Ultra-Stable Inorganic Mesoporous Membranes for Water Purification
Abstract
:1. Introduction
- fℓ = 4.4 × 10−12 m and fV = 1600 L/(m2Bar·h) for a nanofiltration membrane with a porosity of 35%, straight, 2 nm pores and a thickness of 10 nm.
- fℓ = 2.2 × 10−11 m and fV = 7900 L/(m2Bar·h) for an ultrafiltration membrane with a porosity of 35%, straight, 10 nm pores and a thickness of 50 nm.
2. Materials and Methods
2.1. Support Synthesis
2.2. Nanoparticle Dispersion Syntheses
2.2.1. Titania Dispersion Synthesis
2.2.2. Sonochemical Precipitation
2.3. Dynamic Light Scattering
2.4. Stability Analysis
Spectroscopic Ellipsometry
- The roughness of the exposed membrane surface was typically within 1 nm.
- A membrane thickness in the range of 10 nm and 1 μm, with precision and variation of the membrane surface of ±1 nm.
- A refractive index of 1.5 to 2 ± 0.05 that can be used for an accurate estimate of porosity through the Bruggeman method [36].
3. Results and Discussion
- Mesoporous γ-alumina made through the peptization of hydrolyzed aluminum-tri-sec-butoxide (ATSB) typically dissolves in aqueous solutions of any pH within 24 h [30,31,32]. One way to suppress this is to add a substantial number of Al3+ ions to the solution [31], but this approach cannot be used for most applications.
- Mesoporous amorphous SiO2 made from Ludox AS dispersions appeared to be fully stable, within the limits of observation, in ultrapure water at a temperature of 80 °C.
- Crystalline CeO2 membranes made through sonochemical precipitation were stable in ultrapure water at 60 °C, but at 80 °C, their thickness decreased at a rate of 11.5 nm/week while they densified at a rate of 4.6%/week. The membranes dissolved at a rate of 3.4 nm/week and densified at a rate of 1.1%/week in 0.01M aqueous HNO3 at 60 °C.
- Cubic zirconia (YSZ) made through sonochemical precipitation was quite stable, with a minor dissolution rate of 1.6 nm/week in ultrapure water at 80 °C. Meanwhile, its porosity increased at a rate of 0.4%/week during the test period, indicating that a slight dissolution at 80 °C results in an increased membrane porosity.
- Magnetite Fe3O4 was stable in an aqueous solution of TMAOH with a pH of >11. It quickly dissolved in aqueous solutions of nitric acid with pH values of <4. This is expected since iron oxides are known to dissolve quickly at low pH values.
- Anatase TiO2 made via alkoxide hydrolysis was stable in ultrapure water at 80 °C for 2 weeks. Then, the thickness decreased by 10 nm during week 3 but did not change from week 4 to week 6. The refractive index hardly changed (±0.01) over 6 weeks. The thickness decrease is significant and is tentatively ascribed to a transition to a more stable TiO2 phase.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
fℓ | Mechanical permeance: fℓ = jV × ηℓ/Δp |
fV | Volumetric permeance: fV = jV/Δp |
jV | Volumetric flux |
ηℓ | Liquid viscosity |
Δp | Mechanical pressure difference |
CNT | Carbon nanotube |
PZT | Lead zirconate titanate (PbZr0.52Ti0.48O3) |
AKP30 | Sumitomo Chemical AKP30 α-Al2O3 powder |
GO | Graphene oxide |
DI | De-ionized |
YSZ | Yttria-stabilized zirconia |
DLS | Dynamic Laser Scattering |
TMAOH | Tetramethylammonium hydroxide |
PVA | Polyvinylalcohol |
RTP | Rapid Thermal Processing |
SE | Spectroscopic Ellipsometry |
rs | Intensity of light with polarization perpendicular to the incidence plane |
rp | Intensity of light with polarization parallel to the incidence plane |
tan(Ψ) | Amplitude ratio between reflected light with p- and s-polarizations |
Δ | Phase difference between reflected light with p- and s-polarizations |
n | Refractive index |
λ | Wavelength |
X | Membrane (layer) thickness |
References
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, H.C.; Liang, H.Q.; Wan, L.S.; Xu, Z.K. Novel nanofiltration membrane with ultrathin zirconia film as selective layer. J. Memb. Sci. 2016, 500, 265–271. [Google Scholar] [CrossRef]
- Song, Z.; Fathizadeh, M.; Huang, Y.; Chu, K.H.; Yoon, Y.; Wang, L.; Xu, W.L.; Yu, M. TiO2 nanofiltration membranes prepared by molecular layer deposition for water purification. J. Memb. Sci. 2016, 510, 72–78. [Google Scholar] [CrossRef]
- Tajer-Kajinebaf, V.; Sarpoolaky, H.; Mohammadi, T. Sol-gel synthesis of nanostructured titania-silica mesoporous membranes with photo-degradation and physical separation capacities for water purification. Ceram. Int. 2014, 40, 1747–1757. [Google Scholar] [CrossRef]
- Kuzniatsova, T.; Mottern, M.L.; Shqau, K.; Yu, D.; Verweij, H. Micro-structural optimization of supported γ-alumina membranes. J. Memb. Sci. 2008, 316, 80–88. [Google Scholar] [CrossRef]
- Shqau, K.; Mottern, M.L.; Yu, D.; Verweij, H. Preparation and Properties of Porous alpha-Al2O3 Membrane Supports. J. Am. Ceram. Soc. 2006, 89, 1790–1794. [Google Scholar] [CrossRef]
- Huang, R.; Chen, G.; Sun, M.; Hu, Y.; Gao, C. Studies on nanofiltration membrane formed by diisocyanate cross-linking of quaternized chitosan on poly(acrylonitrile) (PAN) support. J. Memb. Sci. 2006, 286, 237–244. [Google Scholar] [CrossRef]
- Van Goethem, C.; Mertens, M.; Vankelecom, I.F.J. Crosslinked PVDF membranes for aqueous and extreme pH nanofiltration. J. Memb. Sci. 2019, 572, 489–495. [Google Scholar] [CrossRef]
- Ouyang, Z.; Huang, Z.; Tang, X.; Xiong, C.; Tang, M.; Lu, Y. A dually charged nanofiltration membrane by pH-responsive polydopamine for pharmaceuticals and personal care products removal. Sep. Purif. Technol. 2019, 211, 90–97. [Google Scholar] [CrossRef]
- Zodrow, K.; Brunet, L.; Mahendra, S.; Li, D.; Zhang, A.; Li, Q.; Alvarez, P.J.J. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 2009, 43, 715–723. [Google Scholar] [CrossRef]
- Lin, J.; Ye, W.; Baltaru, M.C.; Tang, Y.P.; Bernstein, N.J.; Gao, P.; Balta, S.; Vlad, M.; Volodin, A.; Sotto, A.; et al. Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment. J. Memb. Sci. 2016, 514, 217–228. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, H.; Xia, J.; Zhang, F.; Li, F.; Xia, Y.; Li, Y. Novel GO-blended PVDF ultrafiltration membranes. Desalination 2012, 299, 50–54. [Google Scholar] [CrossRef]
- Wu, H.; Tang, B.; Wu, P. Novel ultrafiltration membranes prepared from a multi-walled carbon nanotubes/polymer composite. J. Memb. Sci. 2010, 362, 374–383. [Google Scholar] [CrossRef]
- Hilal, N.; Khayet, M.; Wright, C.J. Membrane Modification: Technology and Applications; Taylor & Francis: Abingdon, UK, 2012; ISBN 9781439866351. [Google Scholar]
- Leenaars, A.F.M.; Keizer, K.; Burggraaf, A.J. The preparation and characterization of alumina membranes with ultra-fine pores—Part 1 Microstructural investigations on non-supported membranes. J. Mater. Sci. 1984, 19, 1077–1088. [Google Scholar] [CrossRef]
- Leenaars, A.F.M.; Burggraaf, A.J. The preparation and characterization of alumina membranes with ultrafine pores. 2. The formation of supported membranes. J. Colloid Interface Sci. 1985, 105, 27–40. [Google Scholar] [CrossRef]
- Larbot, A.; Alami-Younssi, S.; Persin, M.; Sarrazin, J.; Cot, L. Preparation of a γ-alumina nanofiltration membrane. J. Memb. Sci. 1994, 97, 167–173. [Google Scholar] [CrossRef]
- Schillo, M.C. Mesoporous Inorganic Membranes for Water Purification. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2011. [Google Scholar]
- Mohammad, A.W.; Teow, Y.H.; Ang, W.L.; Chung, Y.T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Mancinelli, D.; Hallé, C. Nano-Filtration and Ultra-Filtration Ceramic Membranes for Food Processing: A Mini Review. J. Membr. Sci. Technol. 2015, 5, 100–140. [Google Scholar] [CrossRef]
- Samaei, S.M.; Gato-Trinidad, S.; Altaee, A. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters—A review. Sep. Purif. Technol. 2018, 200, 198–220. [Google Scholar] [CrossRef]
- Van Der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 2003, 22, 46–56. [Google Scholar] [CrossRef]
- Zhu, L.; Rakesh, K.P.; Xu, M.; Dong, Y. Ceramic-Based Composite Membrane with a Porous Network Surface Featuring a Highly Stable Flux for Drinking Water Purification. Membranes 2019, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.L.; Guo, J.L.; Japip, S.; Jia, T.Z.; Shao, D.D.; Zhang, S.; Li, W.J.; Wang, J.; Cao, X.L.; Sun, S.P. One-step enhancement of solvent transport, stability and photocatalytic properties of graphene oxide/polyimide membranes with multifunctional cross-linkers. J. Mater. Chem. A 2019, 7, 3170–3178. [Google Scholar] [CrossRef]
- Ran, J.; Chu, C.; Pan, T.; Ding, L.; Cui, P.; Fu, C.F.; Zhang, C.L.; Xu, T. Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes. J. Mater. Chem. A 2019, 7, 8085–8091. [Google Scholar] [CrossRef]
- Mestre, S.; Gozalbo, A.; Lorente-Ayza, M.M.; Sánchez, E. Low-cost ceramic membranes: A research opportunity for industrial application. J. Eur. Ceram. Soc. 2019, 39, 3392–3407. [Google Scholar] [CrossRef]
- Veréb, G.; Kálmán, V.; Gyulavári, T.; Kertész, S.; Beszédes, S.; Kovács, G.; Hernádi, K.; Pap, Z.; Hodúr, C.; László, Z. Advantages of TiO2/carbon nanotube modified photocatalytic membranes in the purification of oil-in-water emulsions. Water Sci. Technol. Water Supply 2019, 19, 1167–1174. [Google Scholar] [CrossRef]
- Alresheedi, M.T.; Barbeau, B.; Basu, O.D. Comparisons of NOM fouling and cleaning of ceramic and polymeric membranes during water treatment. Sep. Purif. Technol. 2019, 209, 452–460. [Google Scholar] [CrossRef]
- Krinks, J.K.; Qiu, M.; Mergos, I.A.; Weavers, L.K.; Mouser, P.J.; Verweij, H. Piezoceramic membrane with built-in ultrasonic defouling. J. Memb. Sci. 2015, 494, 130–135. [Google Scholar] [CrossRef]
- De Lint, S. Transport of Electrolytes through Ceramic Nanofiltration Membranes; University of Twente: Enschede, The Netherlands, 2003. [Google Scholar]
- Yu, D. Inorganic Mesoporous Membranes for Water Purification Applications: Synthesis, Testing and Modeling; The Ohio State University: Columbus, OH, USA, 2006. [Google Scholar]
- De Lint, W.B.S.; Benes, N.E. Separation properties of γ-alumina nanofiltration membranes compared to charge regulation model predictions. J. Memb. Sci. 2005, 248, 149–159. [Google Scholar] [CrossRef]
- Verweij, H. Inorganic membranes. Curr. Opin. Chem. Eng. 2012, 1, 156–162. [Google Scholar] [CrossRef]
- Schillo, M.C.; Park, I.S.; Chiu, W.V.; Verweij, H. Rapid Thermal Processing of Inorganic Membranes. J. Membr. Sci. 2010, 362, 127–133. [Google Scholar] [CrossRef]
- Qiu, M.; Bauer, R.A.; Snider, M.T.; Yang, Z.; Zhou, Y.; Verweij, H. Preparation and nanofiltration properties of thin supported meso-porous ceria membranes. J. Memb. Sci. 2020, 598, 117781. [Google Scholar] [CrossRef]
- Benes, N.E.; Spijksma, G.; Verweij, H.; Wormeester, H.; Poelsema, B. CO2 sorption of a thin silica layer determined by spectroscopic ellipsometry. AIChE J. 2001, 47, 1212–1218. [Google Scholar] [CrossRef]
- Zhang, Z.; Kang, G.; Yu, H.; Jin, Y.; Cao, Y. Fabrication of a highly permeable composite nanofiltration membrane via interfacial polymerization by adding a novel acyl chloride monomer with an anhydride group. J. Memb. Sci. 2019, 570–571, 403–409. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, S.; Wu, X.; Qi, H. Fabrication and characterization of TiO2/ZrO2 ceramic membranes for nanofiltration. Microporous Mesoporous Mater. 2018, 260, 125–131. [Google Scholar] [CrossRef]
- Zeng, P.; Ran, R.; Chen, Z.; Gu, H.; Shao, Z.; da Costa, J.C.D.; Liu, S. Significant effects of sintering temperature on the performance of La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen selective membranes. J. Memb. Sci. 2007, 302, 171–179. [Google Scholar] [CrossRef]
- Mottern, M.L.; Shqau, K.; Zalar, F.; Verweij, H. Permeation porometry: Effect of probe diffusion in the condensate. J. Memb. Sci. 2008, 313, 2–8. [Google Scholar] [CrossRef]
- Guerra, L.F.; Muir, T.W.; Yang, H. Single-Particle Dynamic Light Scattering: Shapes of Individual Nanoparticles. Nano Lett. 2019, 19, 5530–5536. [Google Scholar] [CrossRef]
- ICP-OES and ICP-MS Detection Limit Guidance | EAG Laboratories. Available online: https://www.eag.com/resources/appnotes/icp-oes-and-icp-ms-detection-limit-guidance/ (accessed on 10 November 2019).
- Fujiwara, H.; Collins, R.W. (Eds.) Spectroscopic Ellipsometry for Photovoltaics; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Hook, F.F.; Vörös, J.; Rodahl, M.; Kurrat, R.; Böni, P.; Ramsden, J.J.; Textor, M.; Spencer, N.D.; Tengvall, P.; Gold, J.; et al. A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids Surf. B Biointerfaces 2002, 24, 155–170. [Google Scholar] [CrossRef]
- McDonough, M.; Pillsbury, T.; Richardella, A.; Samarth, N. In situ ellipsometry of epitaxially grown bismuth antimony telluride on sapphire. In Proceedings of the APS March Meeting 2020, Denver, CO, USA, 2–6 March 2020. [Google Scholar]
- Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- van Hassel, B.A.; Burggraaf, A.J. Microstructure and thermal stability of Fe, Ti, and Ag implanted yttria-stabilized zirconia. Appl. Phys. A Solids Surf. 1991, 53, 155–163. [Google Scholar] [CrossRef]
- Nazarpour, S.; López-Gándara, C.; Ramos, F.M.; Cirera, A. Phase transformation studies on YSZ doped with alumina. Part 1: Metastable phases. J. Alloys Compd. 2010, 505, 534–541. [Google Scholar] [CrossRef]
- De Vos, R.M.; Verweij, H. Improved performance of silica membranes for gas separation. J. Memb. Sci. 1998, 143, 37–51. [Google Scholar] [CrossRef]
- Saito, T.; Seshimo, M.; Akamatsu, K.; Miyajima, K.; Nakao, S. ichi Effect of physically adsorbed water molecules on the H2-selective performance of a silica membrane prepared with dimethoxydiphenylsilane and its regeneration. J. Memb. Sci. 2012, 392–393, 95–100. [Google Scholar] [CrossRef]
- Brinkepb, C.J.; Wardb, T.L.; Sehgalb, R.; Ramanb, N.K.; Hietalab, S.L.; Smithb, D.M.; Huab, D.-W.; Headley, T.J. “Ultramicroporous” silica-based supported inorganic membranes. J. Membr. Sci. 1993, 77, 165–179. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Tam, S.Y.; Lu, Y.; Brinker, C.J. Dual-layer asymmetric microporous silica membranes. J. Memb. Sci. 2000, 169, 255–268. [Google Scholar] [CrossRef]
In 80 °C DI | In 60 °C DI | In 60 °C HNO3 | ||||
---|---|---|---|---|---|---|
Week | X (nm) | n | X (nm) | n | X (nm) | n |
0 | 191.2 ± 1.8 | 1.893 ± 0.001 | 191.7 ± 2.6 | 2.000 ± 0.001 | 189.0 ± 1.3 | 1.990 ± 0.001 |
1 | 190.2 ± 2.3 | 1.853 ± 0.001 | 192.1 ± 3.1 | 2.000 ± 0.001 | 190.7 ± 3.7 | 2.000 ± 0.001 |
2 | 190.6 ± 1.5 | 1.852 ± 0.001 | 188.9 ± 1.7 | 2.017 ± 0.001 | 191.0 ± 1.8 | 1.953 ± 0.001 |
3 | 187.8 ± 2.1 | 1.897 ± 0.001 | 191.3 ± 2.3 | 2.001 ± 0.001 | 188.2 ± 2.0 | 1.977 ± 0.001 |
4 | 149.6 ± 2.7 | 2.040 ± 0.002 | 193.7 ± 3.7 | 2.003 ± 0.001 | 179.8 ± 3.2 | 1.995 ± 0.001 |
5 | 134.1 ± 3.0 | 2.021 ± 0.001 | 192.3 ± 3.0 | 1.999 ± 0.001 | 175.3 ± 4.7 | 2.000 ± 0.001 |
6 | 135.3 ± 3.3 | 2.020 ± 0.001 | 194.0 ± 5.8 | 2.000 ± 0.001 | 170.5 ± 4.3 | 2.013 ± 0.002 |
TiO2 | YSZ | SiO2 | ||||
---|---|---|---|---|---|---|
Week | X (nm) | n | X (nm) | n | X (nm) | n |
0 | 177.0 ± 2.1 | 1.363 ± 0.001 | 256.3 ± 3.3 | 1.866 ± 0.001 | 177.8 ± 2.3 | 1.179 ± 0.001 |
1 | 176.1 ± 2.0 | 1.362 ± 0.001 | 259.9 ± 4.8 | 1.853 ± 0.001 | 177.7 ± 3.9 | 1.181 ± 0.001 |
2 | 176.0 ± 2.1 | 1.362 ± 0.001 | 256.0 ± 5.0 | 1.847 ± 0.001 | 177.8 ± 2.5 | 1.181 ± 0.001 |
3 | 166.3 ± 3.5 | 1.370 ± 0.001 | 255.1 ± 3.8 | 1.849 ± 0.001 | 177.8 ± 2.1 | 1.181 ± 0.001 |
4 | 168.7 ± 4.7 | 1.370 ± 0.002 | 249.7 ± 8.1 | 1.831 ± 0.001 | 177.6 ± 2.5 | 1.193 ± 0.001 |
5 | 166.2 ± 2.0 | 1.361 ± 0.001 | 249.9 ± 8.7 | 1.830 ± 0.002 | 177.8 ± 3.1 | 1.181 ± 0.001 |
6 | 166.2 ± 2.5 | 1.359 ± 0.001 | 249.7 ± 3.0 | 1.830 ± 0.001 | 177.8 ± 3.7 | 1.181 ± 0.001 |
Solution and pH | Before X (nm) | After X (nm) | Before n | After n |
---|---|---|---|---|
TMAOH @ 11 | 258.3 ± 3.9 | 253.7 ± 5.3 | 4.623 ± 0.001 | 5.147 ± 0.001 |
HNO3 @ 5 | 253.7 ± 5.3 | 265.1 ± 4.6 | 5.147 ± 0.001 | 3.785 ± 0.001 |
HNO3 @ 4 | 265.1 ± 4.6 | 216.6 ± 7.5 | 3.785 ± 0.001 | 6.834 ± 0.002 |
HNO3 @ 3 | 216.6 ± 7.5 | 197.3 ± 8.3 | 6.834 ± 0.002 | 6.346 ± 0.002 |
Membrane | Condition | Dissolution Rate (nm/Week) | Densification Rate (%/Week) |
---|---|---|---|
CeO2 | In 80 °C DI | 11.5 ± 1.3 | 4.6 ± 0.05 |
In 60 °C DI | 0.0 ± 0.4 | 0.0 ± 0.02 | |
In 60 °C at pH = 2 | 3.4 ± 0.7 | 1.1 ± 0.03 | |
TiO2 | In 80 °C DI | 2.1 ± 0.5 | 0.0 ± 0.02 |
YSZ | In 80 °C DI | 1.6 ± 0.4 | −0.4 ± 0.02 |
SiO2 | In 80 °C DI | 0.0 ± 0.0 | 0.1 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauer, R.A.; Qiu, M.; Schillo-Armstrong, M.C.; Snider, M.T.; Yang, Z.; Zhou, Y.; Verweij, H. Ultra-Stable Inorganic Mesoporous Membranes for Water Purification. Membranes 2024, 14, 34. https://doi.org/10.3390/membranes14020034
Bauer RA, Qiu M, Schillo-Armstrong MC, Snider MT, Yang Z, Zhou Y, Verweij H. Ultra-Stable Inorganic Mesoporous Membranes for Water Purification. Membranes. 2024; 14(2):34. https://doi.org/10.3390/membranes14020034
Chicago/Turabian StyleBauer, Ralph A., Minghui Qiu, Melissa C. Schillo-Armstrong, Matthew T. Snider, Zi Yang, Yi Zhou, and Hendrik Verweij. 2024. "Ultra-Stable Inorganic Mesoporous Membranes for Water Purification" Membranes 14, no. 2: 34. https://doi.org/10.3390/membranes14020034
APA StyleBauer, R. A., Qiu, M., Schillo-Armstrong, M. C., Snider, M. T., Yang, Z., Zhou, Y., & Verweij, H. (2024). Ultra-Stable Inorganic Mesoporous Membranes for Water Purification. Membranes, 14(2), 34. https://doi.org/10.3390/membranes14020034