Perspectives and State of the Art of Membrane Separation Technology as a Key Element in the Development of Hydrogen Economy
Abstract
:1. Introduction
2. Blue Hydrogen: CO2/H2 Separation Membranes
3. Green Hydrogen: Membranes for Electrolyzers
4. White Hydrogen and Transportation: H2/CH4 Separation
5. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hermesmann, M.; Müller, T.E. Green, Turquoise, Blue, or Grey? Environmentally friendly Hydrogen Production in Transforming Energy Systems. Prog. Energy Combust. Sci. 2022, 90, 100996. [Google Scholar] [CrossRef]
- Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_3131 (accessed on 29 October 2024).
- Mei, J.; Meng, X.; Tang, X.; Li, H.; Hansanien, H.; Alharbi, M.; Dong, Z.; Shen, J.; Sun, C.; Fan, F.; et al. An accurate parameter estimation method of the voltage model for proton exchange membrane fuel cells. Energies 2024, 17, 2917. [Google Scholar] [CrossRef]
- Innovation Insights Brief 2019. New Hydrogen Economy Hope or Hype? World Energy Council. 2019. Available online: https://www.worldenergy.org/assets/downloads/WEInsights-Brief-New-Hydrogen-economy-Hype-or-Hope-ExecSum.pdf (accessed on 3 September 2024).
- Available online: https://www.ogj.com/energy-transition/article/55131133/shell-lets-contracts-for-blue-hydrogen-project-in-oman (accessed on 3 September 2024).
- Available online: https://hydrogen-central.com/trillium-h2-power-llc-selects-the-shell-blue-hydrogen-process/ (accessed on 3 September 2024).
- Available online: https://www.hydrogeninsight.com/production/bp-increases-hydrogen-pipeline-to-2-9-million-tonnes-a-year-with-focus-on-blue-h2-this-decade/2-1-1594716 (accessed on 3 September 2024).
- Liu, Y.; Wang, Y.; Fornasiero, P.; Tian, G.; Strasser, P.; Yang, X.-Y. Long-term Durability of Seawater Electrolysis for Hydrogen: From Catalysts to Systems. Angew. Chem. Int. Ed. 2024, e202412087. [Google Scholar]
- Kumar, S.S.; Lim, H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 2022, 8, 13793–13813. [Google Scholar] [CrossRef]
- World Economic Forum Report. White Hydrogen: 5 Critical Questions Answered. Available online: https://www.weforum.org/agenda/2024/08/white-hydrogen-5-critical-questions-answered/ (accessed on 4 September 2024).
- Lu, H.T.; Li, W.; Miandoab, E.S.; Kanehashi, S.; Hu, G. The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: A review. Front. Chem. Sci. Eng. 2021, 15, 464–482. [Google Scholar] [CrossRef]
- D’Alessandro, D.M.; Smit, B.; Long, J.R. Carbon dioxide capture: Prospects for New Materials. Angew. Chem. Int. Ed. 2010, 49, 6058–6082. [Google Scholar] [CrossRef]
- Alhumaidan, F.S.; Halabi, M.A.; Rana, M.S.; Vinoba, M. Blue hydrogen: Current status and future technologies. Energy Convers. Manag. 2023, 283, 116840. [Google Scholar] [CrossRef]
- Chang, R.W.; Lin, C.J.; Hiou, S.Y.H.; Banares, M.A.; Guerrero-Perez, M.O.; Aranda, R.M.M. Enhanced cyclic CO2/N2 separation performance stability on chemically modified N-doped ordered mesoporous carbon. Catal. Today 2020, 356, 88–94. [Google Scholar] [CrossRef]
- Herm, Z.R.; Krishna, R.; Long, J.R. CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc). Microporous Mesoporous Mater. 2012, 151, 481–487. [Google Scholar] [CrossRef]
- Lin, H.; Freeman, B.D. Gas solubility, diffusivity and permeability in poly (ethylene oxide). J. Membr. Sci. 2004, 239, 105–117. [Google Scholar] [CrossRef]
- Li, S.; Pyrzynski, T.; Meyer, H.; Klinghoffer, N.; Tamale, T. Membrane Absorption Process for CO2 Capture. US Patent US20190282953A1, 19 September 2019. [Google Scholar]
- Ku, A.Y.; Kulkarni, P.; Shisher, R.; Wei, W. Membrane performance requirements for carbon dioxide capture using hydrogen-selective membranes in integrated gasification combined cycle (IGCC) power plants. J. Membrane Sci. 2011, 367, 233–239. [Google Scholar] [CrossRef]
- Li, M.C.; Liu, X.; Lv, K.; Sun, J.; Dai, C.; Liao, B.; Liu, C.; Mei, C.; Wu, Q.; Hubbe, M. Cellulose nanomaterials in oil and gas industry: Current status and future perspectives. Prog. Mater. Sci. 2023, 139, 101187. [Google Scholar] [CrossRef]
- Yasuda, H. Units of gas permeability constants. J. Appl. Polym. Sci. 1975, 19, 2529–2536. [Google Scholar] [CrossRef]
- Freeman, B.D. Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes. Macromolecules 1999, 32, 375–380. [Google Scholar]
- Patel, H.D.; Acharya, N.K. Transport properties of polymer blends and composite membranes for selective permeation of hydrogen. Int. J. Hydrog. Energy 2023, 48, 37796–37810. [Google Scholar] [CrossRef]
- Carreon, M.A. Microporous Crystalline Molecular Sieve Membranes for Molecular Gas Separations: What is next? ACS Mater. Lett. 2022, 4, 868–873. [Google Scholar] [CrossRef]
- Escolastico, S.; Solis, C.; Kjolseth, C.; Serra, J.M. Outstanding hydrogen permeation through CO2 stable dual-phase ceramic membranes. Energy Environ. Sci. 2014, 7, 3736–3746. [Google Scholar] [CrossRef]
- Li, H.; Hass-Santo, K.; Schygulla, U.; Dittmeyer, R. Inorganic microporous membranes for H2 and CO2 separation–Review of experimental and modeling progress. Chem. Eng. Sci. 2015, 127, 401–417. [Google Scholar] [CrossRef]
- Wang, L.; Zhag, C.; Gao, X.; Pen, L.; Jiang, J.; Gu, X. Preparation of defect-free DDR zeolite membranes by eliminating template with ozone at low temperature. J. Membr. Sci. 2017, 539, 152–160. [Google Scholar] [CrossRef]
- Liu, H.; Gao, X.; Wang, S.; Hong, Z.; Wang, X.; Gu, X. SSZ-13 zeolite membranes on four-channel Al2O3 hollow fibers for CO2 separation. Sep. Purif. Technol. 2021, 267, 118611. [Google Scholar] [CrossRef]
- Schneider, M.; Rodriguez-Castellon, E.; Guerrero-Perez, M.O.; Hotza, D.; de Noni, A.; de Fatima Peralta Muniz Moreira, R. Advances in electrospun composite polymer/zeolite and geopolymer nanofibers: A comprehensive review. Sep. Pur. Tech. 2024, 340, 126684. [Google Scholar] [CrossRef]
- Guerrero-Perez, M.O. Research progress son the applications of electrospun nanofibers in catalysis. Catalysts 2022, 12, 9. [Google Scholar] [CrossRef]
- Calzado-Delgado, M.; Guerrero-Perez, M.O.; Yeung, K.L. A new versatile x-y-z electrospinning equipment for nanofiber synthesis in both far and near field. Sci. Rep. 2022, 12, 4872. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Kuppireddy, S.; Varghese, A.M.; Araj, H.A.; Hart, P.; Romantani, T.; Bampos, G.; Karanikolos, G.N. A combined experimental and simulations assessment of CO2 capture and CO2/H2 separation performance of aminosilane-grafted MCM-41 and pore-epanded MCM-41. Micro. Meso. Mat. 2024, 377, 113220. [Google Scholar] [CrossRef]
- Kemir, H.; Aksu, G.O.; Gulbalkan, H.C.; Keskin, S. MOF Membranes for CO2 Capture: Past, Present and Future. Carbon Capture Sci. Technol. 2022, 2, 100026. [Google Scholar]
- Shah, M.; McCarthy, M.C.; Sachdeva, S.; Lee, A.K.; Jeong, H.K. Current Status of Metal-Organic Framework Membranes for Gas Separations: Promises and Challenges. Ind. Eng. Chem. Res. 2012, 51, 2179–2199. [Google Scholar] [CrossRef]
- Demir, H.; Daglar, H.; Gulbalkan, H.C.; Aksu, G.O.; Keskin, S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord. Chem. Rev. 2023, 484, 215112. [Google Scholar] [CrossRef]
- Song, H.; Peng, Y.; Wang, C.; Shu, L.; Zhu, C.; Wang, Y.; He, H.; Yang, W. Structure Regulation of MOF Nanosheet Membrane for Accurate H2/CO2 Separatiion. Angewandte Chemie Int. Ed. 2023, 62, e202218472. [Google Scholar] [CrossRef]
- Sanchez-Lainez, J.; Zornoza, B.; Orsi, A.F.; Lozinska, M.M.; Dawson, D.M.; Ashbrook, S.E.; Francis, S.M.; Wright, P.A.; Benoit, V.; Llewellyn, P.L.; et al. Synthesis of ZIF-93/11 Hybrid Nanoparticles via Post-Synthetic Modification of ZIF-93 and Their Use for H2/CO2 Separation. Chem. A Eur. J. 2018, 24, 11211–11219. [Google Scholar] [CrossRef] [PubMed]
- Bitter, J.H.; Tashvigh, A.A. Recent Advances in Polybenzimmidazole Membranes for Hydrogen Purification. Ind. Eng. Chem. Res. 2022, 61, 6125–6134. [Google Scholar] [CrossRef]
- Al-Rowaili, F.N.; Khaled, M.; Jamal, A.; Zahid, U. Mixed matrix membranes for H2/CO2 gas separation—A critical review. Fuel 2023, 333, 126285. [Google Scholar] [CrossRef]
- Meng, X.; Mei, J.; Tang, X.; Jiang, J.; Sun, C.; Song, K. The Degradation Prediction of Proton Excange Membrane Fuel Cell Performance Based on a Transformer Model. Energies 2024, 17, 3050. [Google Scholar] [CrossRef]
- Ng, W.K.; Wong, W.Y.; Rosli, N.A.H.; Loh, K.S. Commercial Anion Exchange Membranes (AEMs) for Fuel Cell and Water Electrolyzer Applications: Performance, Durability, and Material Advancement. Separations 2023, 10, 424. [Google Scholar] [CrossRef]
- Park, E.J.; Arges, C.G.; Xu, H.; Kim, Y.S. Membrane Strategies for Water Electrolysis. ACS Energy Lett. 2022, 7, 3447–3457. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, L.; Yang, F.; Wei, Q. Mesoporous Silica Membranes Silylated by Fluorinated and Non-Fluorinated Alkylsilanes for the separation of methyl Terc-Butyl Ether from Water. Membranes 2020, 10, 70. [Google Scholar] [CrossRef]
- Motz, R.; Li, D.G.; Keane, A.; Manriquez, L.D.; Park, E.J.; Maurya, S.; Chung, H.; Fujimoto, C.; Jeon, J.; Pagels, M.K.; et al. Performance and durability of anion exchange membrane water electrolyzers using down-selected polymer electrolytes. J. Mater. Chem. A 2021, 9, 22670–22683. [Google Scholar] [CrossRef]
- Wang, Y.; Ban, T.; Guo, M.; Zhu, X. Polu(fluorenyl-indolinedione) based hydroxide conducting membrane for anion exchange membrane water electrolyzers. Int. J. Hyd. En. 2024, 49C, 1123–1133. [Google Scholar] [CrossRef]
- Park, E.J.; Maurya, S.; Hibbs, M.R.; Fujimoto, C.H.; Kreuer, K.-D.; Kim, Y.S. Alkaline Stability of Quaternized Diels-Alder Polyphenylenes. Macromolecules 2019, 52, 5419–5428. [Google Scholar] [CrossRef]
- Olsson, J.S.; Pham, T.H.; Jannasch, P. Poly(arylene piperidinium) Hydroxide Ion Excange Membranes: Synthesis, Alkaline Stability, and Conductivity. Adv. Funct. Mater. 2018, 28, 1702758. [Google Scholar] [CrossRef]
- Fan, J.T.; Willdorf-Cohen, S.; Schibli, E.M.; Paula, Z.; Li, W.; Skalski, T.J.G.; Sergeenko, A.T.; Hohenadel, A.; Frisken, B.J.; Magliocca, E.; et al. Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability. Nat. Commun. 2019, 10, 2306. [Google Scholar] [CrossRef]
- Li, D.; Matanovic, I.; Lee, A.S.; Park, E.J.; Fujimoto, C.; Chung, H.T.; Kim, Y.S. Phenyl oxidation impacts the durability of alkaline membrane water electrolyzer. ACS Appl. Mater. Inter 2019, 11, 9696–9701. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Zhu, X.P.; Li, H.N.; Jiang, Y.; Ni, J.R. Electrochemical oxidation of nitrogen-heterocyclic compounds at boron-doped diamond electrode. Chemosphere 2012, 86, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.; Dunnill, C.W. Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas. RSC Advances 2016, 6, 100643–100651. [Google Scholar] [CrossRef]
- Faqeeh, A.H.; Symes, M.D. Zero-gap bipolar membrane water electrolyzers: Principles, challenges and practical insights. Electrochim. Acta 2024, 493, 144345. [Google Scholar] [CrossRef]
- de Groot, M.T.; Vreman, A.W. Ohmic resistance in zero gap alkaline electrolysis with a Zirfon diaphragm. Electroquim. Acta 2021, 369, 137684. [Google Scholar] [CrossRef]
- Philips, R.; Edwards, A.; Rome, B.; Jones, D.R.; Dunnil, C.W. Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. Int. J. Hyd. Ener. 2017, 42, 23986–23994. [Google Scholar] [CrossRef]
- Parnamae, R.; Mareev, S.; Nikonenko, V.; Melnikov, S.; Sheldeshow, N.; Zabolotskii, V.; Hamalers, H.V.M.; Tedesco, M. Bipolar membranes: A review on principles, latest developments and applications. J. Membr. Sci. 2021, 617, 118538. [Google Scholar] [CrossRef]
- Giesbrecht, P.K.; Freund, S.M. Recent Advances in Bipolar Membrane Design and Applications. Chem. Mat. 2020, 32, 8060–8090. [Google Scholar] [CrossRef]
- Li, J.; Tian, W.; Li, Q.; Zhao, S. Acidic Oxygen Evolution Reaction: Fundamental Understanding and Electrocatalysts Design. ChemSusChem 2024, 17, e202400239. [Google Scholar] [CrossRef]
- Marin, D.H.; Perryman, J.T.; Hubert, M.A.; Lindquist, G.A.; Chen, L.; Aleman, A.M.; Kamat, G.A.; Niemann, V.A.; Stevens, M.B.; Regmi, Y.N.; et al. Hydrogen production with seawater-resilient bipolar membrane electorlyzers. Joule 2023, 7, 765–781. [Google Scholar] [CrossRef]
- Tang, J.; Su, C.; Shao, Z. Advanced membrane-based electrode engineering toward efficient and durable water electrolysis and cost-effective seawater electrolysis in membrane electrolyzers. Exploration 2023, 4, 20220112. [Google Scholar] [CrossRef] [PubMed]
- Adisasmito, S.; Khoiruddin, K.; Sutrisna, P.D.; Wenten, I.G.; Siagian, U.W.R. Bipolar Membrane Seawater Splitting for Hydrogen Production: A Review. ACS Omega 2024, 9, 14704–14727. [Google Scholar] [CrossRef] [PubMed]
- Li, J.R.; Kuppler, R.J.; Zhou, H.C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Rodríguez-Castellón, E.; Guerrero-Pérez, M.O.; Hotza, D.; Junior, A.N.; Moreira, R. Hierarchically porous composites containing mining tailings-based geopolymer and zeolite 13X: Application for carbon dioxide sequestration, Adsorption. Res. Sq. 2024; in press. [Google Scholar] [CrossRef]
- Zhou, R.; Pan, Y.; Xing, W.; Xu, N. Advanced microporous membranes for H2/CH4 separation: Challenges and perspectives. Adv. Membr. 2021, 1, 100011. [Google Scholar] [CrossRef]
- Tseng, H.H.; Wang, C.-T.; Zhuang, G.L.; Uchytil, P.; Reznickova, J.; Setnickova, K. Enhanced H2/CH4 and H2/CO2 separation by carbon molecular sieve membrane coated on titania modified alumina support: Effects of TiO2 intermediate layer preparation variables on interfacial adhesion. J. Membr. Sci. 2016, 510, 391–404. [Google Scholar] [CrossRef]
- Chen, X.; Fan, Y.; Wu, L.; Zhang, L.; Guan, D.; Ma, C.; Li, N. Ultra-selective molecular-sieving gas separation membranas enabled by multi-covalent-crosslinking of microporous polymer blends. Nat. Commun. 2021, 12, 6140. [Google Scholar] [CrossRef]
- Carreon, M.A.; Guliants, V.V.; Guerrero-Perez, M.O.; Bañares, M.A. Mesostructured mixed Mo–V–Nb oxides for propane ammoxidation. Catal. Commun. 2009, 10, 416–420. [Google Scholar]
- Carreon, M.A.; Guerrero-Pérez, V.V.G.M.O.; Bañares, M.A. Phase transformations in mesostructured VPO/surfactant composites. Microporous Mesoporous Mater. 2004, 71, 57–63. [Google Scholar] [CrossRef]
- Carreon, M.A. Porous crystals as membranes. Science 2020, 367, 624–625. [Google Scholar] [CrossRef]
Black | Grey | Blue | Green | White | |
---|---|---|---|---|---|
Gasification of coal | Methane steam reforming | Produced from fossil fuels (i.e., grey or black), where CO2 is captured and stored | Produced via electrolysis of water using electricity from renewable sources (wind or solar) | Naturally produced in the Earth’s crust | |
Cons |
|
|
|
|
|
Pros |
|
|
|
|
|
Molecular Weight (g/mol) | Kinetic Diameter (A) | Critical Volume (cm3/mole) | Critical Temperature (K) | |
---|---|---|---|---|
H2 | 2 | 2.89 | 65.1 | 33.24 |
CH4 | 16 | 3.80 | 99.2 | 191.05 |
CO2 | 44 | 3.30 | 93.9 | 304.21 |
Absorption | Adsorption | Distillation | Membranes | |
---|---|---|---|---|
Advantages | Commercially available technology with high CO2 removal rates. | High number of adsorbents available with high adsorption capacity. | Available for high CO2 concentrations. | Low capital and operation costs. Flexibility. Simple operation. |
Limitations | Use of corrosive absorbents, energy- and cost-intensive processes, low absorption capacity. | The advantages that adsorption presents, such as decreased pressure requirements and a sensitivity to impurities, do not seem to be sufficiently profitable to replace current absorption processes with it. | High operation costs. | They are more expensive than absorption and adsorption and may present low flux, high fouling, and some instability under high T and P working conditions. |
PEMWE | AEMWE | BPMWE | |
---|---|---|---|
Reactions occurring at the anode and cathode | 2H+ + 2e− → H2 H2O → 2H+ + 0.5O2 + 2e− | 2H2O + 2e− → 2OH− + H2 2OH− → H2O + 0.5O2 + 2e− | 2OH−→ H2O + 0.5O2 + 2e− 2H+ + 2e−→ H2 |
HER acid OER acid | HER alkaline OER alkaline | HER acid OER alkaline | |
Membrane selective to: | Protons (H+) | Anions (OH−) | Bipolar membrane (OH− and H+) |
Blue H2 | Green H2 | |
---|---|---|
Most promising membrane type | Mixed-matrix membranes (MMMs). | Bipolar membranes. |
Main advantages of H2 production technology | Low costs. CO2 emissions are avoided. Captured CO2 can be used as a raw material. | Renewable. |
Main disadvantages of membrane technology | Low flux, high fouling, instability under high T and P. | Poor lifetime, power density, and efficiency. |
Main problems to be solved | Absorption methods are less expensive. It is necessary to decrease the membrane costs to compete with them and avoid the use of dangerous and corrosive sorbents. | Green H2 technology consumes a large amount of fresh water. It is necessary to develop electrolysis technology compatible with sea water; in this context, bipolar technologies are promising. For large-scale production, it will be desirable to use the O2 produced as a by-product. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Pérez, M.O. Perspectives and State of the Art of Membrane Separation Technology as a Key Element in the Development of Hydrogen Economy. Membranes 2024, 14, 228. https://doi.org/10.3390/membranes14110228
Guerrero-Pérez MO. Perspectives and State of the Art of Membrane Separation Technology as a Key Element in the Development of Hydrogen Economy. Membranes. 2024; 14(11):228. https://doi.org/10.3390/membranes14110228
Chicago/Turabian StyleGuerrero-Pérez, M. Olga. 2024. "Perspectives and State of the Art of Membrane Separation Technology as a Key Element in the Development of Hydrogen Economy" Membranes 14, no. 11: 228. https://doi.org/10.3390/membranes14110228
APA StyleGuerrero-Pérez, M. O. (2024). Perspectives and State of the Art of Membrane Separation Technology as a Key Element in the Development of Hydrogen Economy. Membranes, 14(11), 228. https://doi.org/10.3390/membranes14110228