A Study of Theoretical Analysis and Modelling of Microalgal Membrane Photobioreactors for Microalgal Biomass Production and Nutrient Removal
Abstract
:1. Introduction
2. Methods–Model Design and Model Variables
2.1. Model Design
- The model only predicts the biological performance of M-MPBRs under a steady state, which would not provide the details of performance development during the transit period.
- The illumination and gas (CO2) supply are continuous and sufficient in the cultivation system of microalgae; thus, they are assumed not to be limiting factors of microalgae growth in the models.
- Microalgae microbial biokinetic model follows the Monod equation for multi-nutrients (N and P) as the limiting factors.
- The nutrient (N and P) consumption mechanism is dominated by microalgae uptake; thus, other nutrient removal mechanisms such as the nitrification interaction between the bacteria and microalgae are not taken into account, as the models are for microalgae-only MPBRs (no consideration of bacterial contamination or microalgal-bacterial consortia).
2.2. Model Variables
3. Results
3.1. Modelling of Biological Performances of Membrane Photobioreactor
3.2. Model Validation of Microalgae System
4. Discussion
4.1. HRT Effect
4.2. SRT Effect
4.3. Influent Nitrogen Concentration Effect
4.4. Comparison of the Modelling and Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Symbol | Description | Unit |
M-MPBR | Microalgal membrane photobioreactor | |
MInput | The mass input to the system | |
MOutput | The mass output from the system | |
MAccumulation | The mass accumulated in the system | |
N | Nitrogen | |
P | Phosphorus | |
HRT | Hydraulic retention time | d |
SRT | Solid retention time | d |
V | Effective volume of microalgae M-MPBR | L |
Q | Flow rate of influent | L∙d−1 |
QW | Waste rate of microalgae suspension | L∙d−1 |
Xm | Microalgal biomass concentration | mg∙L−1 |
Xm0 | The initial concentration of microalgae in M-MPBR | mg∙L−1 |
µm | Maximum growth rate of microalgae | d−1 |
kd-m | The decay coefficient of microalgae | d−1 |
SN | Total nitrogen concentration in M-MPBR and effluent | mg∙L−1 |
SP | Total phosphorus concentration in M-MPBR and effluent | mg∙L−1 |
KN | The half-saturation constant of NH4+-N | mg N∙L−1 |
KP | The half-saturation constant of HPO42−-P | mg P∙L−1 |
Si0 | Initial nutrient concentration in M-MPBR, i = N, P | mg∙L−1 |
Nutrient consumption of microalgal metabolism, i = N, P | ||
Ym−i | Removal coefficient of nutrient, i = N, P | g algae∙g nutrient−1 |
References
- Gupta, P.L.; Lee, S.; Choi, H. A mini review: Photobioreactors for large scale algal cultivation. World J. Microbiol. Biotechnol. 2015, 31, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Sathinathan, P.; Parab, H.; Yusoff, R.; Ibrahim, S.; Vello, V.; Ngoh, G. Photobioreactor design and parameters essential for algal cultivation using industrial wastewater: A review. Renew. Sust. Energ. Rev. 2023, 173, 113096. [Google Scholar] [CrossRef]
- Ting, H.; Haifeng, L.; Shanshan, M.; Zhang, Y.; Zhidan, L.; Na, D. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: A review. Int. J. Agric. Biol. Eng. 2017, 10, 1–29. [Google Scholar]
- Aditya, L.; Mahlia, T.I.; Nguyen, L.N.; Vu, H.P.; Nghiem, L.D. Microalgae-bacteria consortium for wastewater treatment and biomass production. Sci. Total Environ. 2022, 838, 155871. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Zhao, Q.; Wei, W.; Sun, Y. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems. Bioresour. Technol. 2016, 211, 1–5. [Google Scholar] [CrossRef]
- Xu, Q.; Huang, Q.S.; Wei, W.; Sun, J.; Dai, X.; Ni, B.J. Improving the treatment of waste activated sludge using calcium peroxide. Water Res. 2020, 187, 116440. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ali, S.S.; Ramadan, H.; El-Aswar, E.I.; Eltawab, R.; Ho, S.H.; Elsamahy, T.; Li, S.; El-Sheekh, M.M.; Schagerl, M. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environ. Sci. Technol. 2023, 13, 100205. [Google Scholar] [CrossRef]
- Sial, A.; Zhang, B.; Zhang, A.; Liu, K.; Imtiaz, S.A.; Yashir, N. Microalgal–bacterial synergistic interactions and their potential influence in wastewater treatment: A review. Bioenergy Res. 2021, 14, 723–738. [Google Scholar] [CrossRef]
- Wollmann, F.; Dietze, S.; Ackermann, J.U.; Bley, T.; Walther, T.; Steingroewer, J.; Krujatz, F. Microalgae wastewater treatment: Biological and technological approaches. Eng. Life Sci. 2019, 19, 860–871. [Google Scholar] [CrossRef]
- Palandi, Z.K.; Taghavijeloudar, M. Enhancing microalgae-based biofuels production, wastewater treatment and bio-products generation by synergistic effect of iron and zinc addition to real municipal wastewater. J. Environ. Manag. 2024, 370, 122350. [Google Scholar] [CrossRef]
- Mishra, N.; Mishra, S.; Prasad, R. Current Status and Challenges of Microalgae as an Eco-Friendly Biofuel Feedstock: A Review. Present Environ. Sustain. Dev. 2021, 15, 179–189. [Google Scholar] [CrossRef]
- Morillas-España, A.; Lafarga, T.; Sánchez-Zurano, A.; Acién-Fernández, F.G.; González-López, C. Microalgae based wastewater treatment coupled to the production of high value agricultural products: Current needs and challenges. Chemosphere 2022, 291, 132968. [Google Scholar] [CrossRef] [PubMed]
- Moshood, T.D.; Nawanir, G.; Mahmud, F. Microalgae biofuels production: A systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environ. Chall. 2021, 5, 100207. [Google Scholar] [CrossRef]
- Zhang, M.; Yao, L.; Maleki, E.; Liao, B.; Lin, H. Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges. Algal Res. 2019, 44, 101686. [Google Scholar] [CrossRef]
- Greque de Morais, E.; Sampaio, I.C.F.; Gonzalez-Flo, E.; Ferrer, I.; Uggetti, E.; García, J. Microalgae harvesting for wastewater treatment and resources recovery: A review. New Biotechnol. 2023, 78, 84–94. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Hao, N.H.; Hou, Y.Y.; Wang, Q.; Liu, Q.L.; Yan, S.H.; Chen, F.J.; Zhao, L. Technologies for harvesting the microalgae for industrial applications: Current trends and perspectives. Bioresour. Technol. 2023, 387, 129631. [Google Scholar] [CrossRef]
- Jayaraman, J.; Kumaraswamy, J.; Rao, Y.K.; Karthick, M.; Baskar, S.; Anish, M.; Sharma, A.; Yadav, A.S.; Alam, M.; Ammarullah, M.I. Wastewater treatment by algae-based membrane bioreactors: A review of the arrangement of a membrane reactor, physico-chemical properties, advantages and challenges. RSC Adv. 2024, 14, 34769–34790. [Google Scholar] [CrossRef]
- Gonzalez-Camejo, J.; Jiménez-Benítez, A.; Ruano, M.; Robles, A.; Barat, R.; Ferrer, J. Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. J. Environ. Manag. 2019, 245, 76–85. [Google Scholar] [CrossRef]
- Luo, Y.; Le-Clech, P.; Henderson, R.K. Assessment of membrane photobioreactor (MPBR) performance parameters and operating conditions. Water Res. 2018, 138, 169–180. [Google Scholar] [CrossRef]
- Zhao, Z.; Muylaert, K.; Vankelecom, I.F. Applying membrane technology in microalgae industry: A comprehensive review. Renew. Sust. Energy Rev. 2023, 172, 113041. [Google Scholar] [CrossRef]
- Xu, M.; Li, P.; Tang, T.; Hu, Z. Roles of SRT and HRT of an algal membrane bioreactor system with a tanks-in-series configuration for secondary wastewater effluent polishing. Ecol. Eng. 2015, 85, 257–264. [Google Scholar] [CrossRef]
- Barbera, E.; Sforza, E.; Grandi, A.; Bertucco, A. Uncoupling solid and hydraulic retention time in photobioreactors for microalgae mass production: A model-based analysis. Chem. Eng. Sci. 2020, 218, 115578. [Google Scholar] [CrossRef]
- Honda, R.; Boonnorat, J.; Chiemchaisri, C.; Chiemchaisri, W.; Yamamoto, K. Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor. Bioresour. Technol. 2012, 125, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Le-Clech, P.; Henderson, R.K. Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. Algal Res. 2017, 24, 425–437. [Google Scholar] [CrossRef]
- Chang, H.; Fu, Q.; Zhong, N.; Yang, X.; Quan, X.; Li, S.; Fu, J.; Xiao, C. Microalgal lipids production and nutrients recovery from landfill leachate using membrane photobioreactor. Bioresour. Technol. 2019, 277, 18–26. [Google Scholar] [CrossRef]
- Chen, X.; Li, Z.; He, N.; Zheng, Y.; Li, H.; Wang, H.; Wang, Y.; Lu, Y.; Li, Q.; Peng, Y. Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultured in a novel membrane photobioreactor. Biotechnol. Biofuels 2018, 11, 190. [Google Scholar] [CrossRef]
- Ashadullah, A.; Shafiquzzaman, M.; Haider, H.; Alresheedi, M.; Azam, M.S.; Ghumman, A.R. Wastewater treatment by microalgal membrane bioreactor: Evaluating the effect of organic loading rate and hydraulic residence time. J. Environ. Manag. 2021, 278, 111548. [Google Scholar] [CrossRef]
- Honda, R.; Teraoka, Y.; Noguchi, M.; Yang, S. Optimization of hydraulic retention time and biomass concentration in microalgae biomass production from treated sewage with a membrane photobioreactor. J. Water Environ. Technol. 2017, 15, 1–11. [Google Scholar] [CrossRef]
- Zou, H.; Rutta, N.C.; Chen, S.; Zhang, M.; Lin, H.; Liao, B. Membrane Photobioreactor Applied for Municipal Wastewater Treatment at a High Solids Retention Time: Effects of Microalgae Decay on Treatment Performance and Biomass Properties. Membranes 2022, 12, 564. [Google Scholar] [CrossRef]
- Eze, V.C.; Velasquez-Orta, S.B.; Hernández-García, A.; Monje-Ramírez, I.; Orta-Ledesma, M.T. Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal Res. 2018, 32, 131–141. [Google Scholar] [CrossRef]
- Bello, M.; Ranganathan, P.; Brennan, F. Dynamic modelling of microalgae cultivation process in high rate algal wastewater pond. Algal Res. 2017, 24, 457–466. [Google Scholar] [CrossRef]
- Feng, F.; Li, Y.; Latimer, B.; Zhang, C.; Nair, S.S.; Hu, Z. Prediction of maximum algal productivity in membrane bioreactors with a light-dependent growth model. Sci. Total Environ. 2021, 753, 141922. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.H.; Jeon, S.K.; Pagilla, K. Mathematical modeling of aerobic membrane bioreactor (MBR) using activated sludge model no.1 (ASM1). J. Ind. Eng. Chem. 2009, 15, 835–840. [Google Scholar] [CrossRef]
- Huang, S.J.; Pooi, C.K.; Shi, X.Q.; Varjani, S.; Ng, H.Y. Performance and pocess simulation of membrane bioreactor (MBR) treating petrochemical wastewater. Sci. Total. Environ. 2020, 747, 141311. [Google Scholar] [CrossRef] [PubMed]
- Bekirogullari, M.; Figueroa-Torres, G.M.; Pittman, J.K.; Theodoropoulos, C. Models of microalgal cultivation for added-value products-A review. Biotechnol. Adv. 2020, 44, 107609. [Google Scholar] [CrossRef]
- Lee, E.; Jalalizadeh, M.; Zhang, Q. Growth kinetic models for microalgae cultivation: A review. Algal Res. 2015, 12, 497–512. [Google Scholar] [CrossRef]
- Rittmann, B.E.; McCarty, P.L. Environmental Biotechnology: Principles and Applications; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Praveen, P.; Xiao, W.; Lamba, B.; Loh, K.C. Low-retention operation to enhance biomass productivity in an algal membrane photobioreactor. Algal Res. 2019, 40, 101487. [Google Scholar] [CrossRef]
- Lee, L.; Hsu, C.Y.; Yen, H.W. The effects of hydraulic retention time (HRT) on chromium (VI) reduction using autotrophic cultivation of Chlorella vulgaris. Bioprocess Biosyst. Eng. 2017, 40, 1725–1731. [Google Scholar] [CrossRef]
- Wang, Y.N.; Pang, H.; Yu, C.; Li, C.; Wang, J.H.; Chi, Z.Y.; Xu, Y.P.; Li, S.Y.; Zhang, Q.; Che, J. Growth and nutrients removal characteristics of attached Chlorella sp. using synthetic municipal secondary effluent with varied hydraulic retention times and biomass harvest intervals. Algal Res. 2022, 61, 102600. [Google Scholar] [CrossRef]
- Vu, M.T.; Nguyen, L.N.; Mofijur, M.; Johir, M.A.H.; Ngo, H.H.; Mahlia, T.; Nghiem, L.D. Simultaneous nutrient recovery and algal biomass production from anaerobically digested sludge centrate using a membrane photobioreactor. Bioresour. Technol. 2022, 343, 126069. [Google Scholar] [CrossRef]
- Matamoros, V.; Rodriguez, Y. Batch vs continuous-feeding operational mode for the removal of pesticides from agricultural run-off by microalgae systems: A laboratory scale study. J. Hazard. Mater. 2016, 309, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Solís-Salinas, C.E.; Patlán-Juárez, G.; Okoye, P.U.; Guillén-Garcés, A.; Sebastian, P.; Arias, D.M. Long-term semi-continuous production of carbohydrate-enriched microalgae biomass cultivated in low-loaded domestic wastewater. Sci. Total Environ. 2021, 798, 149227. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.S.; McCaw, A.; Ontiveros-Valencia, A.; Shi, Y.; Parameswaran, P.; Rittmann, B.E. Multiple synergistic benefits of selective fermentation of Scenedesmus biomass for fuel recovery via wet-biomass extraction. Algal Res. 2016, 17, 253–260. [Google Scholar] [CrossRef]
- Valigore, J.M. Microbial (Microalgal-Bacterial) Biomass Grown on Municipal Wastewater for Sustainable Biofuel Production. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2011. [Google Scholar]
- Wang, Z.; Lee, Y.Y.; Scherr, D.; Senger, R.S.; Li, Y.; He, Z. Mitigating nutrient accumulation with microalgal growth towards enhanced nutrient removal and biomass production in an osmotic photobioreactor. Water Res. 2020, 182, 116038. [Google Scholar] [CrossRef]
- Pastore, M.; Primavera, A.; Milocco, A.; Barbera, E.; Sforza, E. Tuning the Solid Retention Time to Boost Microalgal Productivity and Carbon Exploitation in an Industrial Pilot-Scale LED Photobioreactor. Ind. Eng. Chem. Res. 2022, 61, 7739–7747. [Google Scholar] [CrossRef]
- Di Termini, I.; Prassone, A.; Cattaneo, C.; Rovatti, M. On the nitrogen and phosphorus removal in algal photobioreactors. Ecol. Eng. 2011, 37, 976–980. [Google Scholar] [CrossRef]
- Martınez, M.; Sánchez, S.; Jimenez, J.; El Yousfi, F.; Munoz, L. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 2000, 73, 263–272. [Google Scholar] [CrossRef]
- Gao, F.; Yang, Z.H.; Li, C.; Wang, Y.; Jin, W.; Deng, Y. Concentrated microalgae cultivation in treated sewage by membrane photobioreactor operated in batch flow mode. Bioresour. Technol. 2014, 167, 441–446. [Google Scholar] [CrossRef]
- Discart, V.; Bilad, M.; Van Nevel, S.; Boon, N.; Cromphout, J.; Vankelecom, I. Role of transparent exopolymer particles on membrane fouling in a full-scale ultrafiltration plant: Feed parameter analysis and membrane autopsy. Bioresour. Technol. 2014, 173, 67–74. [Google Scholar] [CrossRef]
- Solmaz, A.; Işık, M. Effect of sludge retention time on biomass production and nutrient removal at an algal membrane photobioreactor. Bioenergy Res. 2019, 12, 197–204. [Google Scholar] [CrossRef]
- Vo, T.D.H.; Pham, M.D.T.; Dang, B.T.; Tran, C.S.; Le, T.S.; Nguyen, V.T.; Nguyen, T.B.; Lin, C.; Varjani, S.; Dao, T.S.; et al. Influence of nitrogen species and biomass retention time on nutrient removal and biomass productivity in a microalgae-based bioreactor. Environ. Technol. Innov. 2022, 28, 102880. [Google Scholar] [CrossRef]
- Xin, L.; Hong-Ying, H.; Ke, G.; Ying-Xue, S. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 2010, 101, 5494–5500. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Peng, Y.Y.; Li, C.; Cui, W.; Yang, Z.H.; Zeng, G.M. Coupled nutrient removal from secondary effluent and algal biomass production in membrane photobioreactor (MPBR): Effect of HRT and long-term operation. Chem. Eng. J. 2018, 335, 169–175. [Google Scholar] [CrossRef]
- Wang, L.; Min, M.; Li, Y.; Chen, P.; Chen, Y.; Liu, Y.; Wang, Y.; Ruan, R. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 2010, 162, 1174–1186. [Google Scholar] [CrossRef]
- Bilad, M.; Discart, V.; Vandamme, D.; Foubert, I.; Muylaert, K.; Vankelecom, I.F. Coupled cultivation and pre-harvesting of microalgae in a membrane photobioreactor (MPBR). Bioresour. Technol. 2014, 155, 410–417. [Google Scholar] [CrossRef]
- Cuellar-Bermudez, S.P.; Aleman-Nava, G.S.; Chandra, R.; Garcia-Perez, J.S.; Contreras-Angulo, J.R.; Markou, G.; Muylaert, K.; Rittmann, B.E.; Parra-Saldivar, R. Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Res. 2017, 24, 438–449. [Google Scholar] [CrossRef]
- Luo, G. Review of waste phosphorus from aquaculture: Source, removal and recovery. Rev. Aquac. 2023, 15, 1058–1082. [Google Scholar] [CrossRef]
- Wang, H.; Deng, L.; Qi, Z.; Wang, W. Constructed microalgal-bacterial symbiotic (MBS) system: Classification, performance, partnerships and perspectives. Sci. Total Environ. 2022, 803, 150082. [Google Scholar] [CrossRef]
Kinetic Parameters | Value | Ref |
---|---|---|
µm (d−1) | 1.68 | [35,36] |
kd-m (d−1) | 0.06 | [35,36] |
YM-N (mg biomass·mg N−1) | 15.8 | [35,36] |
YM-P (mg biomass·mg P−1) | 114 | [35,36] |
KN (mg N·L−1) | 24.5 | [35,36] |
KP (mg P·L−1) | 3.39 | [35,36] |
SRT (d) | HRT (d) | Influent Nitrogen (mg/L) | Influent Phosphorus (mg/L) | Average Biomass Production (g/L) | Average Nitrogen Removal (%) | Average Phosphorus Removal (%) | |
---|---|---|---|---|---|---|---|
Luo et al. [19] | |||||||
9 | 1 | 14.10 | 2.50 | 0.47 | 31.00 | 30.00 | |
18 | 1 | 14.10 | 2.50 | 0.91 | 36.00 | 31.00 | |
30 | 1 | 14.10 | 2.50 | 1.22 | 32.00 | 25.00 | |
Praveen et al. [38] | |||||||
2.5 | 2 | 21.00 | 6.00 | 0.78 | 95.5 | 78.2 | |
5 | 2 | 21.00 | 6.00 | 1.07 | 95.8 | 74.1 | |
10 | 2 | 21.00 | 6.00 | 1.97 | 96.7 | 73.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.; Fatehi, P.; Liao, B. A Study of Theoretical Analysis and Modelling of Microalgal Membrane Photobioreactors for Microalgal Biomass Production and Nutrient Removal. Membranes 2024, 14, 245. https://doi.org/10.3390/membranes14120245
Liao Y, Fatehi P, Liao B. A Study of Theoretical Analysis and Modelling of Microalgal Membrane Photobioreactors for Microalgal Biomass Production and Nutrient Removal. Membranes. 2024; 14(12):245. https://doi.org/10.3390/membranes14120245
Chicago/Turabian StyleLiao, Yichen, Pedram Fatehi, and Baoqiang Liao. 2024. "A Study of Theoretical Analysis and Modelling of Microalgal Membrane Photobioreactors for Microalgal Biomass Production and Nutrient Removal" Membranes 14, no. 12: 245. https://doi.org/10.3390/membranes14120245
APA StyleLiao, Y., Fatehi, P., & Liao, B. (2024). A Study of Theoretical Analysis and Modelling of Microalgal Membrane Photobioreactors for Microalgal Biomass Production and Nutrient Removal. Membranes, 14(12), 245. https://doi.org/10.3390/membranes14120245