2021, 278, 111302. [Google Scholar] [CrossRef]
- Michael, S.G.; Drigo, B.; Michael-Kordatou, I.; Michael, C.; Jäger, T.; Aleer, S.C.; Schwartz, T.; Donner, E.; Fatta-Kassinos, D. The Effect of Ultrafiltration Process on the Fate of Antibiotic-Related Microcontaminants, Pathogenic Microbes, and Toxicity in Urban Wastewater. J. Hazard. Mater. 2022, 435, 128943. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
Membrane ID | PES (wt.%) | GO (wt.%) | AEPPS@GO (wt.%) | NMP (wt.%) |
---|---|---|---|---|
F0 | 18 | - | - | 82 |
F1 | 18 | 0.5 | - | 81.5 |
F2 | 18 | - | 0.1 | 81.9 |
F3 | 18 | - | 0.3 | 81.7 |
F4 | 18 | - | 0.5 | 81.5 |
F5 | 18 | - | 0.7 | 81.3 |
F6 | 18 | - | 0.9 | 81.1 |
Sample ID | pH | Conductivity (µS.cm−1) | TDS (mg/L) | Turbidity (NTU) | Salinity (ppm) |
---|---|---|---|---|---|
Standards | 5.5–9.5 | ≤170 | ≤1200 | ≤5 | 1000 |
Feed | 6.25 | 1.81 | 901 | 55.2 | 0.12 |
AC | 6.80 | 1.44 | 674 | 38.1 | 0.6 |
F0 | 7.41 | 1.41 | 669 | 3.21 | 0.03 |
F1 | 7.59 | 1.37 | 644 | 2.14 | 0.03 |
F4 | 7.63 | 1.36 | 640 | 1.82 | 0.03 |
F5 | 7.77 | 1.30 | 456 | 1.15 | 0.03 |
F6 | 7.69 | 1.34 | 609 | 1.60 | 0.03 |
Sample ID | pH | Conductivity (µS.cm−1) | TDS (mg/L) | Turbidity (NTU) | Salinity (ppm) |
---|---|---|---|---|---|
Standards | 5.5–9.5 | ≤170 | ≤1200 | ≤5 | 1000 |
Feed | 6.25 | 1.81 | 901 | 55.2 | 0.12 |
Coagulant | 6.40 | 1.08 | 501 | 31.0 | 0.6 |
F0 | 6.95 | 1.03 | 489 | 2.25 | 0.02 |
F1 | 7.13 | 0.99 | 472 | 1.20 | 0.02 |
F4 | 7.17 | 0.85 | 463 | 0.84 | 0.02 |
F5 | 7.38 | 0.77 | 432 | 0.12 | 0.02 |
F6 | 7.35 | 0.80 | 456 | 0.26 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motloutsi, M.L.; Matebese, F.; Motsa, M.M.; Managa, M.; Moutloali, R.M. Mitigating Membrane Fouling in Abattoir Wastewater Treatment: Integration of Pretreatment Step with Zwitterion Modified Graphene Oxide–Polyethersulfone Composite Membranes. Membranes 2024, 14, 227. https://doi.org/10.3390/membranes14110227
Motloutsi ML, Matebese F, Motsa MM, Managa M, Moutloali RM. Mitigating Membrane Fouling in Abattoir Wastewater Treatment: Integration of Pretreatment Step with Zwitterion Modified Graphene Oxide–Polyethersulfone Composite Membranes. Membranes. 2024; 14(11):227. https://doi.org/10.3390/membranes14110227
Chicago/Turabian StyleMotloutsi, Meladi L., Funeka Matebese, Mxolisi M. Motsa, Muthumuni Managa, and Richard M. Moutloali. 2024. "Mitigating Membrane Fouling in Abattoir Wastewater Treatment: Integration of Pretreatment Step with Zwitterion Modified Graphene Oxide–Polyethersulfone Composite Membranes" Membranes 14, no. 11: 227. https://doi.org/10.3390/membranes14110227
APA StyleMotloutsi, M. L., Matebese, F., Motsa, M. M., Managa, M., & Moutloali, R. M. (2024). Mitigating Membrane Fouling in Abattoir Wastewater Treatment: Integration of Pretreatment Step with Zwitterion Modified Graphene Oxide–Polyethersulfone Composite Membranes. Membranes, 14(11), 227. https://doi.org/10.3390/membranes14110227