Anion-Exchange Membranes’ Characteristics and Catalysts for Alkaline Anion-Exchange Membrane Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Carbon Black Surface Modification
2.2.2. Preparation of 40 wt% Ag/C Cathode Catalyst
2.2.3. Preparation of 40 wt% PdNi/C Anode Catalyst
2.2.4. Production of Catalyst Slurry
2.2.5. Production of GDEs
2.2.6. AEMs Attached Hydroxide Ion (OH−)
2.3. Material Characterizations
3. Results and Discussion
3.1. Catalyst Analysis
3.1.1. X-Ray Diffraction Pattern of PdNi/C
3.1.2. Electrochemical Characterizations of PdNi/C
3.1.3. X-Ray Diffraction Pattern of Ag/C
3.1.4. SEM Images of Ag/C
3.2. Anion-Exchange Membranes Analysis
3.2.1. Ionic Conductivity of AEM
3.2.2. Water Uptake and Swelling Ratio of AEM
3.2.3. Mechanical Properties of AEM
3.3. Single Fuel Cell Performance Test
3.3.1. Performance of Anion-Exchange Membrane AT-1
3.3.2. Performance of aQAPS-S8 Membrane
3.3.3. Performance of X37-50T Membrane
3.3.4. Performance of X37-50RT Membrane
3.3.5. Comparison of Ionomers aQAPS-S14 to XB-7 Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Z.; Ran, J.; Wu, B.; Wu, L.; Xu, T. Stability challenge in anion exchange membrane for fuel cells. Curr. Opin. Chem. Eng. 2016, 12, 22–30. [Google Scholar] [CrossRef]
- Varcoe, J.R.; Atanassov, P.; Dekel, D.R.; Herring, A.M.; Hickner, M.A.; Kohl, P.A.; Kucernak, A.R.; Mustain, W.E.; Nijmeijer, K.; Scott, K.; et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 2014, 7, 3135–3191. [Google Scholar] [CrossRef]
- Xu, T. Ion exchange membranes: State of their development and perspective. J. Membr. Sci. 2005, 263, 1–29. [Google Scholar] [CrossRef]
- Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F.W.T.; Hor, T.S.A.; Zong, Y.; Liu, Z. Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catal. 2015, 5, 4643–4667. [Google Scholar] [CrossRef]
- Ferriday, T.B.; Middleton, P.H. Alkaline fuel cell technology—A review. Int. J. Hydrogen Energy 2021, 46, 18489–18510. [Google Scholar] [CrossRef]
- Kostowskyj, M.A.; Gilliam, R.J.; Kirk, D.; Thorpe, S.J. Silver nanowire catalysts for alkaline fuel cells. Int. J. Hydrogen Energy 2008, 33, 5773–5778. [Google Scholar] [CrossRef]
- Yassin, K.; Rasin, I.G.; Brandon, S.; Dekel, D.R. Elucidating the role of anion-exchange ionomer conductivity within the cathode catalytic layer of anion-exchange membrane fuel cells. J. Power Sources 2022, 524, 231083. [Google Scholar] [CrossRef]
- Tripathi, B.P.; Kumar, M.; Shahi, V.K. Organic-inorganic hybrid alkaline membranes by epoxide ring opening for direct methanol fuel cell applications. J. Membr. Sci. 2010, 360, 90–101. [Google Scholar] [CrossRef]
- Genovese, M.; Lian, K. Polyoxometalate modified inorganic–organic nanocomposite materials for energy storage applications: A review. Curr. Opin. Solid State Mater. Sci. 2015, 19, 126–137. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, Y.; Lu, X.; Ma, X.; Yuan, W.; Zhu, X.; Chen, B.; Wang, J.; Wei, Z. Reducing hydroxide transport resistance by introducing high fractional free volume into anion exchange membranes. J. Membr. Sci. 2024, 701, 122769. [Google Scholar] [CrossRef]
- Cong, Y.; Wang, H.; Liu, M.; Tian, J. Latest progresses of Ru-based catalysts for alkaline hydrogen oxidation reaction: From mechanism to application. Appl. Catal. A Gen. 2024, 676, 119684. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, S.; Zhang, Y.; Zhang, Y.; Gao, Y.; Mu, X.; Liu, S.; Wang, D.; Dai, Z. Advances in the study of HOR reaction mechanisms under alkaline conditions. Adv. Sens. Energy Mater. 2024, 3, 100089. [Google Scholar] [CrossRef]
- Huang, J.; Yu, Z.; Tang, J.; Wang, P.; Tan, Q.; Wang, J.; Lei, X. A review on anion exchange membranes for fuel cells: Anion-exchange polyelectrolytes and synthesis strategies. Int. J. Hydrogen Energy 2022, 47, 27800–27820. [Google Scholar] [CrossRef]
- Aguirre, O.A.; Ocampo-Martinez, C.; Camacho, O. Control strategies for alkaline water electrolyzers: A survey. Int. J. Hydrogen Energy 2024, 86, 1195–1213. [Google Scholar] [CrossRef]
- Volk, E.K.; Kreider, M.E.; Kwon, S.; Alia, S.M. Recent progress in understanding the catalyst layer in anion exchange membrane electrolyzers—Durability, utilization, and integration. EES Catal. 2024, 2, 109–137. [Google Scholar] [CrossRef]
- Mao, J.; Li, Z.; Xuan, J.; Du, X.; Ni, M.; Xing, L. A review of control strategies for proton exchange membrane (PEM) fuel cells and water electrolysers: From automation to autonomy. Energy AI 2024, 17, 100406. [Google Scholar] [CrossRef]
- Thomas, J.; Thomas, M.E.; Thomas, S.; Schechter, A.; Grynszpan, F. A perspective into recent progress on the tailored cationic group-based polymeric anion exchange membranes intended for electrochemical energy applications. Mater. Today Chem. 2024, 35, 101866. [Google Scholar] [CrossRef]
- Hossen, M.M.; Hasan, M.S.; Sardar, M.R.I.; Haider, J.B.; Mottakin; Tammeveski, K.; Atanassov, P. State-of-the-art and developmental trends in platinum group metal-free cathode catalyst for anion exchange membrane fuel cell (AEMFC). Appl. Catal. B Environ. 2023, 325, 121733. [Google Scholar] [CrossRef]
- Marra, E.; Grimler, H.; Montserrat-Sisó, G.; Wreland Lindström, R.; Wickman, B.; Lindbergh, G.; Lagergren, C. Oxygen reduction reaction kinetics on a Pt thin layer electrode in AEMFC. Electrochim. Acta 2022, 435, 141376. [Google Scholar] [CrossRef]
- Prudente, I.N.R.; Santos, H.C.d.; Fonseca, J.L.; de Almeida, Y.A.; Gimenez, I.d.F.; Barreto, L.S. Graphene family (GFMs), carbon nanotubes (CNTs) and carbon black (CB) on smart materials for civil construction: Self-cleaning, self-sensing and self-heating. J. Build. Eng. 2024, 95, 110175. [Google Scholar] [CrossRef]
- Mabhulusa, W.; Sekhosana, K.E.; Fuku, X. The impact and performance of carbon-supported platinum group metal electrocatalysts for fuel cells. Int. J. Electrochem. Sci. 2024, 19, 100524. [Google Scholar] [CrossRef]
- Letchumanan, I.; Mohamad Yunus, R.; Mastar, M.S.; Karim, N.A. Advancements in electrocatalyst architecture for enhanced oxygen reduction reaction in anion exchange membrane fuel cells: A comprehensive review. Int. J. Hydrogen Energy 2024, in press. [Google Scholar] [CrossRef]
- Barsuk, D.; Zadick, A.; Chatenet, M.; Georgarakis, K.; Panagiotopoulos, N.T.; Champion, Y.; Moreira Jorge, A. Nanoporous silver for electrocatalysis application in alkaline fuel cells. Mater. Des. 2016, 111, 528–536. [Google Scholar] [CrossRef]
- Linge, J.M.; Erikson, H.; Merisalu, M.; Sammelselg, V.; Tammeveski, K. Oxygen reduction on silver catalysts electrodeposited on various nanocarbon supports. SN Appl. Sci. 2021, 3, 263. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Lu, X.; Li, Z.; Zhang, H.; Cui, X.; Zhang, Y.; Shi, F.; Deng, Y. Silver-molybdate electrocatalysts for oxygen reduction reaction in alkaline media. Electrochem. Commun. 2012, 20, 171–174. [Google Scholar] [CrossRef]
- Kwon, K.; Jin, S.-a.; Lee, K.H.; You, D.J.; Pak, C. Performance enhancement of Pd-based hydrogen oxidation catalysts using tungsten oxide. Catal. Today 2014, 232, 175–178. [Google Scholar] [CrossRef]
- Greeley, J.; Nørskov, J.K. A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys. Surf. Sci. 2005, 592, 104–111. [Google Scholar] [CrossRef]
- Behmenyar, G.; Akın, A.N. Investigation of carbon supported Pd–Cu nanoparticles as anode catalysts for direct borohydride fuel cell. J. Power Sources 2014, 249, 239–246. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Y.; Chen, L.; Xiao, W.; Liu, H.; Abruña, H.D.; Wang, D. Copper-Induced Formation of Structurally Ordered Pt–Fe–Cu Ternary Intermetallic Electrocatalysts with Tunable Phase Structure and Improved Stability. Chem. Mater. 2018, 30, 5987–5995. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, X.; Han, Y.; Shen, L.; Yin, S.; Li, G.; Jiang, Y.; Sun, S. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance. Appl. Catal. B Environ. 2020, 263, 118345. [Google Scholar] [CrossRef]
- Feng, L.; Li, K.; Chang, J.; Liu, C.; Xing, W. Nanostructured PtRu/C catalyst promoted by CoP as an efficient and robust anode catalyst in direct methanol fuel cells. Nano Energy 2015, 15, 462–469. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Li, S.; Wang, R.; Song, Y. Surface and interface engineering of FePt/C nanocatalysts for electro-catalytic methanol oxidation: Enhanced activity and durability. Nanoscale 2017, 9, 4066–4075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Luo, Z.; Chen, B.; Wei, C.; Zhao, J.; Chen, J.; Zhang, X.; Lai, Z.; Fan, Z.; Tan, C.; et al. One-Pot Synthesis of Highly Anisotropic Five-Fold-Twinned PtCu Nanoframes Used as a Bifunctional Electrocatalyst for Oxygen Reduction and Methanol Oxidation. Adv. Mater. 2016, 28, 8712–8717. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Xiao, C.; Liu, C.; Goh, T.W.; Zhou, L.; Maligal-Ganesh, R.; Pei, Y.; Li, X.; Curtiss, L.A.; Huang, W. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction. J. Am. Chem. Soc. 2017, 139, 4762–4768. [Google Scholar] [CrossRef]
- Rahsepar, M.; Kim, H. Microwave-assisted synthesis and characterization of bimetallic PtRu alloy nanoparticles supported on carbon nanotubes. J. Alloys Compd. 2015, 649, 1323–1328. [Google Scholar] [CrossRef]
- Eikeng, E.; Makhsoos, A.; Pollet, B.G. Critical and strategic raw materials for electrolysers, fuel cells, metal hydrides and hydrogen separation technologies. Int. J. Hydrogen Energy 2024, 71, 433–464. [Google Scholar] [CrossRef]
- Chaudhary, C.K.; Dasgupta, P.K. Forbidden ion transport through cation exchange membranes. Talanta 2024, 279, 126581. [Google Scholar] [CrossRef]
- Das, A.; Im, K.S.; Kabir, M.M.; Shon, H.K.; Nam, S.Y. Polybenzimidazole (PBI)-based membranes for fuel cell, water electrolysis and desalination. Desalination 2024, 579, 117500. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, H. Development of Pd-Ni Nanoparticles Attached onto Carbon Black Supports as Anode Catalysts for Anion Exchange Membrane Fuel Cells. In Proceedings of the 25th Topical Meeting of the International Society of Electrochemistry, Toledo, Spain, 12–15 May 2019. [Google Scholar]
- Van Men Truong, M.K.Y.; Yang, H. Functionalized Carbon Black Supported Silver (Ag/C) Catalysts in Cathode Electrode for Alkaline Anion Exchange Membrane Fuel Cells. In Proceedings of the International Conference on Sustainable Energy and Green Technology, Kuala Lumpur, Malaysia, 11–14 December 2018. [Google Scholar]
Pd:Ni | Conversion Factor (μC cm−2) | Integral Coulomb (μC) | Metal Loading (mg) | EASA (m2 g−1) |
---|---|---|---|---|
60:40 | 424 | 5830 | 0.1 | 13.7 |
50:50 | 424 | 8740 | 0.1 | 20.6 |
30:70 | 424 | 6285 | 0.1 | 14.8 |
20:80 | 424 | 4400 | 0.1 | 10.4 |
10:90 | 424 | 2500 | 0.1 | 5.9 |
Parameters | aQAPS-S8 | AT-1 | X37-50RT | X37-50T |
---|---|---|---|---|
Thickness (μm) | 35 | 35 | 83 | 68 |
Size (mm) | 12.88 | 13.55 | 11.28 | 12.58 |
Electrode space (mm) | 4.35 | 4.35 | 4.35 | 4.35 |
Parameters | aQAPS-S8 | AT-1 | X37-50RT | X37-50T |
---|---|---|---|---|
Thickness (μm) | 40 | 77 | 65 | 58 |
Size (mm) | 12.37 | 13.15 | 12.46 | 11.38 |
Electrode space (mm) | 4.35 | 4.35 | 4.35 | 4.35 |
Parameters | aQAPS-S8 | AT-1 | X37-50RT | X37-50T |
---|---|---|---|---|
Water uptake (%) | 36 | 46 | 31 | 68 |
Length stability (%) | 1.04 | 0.21 | 5.82 | 12.58 |
Width stability (%) | 8.23 | 6.32 | 7.33 | 2 |
Thickness stability (%) | 19.6 | 15.9 | 4.57 | 3.5 |
Parameters | aQAPS-S8 | AT-1 | X37-50RT | X37-50T |
---|---|---|---|---|
Young’s modulus (MPa) | 1154 | 2018 | 1113 | 1041 |
Elongation at break (%) | 5.3 | 14.1 | 1.3 | 1.4 |
Tensile strength (MPa) | 16 | 59 | 10 | 7 |
Parameters | aQAPS-S8 | AT-1 | X37-50RT | X37-50T |
---|---|---|---|---|
Young’s modulus (MPa) | 278 | 218 | 529 | 323 |
Elongation at break (%) | 4.1 | 3.2 | 4.8 | 12.5 |
Tensile strength (MPa) | 4 | 1 | 5 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, F.-C.; Yu, H.-H.; Yang, H. Anion-Exchange Membranes’ Characteristics and Catalysts for Alkaline Anion-Exchange Membrane Fuel Cells. Membranes 2024, 14, 246. https://doi.org/10.3390/membranes14120246
Su F-C, Yu H-H, Yang H. Anion-Exchange Membranes’ Characteristics and Catalysts for Alkaline Anion-Exchange Membrane Fuel Cells. Membranes. 2024; 14(12):246. https://doi.org/10.3390/membranes14120246
Chicago/Turabian StyleSu, Fa-Cheng, Hsuan-Hung Yu, and Hsiharng Yang. 2024. "Anion-Exchange Membranes’ Characteristics and Catalysts for Alkaline Anion-Exchange Membrane Fuel Cells" Membranes 14, no. 12: 246. https://doi.org/10.3390/membranes14120246
APA StyleSu, F. -C., Yu, H. -H., & Yang, H. (2024). Anion-Exchange Membranes’ Characteristics and Catalysts for Alkaline Anion-Exchange Membrane Fuel Cells. Membranes, 14(12), 246. https://doi.org/10.3390/membranes14120246