Development of Structure–Property Relationships for Ammonium Transport through Charged Organogels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Formation
2.3. Water Uptake, Density, and Water Volume Fraction
2.4. Ammonium Permeabilities
2.5. Ammonium Solubility and Diffusivity
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Apodaca, L.E. Nitrogen Statistics and Information; USGS National Minerals Information Center: Reston, VA, USA, 2023. [Google Scholar]
- Zamfirescu, C.; Dincer, I. Using Ammonia as a Sustainable Fuel. J. Power Sources 2008, 185, 459–465. [Google Scholar] [CrossRef]
- Executive Summary—Ammonia Technology Roadmap—Analysis. Available online: https://www.iea.org/reports/ammonia-technology-roadmap/executive-summary (accessed on 2 August 2023).
- Ogura, Y.; Tsujimaru, K.; Sato, K.; Miyahara, S.; Toriyama, T.; Yamamoto, T.; Matsumura, S.; Nagaoka, K. Ru/La0.5Pr0.5O1.75 Catalyst for Low-Temperature Ammonia Synthesis. ACS Sustain. Chem. Eng. 2018, 6, 17258–17266. [Google Scholar] [CrossRef]
- Yang, X.-L.; Zhang, W.-Q.; Xia, C.-G.; Xiong, X.-M.; Mu, X.-Y.; Hu, B. Low Temperature Ruthenium Catalyst for Ammonia Synthesis Supported on BaCeO3 Nanocrystals. Catal. Commun. 2010, 11, 867–870. [Google Scholar] [CrossRef]
- Michalsky, R.; Avram, A.M.; Peterson, B.A.; Pfromm, P.H.; Peterson, A.A. Chemical Looping of Metal Nitride Catalysts: Low-Pressure Ammonia Synthesis for Energy Storage. Chem. Sci. 2015, 6, 3965–3974. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Wu, C.; Jiao, H.; Xu, R.; Wang, Y.; Xie, J.; Guo, Q.; Tang, J. Rational Design of High-Concentration Ti3+ in Porous Carbon-Doped TiO2 Nanosheets for Efficient Photocatalytic Ammonia Synthesis. Adv. Mater. 2021, 33, 2008180. [Google Scholar] [CrossRef] [PubMed]
- Yue, P.L.; Khan, F.; Rizzuti, L. Photocatalytic Ammonia Synthesis in a Fluidised Bed Reactor. Chem. Eng. Sci. 1983, 38, 1893–1900. [Google Scholar] [CrossRef]
- Xue, X.; Chen, R.; Chen, H.; Hu, Y.; Ding, Q.; Liu, Z.; Ma, L.; Zhu, G.; Zhang, W.; Yu, Q.; et al. Oxygen Vacancy Engineering Promoted Photocatalytic Ammonia Synthesis on Ultrathin Two-Dimensional Bismuth Oxybromide Nanosheets. Nano Lett. 2018, 18, 7372–7377. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Xie, H.; Chang, L.; Zhang, X.; Zhu, X.; Tong, X.; Wang, T.; Luo, Y.; Wei, P.; Wang, Z.; et al. Recent Progress in the Electrochemical Ammonia Synthesis under Ambient Conditions. EnergyChem 2019, 1, 100011. [Google Scholar] [CrossRef]
- Hollevoet, L.; De Ras, M.; Roeffaers, M.; Hofkens, J.; Martens, J.A. Energy-Efficient Ammonia Production from Air and Water Using Electrocatalysts with Limited Faradaic Efficiency. ACS Energy Lett. 2020, 5, 1124–1127. [Google Scholar] [CrossRef]
- Zhou, F.; Azofra, L.M.; Ali, M.; Kar, M.; Simonov, A.N.; McDonnell-Worth, C.; Sun, C.; Zhang, X.; MacFarlane, D.R. Electro-Synthesis of Ammonia from Nitrogen at Ambient Temperature and Pressure in Ionic Liquids. Energy Environ. Sci. 2017, 10, 2516–2520. [Google Scholar] [CrossRef]
- Montoya, J.H.; Tsai, C.; Vojvodic, A.; Nørskov, J.K. The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations. ChemSusChem 2015, 8, 2180–2186. [Google Scholar] [CrossRef] [PubMed]
- Thapa, L.; Retna Raj, C. Nitrogen Electrocatalysis: Electrolyte Engineering Strategies to Boost Faradaic Efficiency. ChemSusChem 2023, 16, e202300465. [Google Scholar] [CrossRef]
- Singh, A.R.; Rohr, B.A.; Schwalbe, J.A.; Cargnello, M.; Chan, K.; Jaramillo, T.F.; Chorkendorff, I.; Nørskov, J.K. Electrochemical Ammonia Synthesis—The Selectivity Challenge. ACS Catal. 2017, 7, 706–709. [Google Scholar] [CrossRef]
- Suryanto, B.H.R.; Matuszek, K.; Choi, J.; Hodgetts, R.Y.; Du, H.-L.; Bakker, J.M.; Kang, C.S.M.; Cherepanov, P.V.; Simonov, A.N.; MacFarlane, D.R. Nitrogen Reduction to Ammonia at High Efficiency and Rates Based on a Phosphonium Proton Shuttle. Science 2021, 372, 1187–1191. [Google Scholar] [CrossRef]
- Lee, H.K.; Koh, C.S.L.; Lee, Y.H.; Liu, C.; Phang, I.Y.; Han, X.; Tsung, C.-K.; Ling, X.Y. Favoring the Unfavored: Selective Electrochemical Nitrogen Fixation Using a Reticular Chemistry Approach. Sci. Adv. 2018, 4, eaar3208. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wu, Z.-Y.; Zhao, L.; Ming, M.; Zhang, Y.; Yi, Y.; Hu, J.-S. Identification of FeN4 as an Efficient Active Site for Electrochemical N2 Reduction. ACS Catal. 2019, 9, 7311–7317. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, C.; Tan, X.; Han, X.; Huang, H.; Huang, H.; Qiu, J. Is It Appropriate to Use the Nafion Membrane in Electrocatalytic N2 Reduction? Small Methods 2019, 3, 1900474. [Google Scholar] [CrossRef]
- Andersen, S.Z.; Čolić, V.; Yang, S.; Schwalbe, J.A.; Nielander, A.C.; McEnaney, J.M.; Enemark-Rasmussen, K.; Baker, J.G.; Singh, A.R.; Rohr, B.A.; et al. A Rigorous Electrochemical Ammonia Synthesis Protocol with Quantitative Isotope Measurements. Nature 2019, 570, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, K.; Ye, Y.; Zhang, S.; Liu, Y.; Wang, G.; Liang, C.; Zhang, H.; Zhao, H. Efficient Electrocatalytic Nitrogen Reduction to Ammonia with Aqueous Silver Nanodots. Commun. Chem. 2021, 4, 1–11. [Google Scholar] [CrossRef]
- Mauritz, K.A.; Moore, R.B. State of Understanding of Nafion. Chem. Rev. 2004, 104, 4535–4586. [Google Scholar] [CrossRef]
- Kusoglu, A.; Weber, A.Z. New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem. Rev. 2017, 117, 987–1104. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Lin, Y.; Bannon, S.M.; Geise, G.M.; Beckingham, B.S. Improved Structural Stability of Charged Hydrogels under Organic CO2 Reduction Products: Effect of Acrylate and Methacrylate Backbone Linkages. J. Phys. Chem. C 2023, 127, 10826–10832. [Google Scholar] [CrossRef]
- Kim, J.M.; Lin, Y.-H.; Aravindhan, P.P.; Beckingham, B.S. Impact of Hydrophobic Pendant Phenyl Groups on Transport and Co-Transport of Methanol and Acetate in PEGDA-SPMAK Cation Exchange Membranes. Chem. Eng. Res. Des. 2022, 185, 418–429. [Google Scholar] [CrossRef]
- Lin, Y.; Kim, J.M.; Beckingham, B.S. Salt Transport in Crosslinked Hydrogel Membranes Containing Zwitterionic Sulfobetaine Methacrylate and Hydrophobic Phenyl Acrylate. Polymers 2023, 15, 1387. [Google Scholar] [CrossRef]
- Kim, J.M.; Wang, Y.; Lin, Y.; Yoon, J.; Huang, T.; Kim, D.-J.; Auad, M.L.; Beckingham, B.S. Fabrication and Characterization of Cross-Linked Phenyl-Acrylate-Based Ion Exchange Membranes and Performance in a Direct Urea Fuel Cell. Ind. Eng. Chem. Res. 2021, 60, 14856–14867. [Google Scholar] [CrossRef]
Name | PA (mol%) | PMA (mol%) | AMPS (mol%) | MBAA (mol MBAA/mol Total Monomers) |
---|---|---|---|---|
PA-5 | 70 | 0 | 30 | 5 |
PA-10 | 70 | 0 | 30 | 10 |
PA-20 | 70 | 0 | 30 | 20 |
PA-30 | 70 | 0 | 30 | 30 |
PMA-5 | 0 | 70 | 30 | 5 |
PMA-10 | 0 | 70 | 30 | 10 |
PMA-20 | 0 | 70 | 30 | 20 |
PMA-30 | 0 | 70 | 30 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachmann, A.L.; Hunter, B.; Beckingham, B.S. Development of Structure–Property Relationships for Ammonium Transport through Charged Organogels. Membranes 2024, 14, 71. https://doi.org/10.3390/membranes14030071
Bachmann AL, Hunter B, Beckingham BS. Development of Structure–Property Relationships for Ammonium Transport through Charged Organogels. Membranes. 2024; 14(3):71. https://doi.org/10.3390/membranes14030071
Chicago/Turabian StyleBachmann, Adam L., Brock Hunter, and Bryan S. Beckingham. 2024. "Development of Structure–Property Relationships for Ammonium Transport through Charged Organogels" Membranes 14, no. 3: 71. https://doi.org/10.3390/membranes14030071
APA StyleBachmann, A. L., Hunter, B., & Beckingham, B. S. (2024). Development of Structure–Property Relationships for Ammonium Transport through Charged Organogels. Membranes, 14(3), 71. https://doi.org/10.3390/membranes14030071