Template-Free Synthesis of High Dehydration Performance CHA Zeolite Membranes with Increased Si/Al Ratio Using SSZ-13 Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis Procedure for CHA Zeolite Membranes
2.2. PV and VP Experiments
2.3. Characterization
3. Results and Discussion
3.1. Membrane Preparation
3.2. PV and VP Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hsieh, Y.-J.; Zou, C.; Chen, J.-J.; Lin, L.-C.; Kang, D.-Y. Pillared-Bilayer Metal-Organic Framework Membranes for Dehydration of Isopropanol. Microporous Mesoporous Mater. 2021, 326, 111344. [Google Scholar] [CrossRef]
- Čičmanec, P.; Kotera, J.; Vaculík, J.; Bulánek, R. Influence of Substrate Concentration on Kinetic Parameters of Ethanol Dehydration in MFI and CHA Zeolites and Relation of These Kinetic Parameters to Acid–Base Properties. Catalysts 2022, 12, 51. [Google Scholar] [CrossRef]
- Confalonieri, G.; Quartieri, S.; Vezzalini, G.; Tabacchi, G.; Fois, E.; Daou, T.J.; Arletti, R. Differential Penetration of Ethanol and Water in Si-Chabazite: High Pressure Dehydration of Azeotrope Solution. Microporous Mesoporous Mater. 2019, 284, 161–169. [Google Scholar] [CrossRef]
- Li, Y.; Thomas, E.R.; Molina, M.H.; Mann, S.; Walker, W.S.; Lind, M.L.; Perreault, F. Desalination by Membrane Pervaporation: A Review. Desalination 2023, 547, 116223. [Google Scholar] [CrossRef]
- Galiano, F.; Castro-Muñoz, R.; Figoli, A. Pervaporation, Vapour Permeation and Membrane Distillation: From Membrane Fabrication to Application. Membranes 2021, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Di Iorio, J.R.; Hoffman, A.J.; Nimlos, C.T.; Nystrom, S.; Hibbitts, D.; Gounder, R. Mechanistic Origins of the High-Pressure Inhibition of Methanol Dehydration Rates in Small-Pore Acidic Zeolites. J. Catal. 2019, 380, 161–177. [Google Scholar] [CrossRef]
- Gronwald, O.; Frost, I.; Ulbricht, M.; Kouchaki Shalmani, A.; Panglisch, S.; Grünig, L.; Handge, U.A.; Abetz, V.; Heijnen, M.; Weber, M. Hydrophilic Poly(Phenylene Sulfone) Membranes for Ultrafiltration. Sep. Purif. Technol. 2020, 250, 117107. [Google Scholar] [CrossRef]
- Chaudhari, S.; Kwon, Y.; Moon, M.; Shon, M.; Nam, S.; Park, Y. Poly(Vinyl Alcohol) and Poly(Vinyl Amine) Blend Membranes for Isopropanol Dehydration. J. Appl. Polym. Sci. 2017, 134, 45572. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, Y.; Xu, N.; Liu, Q.; Wang, B.; Fan, L.; Zhang, L.; Zhou, R. FAU Zeolite Membranes Synthesized Using Nanoseeds—Separation Mechanism and Optimization for the Pervaporation Dehydration of Various Organic Solvents. J. Membr. Sci. 2024, 696, 122522. [Google Scholar] [CrossRef]
- Si, D.; Zhu, M.; Sun, X.; Xue, M.; Li, Y.; Wu, T.; Gui, T.; Kumakiri, I.; Chen, X.; Kita, H. Formation Process and Pervaporation of High Aluminum ZSM-5 Zeolite Membrane with Fluoride-Containing and Organic Template-Free Gel. Sep. Purif. Technol. 2021, 257, 117963. [Google Scholar] [CrossRef]
- Yu, L.; Al-Jariry, N.; Serikbayeva, T.; Hedlund, J. Ultra-Thin Zeolite CHA and FAU Membranes for Desalination by Pervaporation. Sep. Purif. Technol. 2022, 294, 121177. [Google Scholar] [CrossRef]
- Hu, N.; Li, Y.; Zhong, S.; Wang, B.; Zhang, F.; Wu, T.; Zhou, R.; Chen, X. Fluoride-Mediated Synthesis of High-Flux Chabazite Membranes for Pervaporation of Ethanol Using Reusable Macroporous Stainless Steel Tubes. J. Membr. Sci. 2016, 510, 91–100. [Google Scholar] [CrossRef]
- Yan, Z.; Wu, X.; Zhu, B.; Li, Y.; Gui, T.; Li, Y.; Zhu, M.; Chen, X.; Kita, H. Improvement of Esterification Conversion by Rapid Pervaporation Dehydration Using a High-Flux and Acid-Resistant MOR Zeolite Membrane. Sep. Purif. Technol. 2022, 286, 120415. [Google Scholar] [CrossRef]
- Araki, S.; Okabe, A.; Ogawa, A.; Gondo, D.; Imasaka, S.; Hasegawa, Y.; Sato, K.; Li, K.; Yamamoto, H. Preparation and Pervaporation Performance of Vinyl-Functionalized Silica Membranes. J. Membr. Sci. 2018, 548, 66–72. [Google Scholar] [CrossRef]
- Ten Hove, M.; Luiten-Olieman, M.W.J.; Huiskes, C.; Nijmeijer, A.; Winnubst, L. Hydrothermal Stability of Silica, Hybrid Silica and Zr-Doped Hybrid Silica Membranes. Sep. Purif. Technol. 2017, 189, 48–53. [Google Scholar] [CrossRef]
- Morigami, Y.; Kondo, M.; Abe, J.; Kita, H.; Okamoto, K. The First Large-Scale Pervaporation Plant Using Tubular-Type Module with Zeolite NaA Membrane. Sep. Purif. Technol. 2001, 25, 251–260. [Google Scholar] [CrossRef]
- Kondo, M.; Komori, M.; Kita, H.; Okamoto, K. Tubular-Type Pervaporation Module with Zeolite NaA Membrane. J. Membr. Sci. 1997, 133, 133–141. [Google Scholar] [CrossRef]
- Jiang, J.; Peng, L.; Wang, X.; Qiu, H.; Ji, M.; Gu, X. Effect of Si/Al Ratio in the Framework on the Pervaporation Properties of Hollow Fiber CHA Zeolite Membranes. Microporous Mesoporous Mater. 2019, 273, 196–202. [Google Scholar] [CrossRef]
- Yu, L.; Fouladvand, S.; Grahn, M.; Hedlund, J. Ultra-Thin MFI Membranes with Different Si/Al Ratios for CO2/CH4 Separation. Microporous Mesoporous Mater. 2019, 284, 258–264. [Google Scholar] [CrossRef]
- Kosinov, N.; Auffret, C.; Borghuis, G.J.; Sripathi, V.G.P.; Hensen, E.J.M. Influence of the Si/Al Ratio on the Separation Properties of SSZ-13 Zeolite Membranes. J. Membr. Sci. 2015, 484, 140–145. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, T.; Gu, Y.; Liu, X.; Ke, Q.; Wei, X.; Wang, S. Rational Synthesis of Chabazite (CHA) Zeolites with Controlled Si/Al Ratio and Their CO2 /CH4 /N2 Adsorptive Separation Performances. Chem. Asian J. 2018, 13, 3222–3230. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, W.; Xing, W.; Xu, N. Esterification of Acetic Acid and n-Propanol with Vapor Permeation Using NaA Zeolite Membrane. Ind. Eng. Chem. Res. 2013, 52, 6336–6342. [Google Scholar] [CrossRef]
- Xu, K.; Jiang, Z.; Feng, B.; Huang, A. A Graphene Oxide Layer as an Acid-Resisting Barrier Deposited on a Zeolite LTA Membrane for Dehydration of Acetic Acid. RSC Adv. 2016, 6, 23354–23359. [Google Scholar] [CrossRef]
- Adoor, S.G.; Manjeshwar, L.S.; Bhat, S.D.; Aminabhavi, T.M. Aluminum-Rich Zeolite Beta Incorporated Sodium Alginate Mixed Matrix Membranes for Pervaporation Dehydration and Esterification of Ethanol and Acetic Acid. J. Membr. Sci. 2008, 318, 233–246. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Y.; Zhu, G.; Liu, J.; Lin, L.; Yang, W. Microwave Synthesis of A&b-Oriented Zeolite T Membranes and Their Application in Pervaporation-Assisted Esterification. Chin. J. Catal. 2008, 29, 592–594. [Google Scholar]
- Jiang, J.; Wang, L.; Peng, L.; Cai, C.; Zhang, C.; Wang, X.; Gu, X. Preparation and Characterization of High Performance CHA Zeolite Membranes from Clear Solution. J. Membr. Sci. 2017, 527, 51–59. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, X.; Peng, L.; Wang, X.; Gu, X. Batch-Scale Preparation of Hollow Fiber Supported CHA Zeolite Membranes and Module for Solvents Dehydration. Microporous Mesoporous Mater. 2017, 250, 18–26. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Hotta, H.; Sato, K.; Nagase, T.; Mizukami, F. Preparation of Novel Chabazite (CHA)-Type Zeolite Layer on Porous α-Al2O3 Tube Using Template-Free Solution. J. Membr. Sci. 2010, 347, 193–196. [Google Scholar] [CrossRef]
- Qiu, H.; Jiang, J.; Peng, L.; Liu, H.; Gu, X. Choline Chloride Templated CHA Zeolite Membranes for Solvents Dehydration with Improved Acid Stability. Microporous Mesoporous Mater. 2019, 284, 170–176. [Google Scholar] [CrossRef]
- Wang, N.; Liu, N.; Zhou, J.; Wang, Q.; Hu, N.; Zhou, R. Large-Area, High-Permeance and Acid-Resistant Zeolite SSZ-13 Membranes for Efficient Pervaporative Separation of Water/Acetic Acid Mixtures. J. Membr. Sci. 2024, 691, 122251. [Google Scholar] [CrossRef]
- Hu, N.; Li, Y.; Zhong, S.; Wang, B.; Zhang, F.; Wu, T.; Yang, Z.; Zhou, R.; Chen, X. Microwave Synthesis of Zeolite CHA (Chabazite) Membranes with High Pervaporation Performance in Absence of Organic Structure Directing Agents. Microporous Mesoporous Mater. 2016, 228, 22–29. [Google Scholar] [CrossRef]
- Yi, R.; Zhang, M.; Wang, S.; Cao, Y.; Liu, T.; Gao, P.; Zhang, L.; Li, Y. Effect of the Si/Al Ratio of the Seeds in the Preparation of Supported SSZ-13 Membranes with a Secondary Growth Method. Ind. Eng. Chem. Res. 2023, 62, 17893–17904. [Google Scholar] [CrossRef]
- Zhou, R.; Li, Y.; Liu, B.; Hu, N.; Chen, X.; Kita, H. Preparation of Chabazite Membranes by Secondary Growth Using Zeolite-T-Directed Chabazite Seeds. Microporous Mesoporous Mater. 2013, 179, 128–135. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, H.; Gan, L.; Wu, X.; Liu, B.; Gui, T.; Hu, N.; Chen, X.; Kita, H. Hetero-Epitaxial Growth of Chabazite Zeolite Membranes Using an RHO-Type Seed Layer. J. Membr. Sci. 2021, 635, 119465. [Google Scholar] [CrossRef]
- Imai, H.; Hayashida, N.; Yokoi, T.; Tatsumi, T. Direct Crystallization of CHA-Type Zeolite from Amorphous Aluminosilicate Gel by Seed-Assisted Method in the Absence of Organic-Structure-Directing Agents. Microporous Mesoporous Mater. 2014, 196, 341–348. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, R.; Yogo, K.; Kita, H. Preparation of CHA Zeolite (Chabazite) Crystals and Membranes without Organic Structural Directing Agents for CO2 Separation. J. Membr. Sci. 2019, 573, 333–343. [Google Scholar] [CrossRef]
- Debost, M.; Clatworthy, E.B.; Grand, J.; Barrier, N.; Nesterenko, N.; Gilson, J.-P.; Boullay, P.; Mintova, S. Direct Synthesis of Nanosized CHA Zeolite Free of Organic Template by a Combination of Cations as Structure Directing Agents. Microporous Mesoporous Mater. 2023, 358, 112337. [Google Scholar] [CrossRef]
- Rangnekar, N.; Mittal, N.; Elyassi, B.; Caro, J.; Tsapatsis, M. Zeolite Membranes—A Review and Comparison with MOFs. Chem. Soc. Rev. 2015, 44, 7128–7154. [Google Scholar] [CrossRef] [PubMed]
- Bakker, W.J.W.; Van Den Broeke, L.J.P.; Kapteijn, F.; Moulijn, J.A. Temperature Dependence of One-Component Permeation through a Silicalite-1 Membrane. AIChE J. 1997, 43, 2203–2214. [Google Scholar] [CrossRef]
- Okamoto, K.; Kita, H.; Horii, K. Zeolite NaA Membrane: Preparation, Single-Gas Permeation, and Pervaporation and Vapor Permeation of Water/Organic Liquid Mixtures. Ind. Eng. Chem. Res. 2001, 40, 163–175. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, W. Thin Porous Metal Sheet-Supported NaA Zeolite Membrane for Water/Ethanol Separation. J. Membr. Sci. 2011, 371, 197–210. [Google Scholar] [CrossRef]
- Liu, G.; Jin, W. Pervaporation Membrane Materials: Recent Trends and Perspectives. J. Membr. Sci. 2021, 636, 119557. [Google Scholar] [CrossRef]
- Imasaka, S.; Itakura, M.; Yano, K.; Fujita, S.; Okada, M.; Hasegawa, Y.; Abe, C.; Araki, S.; Yamamoto, H. Rapid Preparation of High-Silica CHA-Type Zeolite Membranes and Their Separation Properties. Sep. Purif. Technol. 2018, 199, 298–303. [Google Scholar] [CrossRef]
- Xu, C.; Zhou, C.; Wang, S.; Huang, A. Copper-Exchanged LTA Zeolite Membranes with Enhanced Water Flux for Ethanol Dehydration. Chin. Chem. Lett. 2019, 30, 1204–1206. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Matsuura, W.; Abe, C.; Ikeda, A. Influence of Organic Solvent Species on Dehydration Behaviors of NaA-Type Zeolite Membrane. Membranes 2021, 11, 347. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, H.; Liu, J.; Li, H.; Yang, W. Pervaporation and Vapor Permeation Dehydration of Fischer–Tropsch Mixed-Alcohols by LTA Zeolite Membranes. Sep. Purif. Technol. 2007, 57, 140–146. [Google Scholar] [CrossRef]
- Sekulić, J.; Elshof, J.E.T.; Blank, D.H.A. Separation Mechanism in Dehydration of Water/Organic Binary Liquids by Pervaporation through Microporous Silica. J. Membr. Sci. 2005, 254, 267–274. [Google Scholar] [CrossRef]
Si (Atomic%) | Al K (Atomic%) | Si/Al Ratio | |
---|---|---|---|
M3 | 84.24 | 15.76 | 5.3 |
SSZ-13 seeds | 93.41 | 6.59 | 14.2 |
Sample | Synthesis Time (h) | Permeate (H2O wt.%) | Flux [kg/(m2 h)] | Separation Factor |
---|---|---|---|---|
M1 | 24 | 99.79 | 2.0 | 4300 |
M2 | 36 | 99.82 | 1.6 | 6600 |
M3 | 48 | 99.94 | 1.1 | 16,600 |
M4 | 48 | 99.98 | 1.4 | 31,600 |
M5 | 48 | >99.99 | 1.1 | >100,000 |
M6 | 48 | >99.99 | 1.2 | >100,000 |
M7 | 72 | 99.13 | 1.0 | 1000 |
M8 | 72 | 99.25 | 0.6 | 1300 |
Feed | Perm (H2O wt.%) | Flux [kg/(m2 h)] | Separation Factor |
---|---|---|---|
10/90 wt.% H2O/EtOH | 99.7781 | 1.8 | 4000 |
10/90 wt.% H2O/IPA | 99.3903 | 2.5 | 1500 |
10/90 wt.% H2O/MeOH | 97.7295 | 0.6 | 270 |
30/70 wt.% H2O/MeOH | 98.8528 | 1.7 | 510 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Jiang, J.; Xue, Z.; Hu, Y.; Liu, B.; Zhou, R.; Xing, W. Template-Free Synthesis of High Dehydration Performance CHA Zeolite Membranes with Increased Si/Al Ratio Using SSZ-13 Seeds. Membranes 2024, 14, 78. https://doi.org/10.3390/membranes14040078
Du J, Jiang J, Xue Z, Hu Y, Liu B, Zhou R, Xing W. Template-Free Synthesis of High Dehydration Performance CHA Zeolite Membranes with Increased Si/Al Ratio Using SSZ-13 Seeds. Membranes. 2024; 14(4):78. https://doi.org/10.3390/membranes14040078
Chicago/Turabian StyleDu, Jing, Jilei Jiang, Zhigang Xue, Yajing Hu, Bo Liu, Rongfei Zhou, and Weihong Xing. 2024. "Template-Free Synthesis of High Dehydration Performance CHA Zeolite Membranes with Increased Si/Al Ratio Using SSZ-13 Seeds" Membranes 14, no. 4: 78. https://doi.org/10.3390/membranes14040078
APA StyleDu, J., Jiang, J., Xue, Z., Hu, Y., Liu, B., Zhou, R., & Xing, W. (2024). Template-Free Synthesis of High Dehydration Performance CHA Zeolite Membranes with Increased Si/Al Ratio Using SSZ-13 Seeds. Membranes, 14(4), 78. https://doi.org/10.3390/membranes14040078