Multifunctional Eco-Friendly Adsorbent Cryogels Based on Xylan Derived from Coffee Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Xylan Extraction from Coffee Parchment
2.3. Preparation of Cryogels
2.4. Characterization of Cryogels
2.4.1. Porosity Measurements
2.4.2. Moisture and Hygroscopic Sorption Capacity
2.4.3. SEM, EDS, and BET Area Analysis
2.4.4. Ammonia Adsorption Capacity
3. Results and Discussion
3.1. Xylan Extraction from Coffee Residues
3.2. Cryogels Characterization: Density and Porosity Analysis
3.3. Cryogels Characterization: Hygroscopic Sorption Capacity
3.4. Morphology Characterization by SEM
3.5. Brunauer–Emmett–Teller (BET) Analysis
3.6. Cryogels Ammonia Adsorption Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Emissions Due to Agriculture Global, Regional and Country Trends 2000–2018; FAOSTAT Analytical Brief Series; FAO: Rome, Italy, 2020; Available online: www.fao.org/3/ca8389en/CA8389EN.pdf (accessed on 14 September 2023).
- Takaya, C.A.; Parmar, K.R.; Fletcher, L.A.; Ross, A.B. Biomass-Derived Carbonaceous Adsorbents for Trapping Ammonia. Agriculture 2019, 9, 16. [Google Scholar] [CrossRef]
- Kupper, T.; Häni, C.; Neftel, A.; Kincaid, C.; Bühler, M.; Amon, B.; VanderZaag, A. Ammonia and Greenhouse Gas Emissions from Slurry Storage—A Review. Agric. Ecosyst. Environ. 2020, 300, 106963. [Google Scholar] [CrossRef]
- Carlile, F.S. Ammonia in Poultry Houses: A Literature Review. Worlds Poult. Sci. J. 1984, 40, 99–113. [Google Scholar] [CrossRef]
- Ministerio de Ambiente y Desarrollo Sostenible, «Resolución No. 1541». Republica de Colombia, 12 de Noviembre de 2013. Available online: https://www.minambiente.gov.co/wp-content/uploads/2021/08/resolucion-1541-de-2013.pdf (accessed on 12 November 2013).
- White, C.; Adam, E.; Sabri, Y.; Myers, M.B.; Pejcic, B.; Wood, C.D. Amine-Infused Hydrogels with Nonaqueous Solvents: Facile Platforms to Control CO2 Capture Performance. Ind. Eng. Chem. Res. 2021, 60, 14758–14767. [Google Scholar] [CrossRef]
- Fathi, E.; Atyabi, N.; Imani, M.; Alinejad, Z. Physically Crosslinked Polyvinyl Alcohol–Dextran Blend Xerogels: Morphology and Thermal Behavior. Carbohydr. Polym. 2011, 84, 145–152. [Google Scholar] [CrossRef]
- Xu, X.; Yang, Y.; Acencios Falcon, L.P.; Hazewinkel, P.; Wood, C.D. Carbon Capture by DEA-Infused Hydrogels. Int. J. Greenh. Gas Control 2019, 88, 226–232. [Google Scholar] [CrossRef]
- Wang, W.; Narain, R.; Zeng, H. Hydrogels. In Polymer Science and Nanotechnology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 203–244. ISBN 978-0-12-816806-6. [Google Scholar]
- Liu, Y.; Geever, L.M.; Kennedy, J.E.; Higginbotham, C.L.; Cahill, P.A.; McGuinness, G.B. Thermal Behavior and Mechanical Properties of Physically Crosslinked PVA/Gelatin Hydrogels. J. Mech. Behav. Biomed. Mater. 2010, 3, 203–209. [Google Scholar] [CrossRef]
- Buchtová, N.; Budtova, T. Cellulose Aero-, Cryo- and Xerogels: Towards Understanding of Morphology Control. Cellulose 2016, 23, 2585–2595. [Google Scholar] [CrossRef]
- Budtova, T. Cellulose II Aerogels: A Review. Cellulose 2019, 26, 81–121. [Google Scholar] [CrossRef]
- Kamoun, E.A.; Loutfy, S.A.; Hussein, Y.; Kenawy, E.-R.S. Recent Advances in PVA-Polysaccharide Based Hydrogels and Electrospun Nanofibers in Biomedical Applications: A Review. Int. J. Biol. Macromol. 2021, 187, 755–768. [Google Scholar] [CrossRef]
- Kim, J.O.; Park, J.K.; Kim, J.H.; Jin, S.G.; Yong, C.S.; Li, D.X.; Choi, J.Y.; Woo, J.S.; Yoo, B.K.; Lyoo, W.S.; et al. Development of Polyvinyl Alcohol–Sodium Alginate Gel-Matrix-Based Wound Dressing System Containing Nitrofurazone. Int. J. Pharm. 2008, 359, 79–86. [Google Scholar] [CrossRef]
- Peng, L.; Zhou, Y.; Lu, W.; Zhu, W.; Li, Y.; Chen, K.; Zhang, G.; Xu, J.; Deng, Z.; Wang, D. Characterization of a Novel Polyvinyl Alcohol/Chitosan Porous Hydrogel Combined with Bone Marrow Mesenchymal Stem Cells and Its Application in Articular Cartilage Repair. BMC Musculoskelet. Disord. 2019, 20, 257. [Google Scholar] [CrossRef]
- Maria, T.M.C.; De Carvalho, R.A.; Sobral, P.J.A.; Habitante, A.M.B.Q.; Solorza-Feria, J. The Effect of the Degree of Hydrolysis of the PVA and the Plasticizer Concentration on the Color, Opacity, and Thermal and Mechanical Properties of Films Based on PVA and Gelatin Blends. J. Food Eng. 2008, 87, 191–199. [Google Scholar] [CrossRef]
- Schnell, C.N.; Galván, M.V.; Peresin, M.S.; Inalbon, M.C.; Vartiainen, J.; Zanuttini, M.A.; Mocchiutti, P. Films from Xylan/Chitosan Complexes: Preparation and Characterization. Cellulose 2017, 24, 4393–4403. [Google Scholar] [CrossRef]
- Venugopal, J.; Rajeswari, R.; Shayanti, M.; Sridhar, R.; Sundarrajan, S.; Balamurugan, R.; Ramakrishna, S. Xylan Polysaccharides Fabricated into Nanofibrous Substrate for Myocardial Infarction. Mater. Sci. Eng. C 2013, 33, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
- Solier, Y.N.; Mocchiutti, P.; Cabrera, M.N.; Saparrat, M.C.N.; Zanuttini, M.Á.; Inalbon, M.C. Alkali-Peroxide Treatment of Sugar Cane Bagasse. Effect of Chemical Charges on the Efficiency of Xylan Isolation and Susceptibility of Bagasse to Saccharification. Biomass Convers. Biorefinery 2022, 12, 567–576. [Google Scholar] [CrossRef]
- Solier, Y.N.; Schnell, C.N.; Galván, M.V.; Mocchiutti, P.; Zanuttini, M.Á.; Inalbon, M.C. Fast Preparation of Flexible Wet-Resistant and Biodegradable Films From a Stable Suspension of Xylan/Chitosan Polyelectrolyte Complexes. J. Polym. Environ. 2022, 30, 114–124. [Google Scholar] [CrossRef]
- DANE. Boletín Técnico Encuesta Nacional Agropecuaria (ENA) 2019; DANE: Bogotá, Colombia, 2020. [Google Scholar]
- Gonzalez, L.V.P.; Gómez, S.P.M.; Abad, P.A.G. Aprovechamiento de residuos agroindustriales en Colombia Exploitation of agroindustrial waste in Colombia. Rev. Investig. Agrar. Ambient. 2017, 8, 141–150. [Google Scholar] [CrossRef]
- Valencia, N.R.; Franco, D.A.Z. Los subproductos del café: Fuente de energía renovable. Av. Técnicos Cenicafé 2010, 3, 0120–0178. Available online: https://www.cenicafe.org/es/publications/avt0393.pdf (accessed on 12 November 2013).
- ASTM D1103-60; Method of Test for Alpha-Cellulose in Wood. ASTM International Standard: West Conshohocken, PA, USA, 2023.
- ASTM D1106-96; Standard Test Method for Acid-Insoluble Lignin in Wood. ASTM International Standard: West Conshohocken, PA, USA, 2023.
- ASTM D7582-10; Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis. ASTM International Standard: West Conshohocken, PA, USA, 2023.
- ASTM D1110-84; Standard Test Methods for Water Solubility of Wood: Designation. ASTM International Standard: West Conshohocken, PA, USA, 2023.
- ASTM D1105-21; Standard Test Methods for Preparation of Extractive-Free Wood: Designation. ASTM International Standard: West Conshohocken, PA, USA, 2023.
- Acosta Fernandez, R.A.; Viviescas, P.; Sandoval, M.; Nabarlatz, D. Autohydrolysis of Sugar Cane Bagasse and Empty Fruit Bunch: Kinetics Model and Analysis of Xylo-Oligosaccharides Yield. Chem. Eng. Trans. 2018, 65, 307–312. [Google Scholar] [CrossRef]
- Nabarlatz, D.; Farriol, X.; Montané, D. Autohydrolysis of Almond Shells for the Production of Xylo-Oligosaccharides: Product Characteristics and Reaction Kinetics. Ind. Eng. Chem. Res. 2005, 44, 7746–7755. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, Q.; Du, Y. Alginate/Gelatin Blend Films and Their Properties for Drug Controlled Release. J. Membr. Sci. 2006, 280, 37–44. [Google Scholar] [CrossRef]
- Zu, Y.; Zhang, Y.; Zhao, X.; Shan, C.; Zu, S.; Wang, K.; Li, Y.; Ge, Y. Preparation and Characterization of Chitosan–Polyvinyl Alcohol Blend Hydrogels for the Controlled Release of Nano-Insulin. Int. J. Biol. Macromol. 2012, 50, 82–87. [Google Scholar] [CrossRef] [PubMed]
- ASTM C1498-04a; Test Method for Hygroscopic Sorption Isotherms of Building Materials. ASTM International Standard: West Conshohocken, PA, USA, 2023.
- Mendoza-Castillo, D.I.; Bonilla-Petriciolet, A.; Jáuregui-Rincón, J. Funciones de padé para la modelación de datos de adsorción. Afinidad 2010, 67, 547. [Google Scholar]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption Kinetic Modeling Using Pseudo-First Order and Pseudo-Second Order Rate Laws: A Review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Acosta Fernadez, R. Producción de Xilooligosacáridos (XOs) a partir de biomasa residual procedente de la agroindustrial colombiana. Ph.D. Dissertation, Universidad Industrial de Santander Repository, Universidad Industrial de Santander, Santander, Colombia, 2019. [Google Scholar]
- Steinman, N.Y.; Bentolila, N.Y.; Domb, A.J. Effect of Molecular Weight on Gelling and Viscoelastic Properties of Poly(caprolactone)–b-Poly(ethylene glycol)–b-Poly(caprolactone) (PCL–PEG–PCL) Hydrogels. Polymers 2020, 12, 2372. [Google Scholar] [CrossRef] [PubMed]
- Appelo, C.A.J. A Review of Porosity and Diffusion in Bentonite; Posiva OY: Eurajoki, Finland, 2013; p. 33. [Google Scholar]
- Menon, V.C.; Komarneni, S. Porous Adsorbents for Vehicular Natural Gas Storage: A Review. J. Porous Mater. 1998, 39, 43–58. [Google Scholar] [CrossRef]
- Nechita, P.; Mirela, R.; Ciolacu, F. Xylan Hemicellulose: A Renewable Material with Potential Properties for Food Packaging Applications. Sustainability 2021, 13, 13504. [Google Scholar] [CrossRef]
- Aviara, N.A. Moisture Sorption Isotherms and Isotherm Model Performance Evaluation for Food and Agricultural Products. In Sorption in 2020s; Kyzas, G., Lazaridis, N., Eds.; IntechOpen: London, UK, 2020; ISBN 978-1-83880-113-7. [Google Scholar]
- Andrade P., R.D.; Lemus M., R.; Pérez C., C.E. Models of sorption isotherms for food: Uses and limitations. Vitae 2011, 18, 325–334. [Google Scholar] [CrossRef]
- Pagans, E.; Font, X.; Sanchez, A. Adsorption, Absorption, and Biological Degradation of Ammonia in Different Biofilter Organic Media. Biotechnol. Bioeng. 2006, 97, 515–525. [Google Scholar] [CrossRef]
- Pramanik, R.; Arockiarajan, A. Influence of Mechanical Compressive Loads on Microstructurally Aligned PVA Xerogels. Mater. Lett. 2019, 236, 222–224. [Google Scholar] [CrossRef]
- Flórez, M.; Cazón, P.; Vázquez, M. Selected Biopolymers’ Processing and Their Applications: A Review. Polymers 2023, 15, 641. [Google Scholar] [CrossRef]
- Sampath, U.; Ching, Y.; Chuah, C.; Sabariah, J.; Lin, P.-C. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites. Materials 2016, 9, 991. [Google Scholar] [CrossRef]
- Asada, T.; Ohkubo, T.; Kawata, K.; Oikawa, K. Ammonia Adsorption on Bamboo Charcoal with Acid Treatment. J. Health Sci. 2006, 52, 585–589. [Google Scholar] [CrossRef]
- Long, X.; Cheng, H.; Xin, Z.; Xiao, W.; Li, W.; Yuan, W. Adsorption of Ammonia on Activated Carbon from Aqueous Solutions. Environ. Prog. 2008, 27, 225–233. [Google Scholar] [CrossRef]
- Khabzina, Y.; Farrusseng, D. Unravelling Ammonia Adsorption Mechanisms of Adsorbents in Humid Conditions. Microporous Mesoporous Mater. 2018, 265, 143–148. [Google Scholar] [CrossRef]
- Turner, J.R.; Choné, S.; Duduković, M.P. Ammonia/Flyash Interactions and Their Impact on Flue Gas Treatment Technologies. Chem. React. Eng. Sci. Technol. 1994, 49, 4315–4325. [Google Scholar] [CrossRef]
- Rodrigues, C.C.; Dos Reis Coutinho, A.; Lia, L.B.; Silva, E.L.; De Moraes, D. Control of the Emission of Ammonia through the Adsorption in Activated Coal; SAE Technical Paper 1999-01-3044; SAE: Sao Pablo, Brasil, 1999. [Google Scholar] [CrossRef]
Cryogel | ABET (m2/g) | Pore Volume (cm3/g) |
---|---|---|
1% w/v xylan | 6.0 | 0.0346 |
5% w/v xylan | 2.0 | 0.0183 |
10% w/v xylan | 3.0 | 0.0213 |
Pseudo-First Order | Pseudo-Second Order | |||||
---|---|---|---|---|---|---|
Xylan Variation in Cryogels (% w/v) | Adsorption Capacity qe (mg NH3/g) | k1 (mg NH3/mg sample s) | R2 | Adsorption Capacity qe (mg NH3/g) | k2 (g sample/mg NH3 s) | R2 |
1 | 0.0523 | 0.000009 | 0.81 | 0.0247 | 0.0035 | 0.97 |
3 | 0.1064 | 0.000012 | 0.76 | 0.0427 | 0.0026 | 0.95 |
5 | 0.1376 | 0.000014 | 0.85 | 0.0461 | 0.0217 | 0.96 |
7 | 0.1763 | 0.000018 | 0.82 | 0.0460 | 0.0019 | 0.96 |
10 | 0.1522 | 0.000015 | 0.92 | 0.0466 | 0.0020 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintero, V.; Osma, J.F.; Azimov, U.; Nabarlatz, D. Multifunctional Eco-Friendly Adsorbent Cryogels Based on Xylan Derived from Coffee Residues. Membranes 2024, 14, 108. https://doi.org/10.3390/membranes14050108
Quintero V, Osma JF, Azimov U, Nabarlatz D. Multifunctional Eco-Friendly Adsorbent Cryogels Based on Xylan Derived from Coffee Residues. Membranes. 2024; 14(5):108. https://doi.org/10.3390/membranes14050108
Chicago/Turabian StyleQuintero, Valentina, Johann F. Osma, Ulugbek Azimov, and Debora Nabarlatz. 2024. "Multifunctional Eco-Friendly Adsorbent Cryogels Based on Xylan Derived from Coffee Residues" Membranes 14, no. 5: 108. https://doi.org/10.3390/membranes14050108
APA StyleQuintero, V., Osma, J. F., Azimov, U., & Nabarlatz, D. (2024). Multifunctional Eco-Friendly Adsorbent Cryogels Based on Xylan Derived from Coffee Residues. Membranes, 14(5), 108. https://doi.org/10.3390/membranes14050108