Impact of Nitrate on the Removal of Pollutants from Water in Reducing Gas-Based Membrane Biofilm Reactors: A Review
Abstract
:1. Introduction
2. The Basic Principles and Advantages and Disadvantages of MBfR
2.1. The Basic Principles of MBfR
2.2. Advantages of Membrane Biofilm Reactor (MBfR)
- (1)
- (2)
- Cost-effectiveness: Compared to traditional physical–chemical methods, MBfR has lower energy consumption and chemical usage. Additionally, by utilizing CH4 and H2 as electron donors, the demand for external carbon sources is further reduced, resulting in lower treatment costs [31].
- (3)
2.3. Limitations of Membrane Biofilm Reactor (MBfR)
- (1)
- High technical requirements: Due to the membrane biofilm reactor (MBfR) being an emerging technology involving multiple engineering and biological fields, strict control of parameters such as gas pressure, pH value, and biofilm thickness is necessary during operation to ensure higher removal efficiency [33].
- (2)
- Stability issues of the biofilm: In the membrane biofilm reactor (MBfR), the biofilm is susceptible to environmental factors such as temperature, nutrient composition, and flow rate, which may result in membrane fouling, clogging, or failure, thereby affecting the treatment efficiency [7].
- (3)
- Microbial balance risk: In the membrane biofilm reactor (MBfR), the stability of the microbial community is crucial for system performance. However, factors such as aeration pressure, reaction temperature, and changes in dissolved oxygen concentration in wastewater can lead to microbial imbalance. This imbalance may cause the overgrowth of dominant bacteria or the suppression of beneficial bacteria, thereby affecting the system’s stability and efficacy [34,35].
2.4. Comparison between H2-MBfR and CH4-MBfR
3. Pathways for Nitrate (NO3−) Reduction
4. The Impact of NO3− on the Removal of Water Pollutants in MBfR
4.1. Oxidizing Pollutants
4.1.1. Perchlorate Ions (ClO4−)
4.1.2. Sulfate-Free (SO42−)
4.2. Heavy Metal Ions
4.2.1. Chromate (Cr(VI))
4.2.2. Selenate (Se(VI))
4.3. Organic Matter
4.3.1. Tetracycline (TC)
4.3.2. p-Chloronitrobenzene (p-CNB)
5. Conclusions and Outlook
- (1)
- NO3− is more advantageous in competing with other pollutants for the same adsorption sites, thus reducing the removal efficiency of other pollutants.
- (2)
- Reactions involving NO3− typically have higher Gibbs free energies, making them more attractive for microbial metabolism.
- (3)
- Given the prevalence of nitrate, many microbial communities may have adapted to use NO3− as their primary electron acceptor due to its higher affinity coefficient.
- (4)
- Denitrification intermediates such as NO2−, NO, N2O, and their complexes formed with metal ions or proteins may poison microorganisms, affecting the efficiency of MBfR in removing pollutants.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, S.; Li, C.; Chao, J.; Zhang, H.; Qin, G.; Wu, X.; Wang, J.; Lv, M. Health risk assessment of groundwater nitrate contamination: A case study of a typical karst hydrogeological unit in East China. Environ. Sci. Pollut. Res. 2020, 27, 9274–9287. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J. China to Spend Billions Cleaning up Groundwater. Science 2001, 334, 745. [Google Scholar] [CrossRef] [PubMed]
- Košnář, Z.; Mercl, F.; Pierdoà, L.; Chane, A.D.; Míchal, P.; Tlustoš, P. Concentration of the main persistent organic pollutants in sewage sludge in relation to wastewater treatment plant parameters and sludge stabilisation. Environ. Pollut. 2023, 333, 122060. [Google Scholar] [CrossRef]
- Xia, S.; Liang, J.; Xu, X.; Shen, S. Simultaneous removal of selected oxidized contaminants in groundwater using a continuously stirred hydrogen-based membrane biofilm reactor. J. Environ. Sci. 2013, 25, 96–104. [Google Scholar] [CrossRef]
- Taşkan, B.; Hanay, Ö.; Taşkan, E.; Erdem, M.; Hasar, H. Hydrogen-based membrane biofilm reactor for tetracycline removal: Biodegradation, transformation products, and microbial community. Environ. Sci. Pollut. Res. 2016, 23, 21703–21711. [Google Scholar] [CrossRef] [PubMed]
- Ontiveros-Valencia, A.; Zhou, C.; Zhao, H.P.; Krajmalnik-Brown, R.; Tang, Y.; Rittmann, B.E. Managing microbial communities in membrane biofilm reactors. Appl. Microbiol. Biotechnol. 2018, 102, 9003–9014. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.J.; Nerenberg, R. The membrane biofilm reactor (MBfR) for water and wastewater treatment: Principles, applications, and recent developments. Bioresour. Technol. 2012, 122, 83–94. [Google Scholar] [CrossRef]
- Durand, S.; Guillier, M. Transcriptional and Post-transcriptional Control of the Nitrate Respiration in Bacteria. Front. Mol. Biosci. 2021, 8, 667758. [Google Scholar] [CrossRef]
- Li, Z.; Ren, L.; Qiao, Y.; Li, J.; Ma, J.; Wang, Z. Recent advances in membrane biofilm reactor for micropollutants removal: Fundamentals, performance and microbial communities. Bioresour. Technol. 2022, 343, 126139. [Google Scholar] [CrossRef]
- Modin, O.; Fukushi, K.; Yamamoto, K. Simultaneous removal of nitrate and pesticides from groundwater using a methane-fed membrane biofilm reactor. Water Sci. Technol. 2008, 58, 1273–1279. [Google Scholar] [CrossRef]
- Pratofiorito, G.; Hackbarth, M.; Mandel, C.; Madlanga, S.; West, S.; Horn, H.; Hille-Reichel, A. A membrane biofilm reactor for hydrogenotrophic methanation. Bioresour. Technol. 2021, 321, 124444. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.S.; Lau, S.K.; Soh, L.S.; Hong, S.U.; Gok, X.Y.; Yi, S.; Yong, W.F. State-of-the-art organic-and inorganic-based hollow fiber membranes in liquid and gas applications: Looking back and beyond. Membranes 2022, 12, 539. [Google Scholar] [CrossRef] [PubMed]
- Hang, G.; Feng, Y.; Chung, T.S.; Weber, M.; Maletzko, C. Phase inversion directly induced tight ultrafiltration (UF) hollow fiber membranes for effective removal of textile dyes. Environ. Sci. Technol. 2017, 51, 14254–14261. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wyart, Y.; Perot, J.; Nauleau, F.; Moulin, P. Low-pressure membrane integrity tests for drinking water treatment: A review. Water Res. 2010, 44, 41–57. [Google Scholar] [CrossRef]
- Covaliu-Mierlă, C.I.; Păunescu, O.; Iovu, H. Recent Advances in Membranes Used for Nanofiltration to Remove Heavy Metals from Wastewater: A Review. Membranes 2023, 13, 643. [Google Scholar] [CrossRef] [PubMed]
- Adeola, A.O.; Nomngongo, P.N. Advanced Polymeric Nanocomposites for Water Treatment Applications: A Holistic Perspective. Polymers 2022, 14, 2462. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; You, L.; Zhang, D.; Sun, G.; Chen, J. Facile Preparation of Dense Polysulfone UF Membranes with Enhanced Salt Rejection by Post-Heating. Membranes 2023, 13, 759. [Google Scholar] [CrossRef] [PubMed]
- Yamina, K.H.; Loulergue, P.; Szymczyk, A.; Bruggen, B.V.; Nachtnebel, M.; Murielle, R.B.; Audic, J.L.; Peter, P.; Baddari, K. Influence of PVP content on degradation of PES/PVP membranes: Insights from characterization of membranes with controlled composition. Environ. Sci. Pollut. Res. 2020, 27, 9274–9287. [Google Scholar] [CrossRef]
- Rameetse, M.S.; Aberefa, O.; Daramola, M.O. Effect of Loading and Functionalization of Carbon Nanotube on the Performance of Blended Polysulfone/Polyethersulfone Membrane during Treatment of Wastewater Containing Phenol and Benzene. Membranes 2020, 10, 54. [Google Scholar] [CrossRef]
- Kaspar, P.; Sobola, D.; Částková, K.; Dallaev, R.; Šťastná, E.; Sedlák, P.; Knápek, A.; Trčka, T.; Holcman, V. Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubes. Materials 2021, 14, 1428. [Google Scholar] [CrossRef]
- Sobola, D.; Kaspar, P.; Částková, K.; Dallaev, R.; Papež, N.; Sedlák, P.; Trčka, T.; Orudzhev, F.; Kaštyl, J.; Weiser, A.; et al. PVDF Fibers Modification by Nitrate Salts Doping. Polymers 2021, 13, 2439. [Google Scholar] [CrossRef] [PubMed]
- Naseer, M.N.; Dutta, K.; Zaidi, A.A.; Asif, M.; Alqahtany, A.; Aldossary, N.A.; Jamil, R.; Alyami, S.H.; Jaafar, J. Research Trends in the Use of Polyaniline Membrane for Water Treatment Applications: A Scientometric Analysis. Membranes 2022, 12, 777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yv, D.; Xu, X.; Li, H.; Mao, T.; Zheng, C.; Huang, J.; Yang, H.; Niu, Z.; Wu, X. A polypropylene melt-blown strategy for the facile and efficient membrane separation of oil-water mixtures. Chin. J. Chem. Eng. 2021, 29, 383–390. [Google Scholar] [CrossRef]
- Rani, S.S.; Kumar, R.V. Insights on applications of low-cost ceramic membranes in wastewater treatment: A mini-review. Case Stud. Chem. Environ. Eng. 2021, 4, 100149. [Google Scholar] [CrossRef]
- Pushankina, P.; Andreev, G.; Petriev, I. Hydrogen Permeability of Composite Pd–Au/Pd–Cu Membranes and Methods for Their Preparation. Membranes 2023, 13, 649. [Google Scholar] [CrossRef] [PubMed]
- Nerenberg, B. The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process. Curr. Opin. Biotechnol. 2016, 38, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yin, Y.; Wang, J. Hydrogen-based membrane biofilm reactors for nitrate removal from water and wastewater. Int. J. Hydrogen Energy 2018, 43, 1–15. [Google Scholar] [CrossRef]
- Crespo, J.G.; Svetlozar, V.; Reis, M.A. Membrane bioreactors for the removal of anionic micropollutants from drinking water. Curr. Opin. Biotechnol. 2004, 15, 463–468. [Google Scholar] [CrossRef]
- Maurya, A.; Kumar, R.; Raj, A. Biofilm-based technology for industrial wastewater treatment: Current technology, applications and future perspectives. World J. Microbiol. Biotechonl. 2023, 39, 112. [Google Scholar] [CrossRef]
- Chung, J.; Rittmann, B.E.; Wright, W.F.; Bowman, R.H. Simultaneous Bio-reduction of Nitrate, Perchlorate, Selenate, Chromate, Arsenate, and Dibromochloropropane Using a Hydrogen-based Membrane Biofilm Reactor. Biodegradation 2007, 18, 199–209. [Google Scholar] [CrossRef]
- Lai, C.Y.; Zhong, L.; Zhang, Y.; Chen, J.X.; Wen, L.L.; Shi, L.D.; Sun, Y.P.; Ma, F.; Rittmann, B.E.; Zhou, C.; et al. Bioreduction of Chromate in a Methane-Based Membrane Biofilm Reactor. Environ. Sci. Technol. 2016, 50, 5832–5839. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Jassby, D.; Nerenberg, R.; Jason Ren, Z.Y. Hydrophobic Gas Transfer Membranes for Wastewater Treatment and Resource Recovery. Environ. Sci. Technol. 2019, 53, 11618–11635. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Feng, X.; Yao, Y.; Zhu, Z.; Lin, H.; Zhang, X.; Wang, D.; Li, H. Nitrogen Removal From Nitrate-Containing Wastewaters in Hydrogen-Based Membrane Biofilm Reactors via Hydrogen Autotrophic Denitrification: Biofilm Structure, Microbial Community and Optimization Strategies. Front. Microbiol. 2022, 13, 924084. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.C.; Lee, Y.N.; Park, J.S.; Lee, S.H.; Chang, I.S.; Ahn, T.S. Correlation between dissolved oxygen concentration, microbial community and membrane permeability in a membrane bioreactor. Process. Biochem. 2006, 41, 1165–1172. [Google Scholar] [CrossRef]
- Capua, F.D.; Papirio, S.; Lens, P.N.L.; Esposito, G. Chemolithotrophic denitrification in biofilm reactors. Chem. Eng. J. 2015, 280, 643–657. [Google Scholar] [CrossRef]
- Alrashed, W.; Chandra, R.; Abbott, T.; Lee, H.S. Nitrite reduction using a membrane biofilm reactor (MBfR) in a hypoxic environment with dilute methane under low pressures. Sci. Total Environ. 2022, 841, 156757. [Google Scholar] [CrossRef]
- Matias, C.; Suárez, J.; Nancucheo, I.; Schwarz, A. Optimization of the chemolithotrophic denitrification of ion exchange concentrate using hydrogen-based membrane biofilm reactors. J. Environ. Manag. 2023, 348, 119283. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.L.; Ceazan, M.L.; Brooks, M.H. Autotrophic, Hydrogen-Oxidizing, Denitrifying Bacteria in Groundwater, Potential Agents for Bioremediation of Nitrate Contamination. Appl. Environ. Microbiol. 1994, 60, 1949–1955. [Google Scholar] [CrossRef]
- Li, H.; Sun, R.; Zhang, X.; Lin, H.; Xie, Y.; Han, Y.; Pan, Y.; Wang, D.; Dong, K. Characteristics of denitrification and microbial community in respect to various H2 pressures and distances to the gas supply end in H2-based MBfR. Front. Microbiol. 2022, 13, 1023402. [Google Scholar] [CrossRef]
- Fleck, E.; Sunshine, A.; DeNatale, E.; Keck, C.; McCann, A.; Potkay, J. Advancing 3D-Printed Microfluidics: Characterization of a Gas-Permeable, High-Resolution PDMS Resin for Stereolithography. Micromachines 2021, 12, 1266. [Google Scholar] [CrossRef]
- Lamberti, A.; Marasso, S.L.; Cocuzza, M. PDMS membranes with tunable gas permeability for microfluidic applications. RSC Adv. 2014, 4, 61415–61419. [Google Scholar] [CrossRef]
- Martin, K.J.; Cristian, P.; Robert, N. Assessing microbial competition in a hydrogen-based membrane biofilm reactor (MBfR) using multidimensional modeling. Biotechnol. Bioeng. 2015, 112, 1843–1853. [Google Scholar] [CrossRef] [PubMed]
- Rittmann, B.E. The membrane biofilm reactor: The natural partnership of membranes and biofilm. Water Sci. Technol. 2006, 53, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Lou, Y.H.; Chen, J.X.; Zhang, Y.; Wen, L.L.; Shi, L.D.; Tang, Y.N.; Rittmann, B.E.; Zheng, P.; Zhao, H.P. Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors. Environ. Sci. Pollut. Res. 2016, 23, 9540–9548. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shi, L.D.; Lai, C.Y.; Zhao, H.P. Methane oxidation coupled to vanadate reduction in a membrane biofilm batch reactor under hypoxic condition. Biodegradation 2019, 30, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.Y.; Wang, Z.; Shi, L.D.; Lai, C.Y.; Zhao, H.P. Anaerobic methane oxidation coupled to chromate reduction in a methane-based membrane biofilm batch reactor. Environ. Sci. Pollut. Res. 2019, 26, 26286–26292. [Google Scholar] [CrossRef] [PubMed]
- Meulepas, R.J.W.; Stams, A.J.M.; Lens, P.N.L. Biotechnological aspects of sulfate reduction with methane as electron donor. Rev. Environ. Sci. Biotechnol. 2010, 9, 59–78. [Google Scholar] [CrossRef]
- Lu, J.J.; Yan, W.J.; Shang, W.T.; Sun, F.Y.; Li, A.; Sun, J.X.; Li, X.Y.; Mu, J.L. Simultaneous enhancement of nitrate removal flux and methane utilization efficiency in MBfR for aerobic methane oxidation coupled to denitrification by using an innovative scalable double-layer membrane. Water Res. 2021, 194, 116936. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.P.; Ontiveros-Valencia, A.; Tang, Y.; Kim, B.; Llhan, Z.E.; Krajmalnik-Brown, R.; Rittmann, B.E. Using a Two-Stage Hydrogen-Based Membrane Biofilm Reactor (MBfR) to Achieve Complete Perchlorate Reduction in the Presence of Nitrate and Sulfate. Environ. Sci. Technol. 2013, 47, 1565–1572. [Google Scholar] [CrossRef]
- Xie, T.; Yang, Q.; Winkler, M.K.H.; Wang, Q.; Zhong, Y.; An, H.; Chen, F.; Yao, F.; Wang, X.; Wu, J. Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: Performance and microbial community structure. J. Hazard. Mater. 2018, 357, 244–252. [Google Scholar] [CrossRef]
- Suárez, J.I.; Marcelo, A.; Nancucheo, I.; Poch, B.; Martínez, P.; Rittmann, B.E.; Schwarz, A. Influence of operating conditions on sulfate reduction from real mining process water by membrane biofilm reactors. Chemosphere 2020, 244, 125508. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.L.; Zhong, L.; Dong, Q.Y.; Yang, S.L.; Shen, W.W.; Zhu, Q.S.; Lai, C.Y.; Lou, A.C.; Tang, Y.; Zhao, H.P. The effect of electron competition on chromate reduction using methane as electron donor. Environ. Sci. Pollut. Res. 2018, 25, 6609–6618. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Ryu, H.; Abbaszadegan, M.; Rittmann, B.E. Community structure and function in a H2-based membrane biofilm reactor capable of bioreduction of selenate and chromate. Appl. Microbiol. Biotechnol. 2006, 72, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.D.; Wang, M.; Li, Z.Y.; Chun, Y.L.; Zhao, H.P. Dissolved oxygen has no inhibition on methane oxidation coupled to selenate reduction in a membrane biofilm reactor. Chemosphere 2019, 234, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, K.; Silva, S.D.; Santosh, S.S.; Sathiyaseelan, A.; Ganeshalingam, A.; Jamla, M.; Sankaranarayanan, A.; Veeraraghavan, V.P.; MubarakAli, D.; Lee, J.; et al. Impact of industrial effluents on the environment and human health and their remediation using MOFs-based hybrid membrane filtration techniques. Chemosphere 2022, 307, 135593. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. Discov. Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Chen, J.; Gui, H.; Li, C.; Wang, C.; Chen, C.; Jiang, Y. Hydrochemical Characteristics and Quality Assessment of Shallow Groundwater in Poultry Farming Sites in Suzhou City, China. Pol. J. Environ. Stud. 2022, 31, 4071–4084. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Srivastav, A.L.; Patel, A.; Singh, A.; Singh, S.K.; Chaudhary, V.K.; Singh, P.K.; Bhunia, B. Nitrate contamination in water resources, human health risks and its remediation through adsorption: A focused review. Environ. Sci. Pollut. Res. 2022, 29, 69137–69152. [Google Scholar] [CrossRef]
- Banerjee, P.; Garai, P.; Saha, N.C.; Saha, S.; Sharma, P.; Maiti, A.K. A critical review on the effect of nitrate pollution in aquatic invertebrates and fish. Water Air Soil Pol. 2023, 234, 333. [Google Scholar] [CrossRef]
- Choudhary, M.; Muduli, M.; Ray, S. A comprehensive review on nitrate pollution and its remediation: Conventional and recent approaches. Sustain. Water Resour. Manag. 2022, 8, 113. [Google Scholar] [CrossRef]
- Wang, H.; Tseng, C.P.; Gunsalus, R.P. The napF and narG Nitrate Reductase Operons in Escherichia coli Are Differentially Expressed in Response to Submicromolar Concentrations of Nitrate but Not Nitrite. J. Bacteriol. 1999, 181, 5303–5308. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Dan, Q.; Gou, L.; An, Q.; Gou, J. Characterization of an aerobic denitrifier Enterobacter cloacae strain HNR and its nitrate reductase gene. Arch. Microbiol. 2020, 202, 1775–1784. [Google Scholar] [CrossRef] [PubMed]
- Acuña, J.M.B.D.; Rohde, M.; Wissing, J.; Jänsch, L.; Schobert, M.; Molinari, G.; Timmis, K.N.; Jahn, M.; Jahn, D. Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus. J. Bacteriol. 2016, 198, 1401–1413. [Google Scholar] [CrossRef] [PubMed]
- Orellana, L.H.; Rodriguez-R, L.M.; Higgins, S.; Chee-Sanford, J.C.; Sanford, R.A.; Ritalahti, K.M.; Löffler, F.E.; Konstantinidis, K.T. Detecting Nitrous Oxide Reductase (nosZ) Genes in Soil Metagenomes: Method Development and Implications for the Nitrogen Cycle. mBio 2014, 5, e01193-14. [Google Scholar] [CrossRef]
- Hu, L.; Wang, X.; Chen, C.; Chen, J.; Wang, Z.; Chen, J.; Hrynshpan, D.; Savitskaya, T. NosZ gene cloning, reduction performance and structure of Pseudomonas citronellolis WXP-4 nitrous oxide reductase. RSC Adv. 2022, 12, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Cao, D.; Gao, Z.; Zhang, S. Occurrence of perchlorate in processed foods manufactured in China. Food Control 2020, 107, 106813. [Google Scholar] [CrossRef]
- Torres-Rojas, F.; Muñoz, D.; Canales, C.P.; Hevia, S.A.; Leyton, F.; Veloso, N.; Isaacs, M.; Vargas, I.T. Synergistic effect of electrotrophic perchlorate reducing microorganisms and chemically modified electrodes for enhancing bioelectrochemical perchlorate removal. Environ. Res. 2023, 233, 116442. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Dai, X.; Peng, L.; Wang, Q.; Ni, B.J. A biofilm model for assessing perchlorate reduction in a methane-based membrane biofilm reactor. Chem. Eng. J. 2017, 327, 555–563. [Google Scholar] [CrossRef]
- Lu, P.L.; Shi, L.D.; Dong, Q.Y.; Rittmann, B.; Zhao, H.P. How nitrate affects perchlorate reduction in a methane-based biofilm batch reactor. Water Res. 2020, 171, 115397. [Google Scholar] [CrossRef]
- Li, H.; Zhou, L.; Lin, H.; Zhang, W.; Xia, S. Nitrate effects on perchlorate reduction in a H2/CO2-based biofilm. Sci. Total Environ. 2019, 694, 133564. [Google Scholar] [CrossRef]
- Zhao, H.P.; Ginkel, S.V.; Tang, Y.; Kang, D.W.; Rittmann, B.; Brown-Krajmalnik, R. Interactions between Perchlorate and Nitrate Reductions in the Biofilm of a Hydrogen-Based Membrane Biofilm Reactor. Environ. Sci. Technol. 2011, 45, 10155–10162. [Google Scholar] [CrossRef] [PubMed]
- Bender, K.S.; Shang, C.; Chakraborty, R.; Belchik, S.M.; Coates, J.D.; Achenbach, L.A. Identification, Characterization, and Classification of Genes Encoding Perchlorate Reductase. J. Bacteriol. 2005, 187, 5090–5096. [Google Scholar] [CrossRef] [PubMed]
- Bardiya, N.; Bae, J.H. Dissimilatory perchlorate reduction: A review. Microbiol. Res. 2011, 166, 237–254. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Ma, B.; Li, X.; Zhang, Q.; Peng, Y. Long-term effect of pH on denitrification: High pH benefits achieving partial-denitrification. Bioresour. Technol. 2019, 278, 444–449. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Maza-Márquez, P.; González-López, J.; Rodelas, B. Influence of operation parameters on the shaping of the denitrification communities in full-scale municipal sewage treatment plants. J. Water Process Eng. 2020, 37, 101465. [Google Scholar] [CrossRef]
- Che, Y.; Liang, P.; Gong, T.; Cao, X.; Zhao, Y.; Chao, Y.; Song, C. Elucidation of major contributors involved in nitrogen removal and transcription level of nitrogen-cycling genes in activated sludge from WWTPs. Sci. Rep. 2017, 7, 44728. [Google Scholar] [CrossRef] [PubMed]
- Read-Daily, B.L.; Sabba, F.; Pavissich, J.P.; Nerenberg, R. Kinetics of nitrous oxide (N2O) formation and reduction by Paracoccus pantotrophus. AMB Express 2016, 6, 85. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.Y.; Wu, M.; Lu, X.; Wang, Y.; Yuan, Z.; Gou, J. Microbial Perchlorate Reduction Driven by Ethane and Propane. Environ. Sci. Technol. 2021, 55, 2006–2015. [Google Scholar] [CrossRef]
- Schwarz, A.; Suárez, J.I.; Marcelo, A.; Nancucheo, I.; Martínez, P.; Rittmann, B.E. A membrane-biofilm system for sulfate conversion to elemental sulfur in mining-influenced waters. Sci. Total Environ. 2020, 740, 140088. [Google Scholar] [CrossRef]
- Biswal, B.K.; Wang, B.; Tang, C.J.; Chen, G.H.; Wu, D. Elucidating the effect of mixing technologies on dynamics of microbial communities and their correlations with granular sludge properties in a high-rate sulfidogenic anaerobic bioreactor for saline wastewater treatment. Bioresour. Technol. 2020, 297, 122397. [Google Scholar] [CrossRef]
- Gonzalez, C.F.; Ackerley, D.F.; Lynch, S.V.; Matin, A. ChrR, a Soluble Quinone Reductase of Pseudomonas putida That Defends against H2O2. J. Biol. Chem. 2005, 280, 22590–22595. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.D.; Lu, P.L.; McIlroy, S.J.; Wang, Z.; Dong, X.L.; Kouris, A.; Lai, C.Y.; Tyson, G.W.; Strous, M.; Zhao, H.P. Methane-dependent selenate reduction by a bacterial consortium. ISME J. 2021, 15, 3683–3692. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.L.; Lai, C.Y.; Yang, Q.; Chen, J.X.; Zhang, Y.; Ontiveros-Valencia, A.; Zhao, H.P. Quantitative detection of selenate-reducing bacteria by real-time PCR targeting the selenate reductase gene. Enzyme Microb. Technol. 2016, 85, 19–24. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Cui, C.Y.; Zhang, X.J.; Zhou, Y.L.; Jia, Q.L.; Li, C.; Ren, H.; Cai, D.T.; Zheng, Z.J.; Long, T.F.; et al. Reducing tetracycline antibiotics residues in aqueous environments using Tet(X) degrading enzymes expressed in Pichia pastoris. Sci. Total Environ. 2021, 799, 149360. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hou, Y.; Wang, Y.; Zheng, L.; Wang, Q. A novel cold-adapted nitroreductase from Psychrobacter sp. ANT206: Heterologous expression, characterization and nitrobenzene reduction capacity. Enzyme Microb. Technol. 2019, 131, 109434. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Zhao, X.; Zhao, S.; He, J. Acceleration of polychlorinated biphenyls remediation in soil via sewage sludge amendment. J. Hazard. Mater. 2021, 420, 126630. [Google Scholar] [CrossRef] [PubMed]
- Heizer, W.D.; Sandler, R.S.; Seal, E.; Murray, S.C.; Busby, M.G.; Schliebe, B.G.; Pusek, S.N. Intestinal Effects of Sulfate in Drinking Water on Normal Human Subjects. Dig. Dis. Sci. 1997, 42, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Backer, L.C.; Esteban, E.; Rubin, C.H.; Kieszak, S.; McGeehin, M.A. Assessing Acute Diarrhea from sulfate in drinking water. J. Am. Water Works Assoc. 2001, 93, 76–84. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, X.; Xia, S. Effects of sulfate on simultaneous nitrate and selenate removal in a hydrogen-based membrane biofilm reactor for groundwater treatment: Performance and biofilm microbial ecology. Chemosphere 2018, 211, 254–260. [Google Scholar] [CrossRef]
- Ontiveros-Valencia, A.; ZIV-Ei, M.; Zhao, H.P.; Feng, L.; Rittmann, B.E.; Krajmalnik-Brown, R. Interactions between Nitrate-Reducing and Sulfate-Reducing Bacteria Coexisting in a Hydrogen-Fed Biofilm. Environ. Sci. Technol. 2012, 46, 11289–11298. [Google Scholar] [CrossRef]
- Zhou, J.; Xing, J. Haloalkaliphilic denitrifiers-dependent sulfate-reducing bacteria thrive in nitrate-enriched environments. Water Res. 2021, 201, 117354. [Google Scholar] [CrossRef] [PubMed]
- Wani, P.A.; Wani, J.A.; Wahid, S. Recent advances in the mechanism of detoxification of genotoxic and cytotoxic Cr (VI) by microbes. J. Environ. Chem. Eng. 2018, 6, 3798–3807. [Google Scholar] [CrossRef]
- Samuel, M.S.; Selvarajan, E.; Ramalingam, C.; Patel, H.; Brindhadevi, K. Clean approach for chromium removal in aqueous environments and role of nanomaterials in bioremediation: Present research and future perspective. Chemosphere 2021, 284, 131368. [Google Scholar] [CrossRef]
- Jin, R.; Liu, Y.; Liu, G.; Tian, T.; Qiao, S.; Zhou, J. Characterization of Product and Potential Mechanism of Cr(VI) Reduction by Anaerobic Activated Sludge in a Sequencing Batch Reactor. Sci. Rep. 2017, 7, 1681. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Nerenberg, R.; Rittmann, B.E. Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor. Water Res. 2006, 40, 1634–1642. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Lai, C.Y.; Shi, L.D.; Wang, K.D.; Liu, Y.W.; Ma, F.; Rittmann, B.E.; Zheng, P.; Zhao, H.P. Nitrate effects on chromate reduction in a methane-based biofilm. Water Res. 2017, 115, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, T.; Chen, N.; Feng, C. Changes in microbial community diversity, composition, and functions upon nitrate and Cr(VI) contaminated groundwater. Chemosphere 2022, 288, 132476. [Google Scholar] [CrossRef] [PubMed]
- Werkneh, A.A.; Gebretsadik, G.G.; Gebru, S.B. Review on environmental selenium: Occurrence, public health implications and biological treatment strategies. Environ. Chall. 2023, 11, 100698. [Google Scholar] [CrossRef]
- Xia, S.; Xu, X.; Zhou, L. Insights into selenate removal mechanism of hydrogen-based membrane biofilm reactor for nitrate-polluted groundwater treatment based on anaerobic biofilm analysis. Ecotoxicol. Environ. Safe 2019, 178, 123–129. [Google Scholar] [CrossRef]
- Tan, L.C.; Nancharaiah, Y.V.; Hullebusch, E.D.; Lens, P.N.L. Selenium: Environmental significance, pollution, and biological treatment technologies. Biotechnol. Adv. 2016, 34, 886–907. [Google Scholar] [CrossRef]
- Van Ginkel, S.W.; Yang, Z.M.; Kim, B.; Sholin, M.; Rittmann, B.E. The removal of selenate to low ppb levels from flue gas desulfurization brine using the H2-based membrane biofilm reactor (MBfR). Bioresour. Technol. 2011, 102, 6360–6364. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.Y.; Yang, X.; Tang, Y.; Rittmann, B.E.; Zhao, H.P. Nitrate Shaped the Selenate-Reducing Microbial Community in a Hydrogen-Based Biofilm Reactor. Environ. Sci. Technol. 2014, 48, 3395–3402. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.Y.; Wen, L.L.; Shi, L.D.; Zhao, K.K.; Wang, Y.Q.; Yang, X.; Rittmann, B.E.; Zhou, C.; Tang, Y.; Zheng, P.; et al. Selenate and Nitrate Bioreductions Using Methane as the Electron Donor in a Membrane Biofilm Reactor. Environ. Sci. Technol. 2016, 50, 10179–10186. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Gu, G.; Wang, Z.; Dong, O.; Liang, X.; Hu, C.; Li, X. Effects of Tetracycline on Scenedesmus obliquus Microalgae Photosynthetic Processes. Int. J. Mol. Sci. 2022, 23, 10544. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Xiao, Y.; Pan, H.; Mei, Y. Toxic effects of tetracycline and its degradation products on freshwater green algae. Ecotox. Environ. Saf. 2019, 174, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2021, 753, 141975. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.Y.; Taşkan, E.; Hasar, H. Comparative potentials of H2- and O2-MBfRs in removing multiple tetracycline antibiotics. Process Saf. Environ. 2022, 167, 184–191. [Google Scholar] [CrossRef]
- Taşkan, B.; Casey, E.; Hasar, H. Simultaneous oxidation of ammonium and tetracycline in a membrane aerated biofilm reactor. Sci. Total Environ. 2019, 682, 553–560. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Ni, L.; Jiang, R.; Liu, L.; Ye, C.; Han, C. Management of a patient with thermal burns and para-chloronitrobenzene poisoning. Int. J. Occup. Med. Environ. Health 2014, 27, 882–887. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, J.; Zhao, J.; Ye, G.; Li, J.; Liu, H.; Chen, F. Removal of p-chloronitrobenzene from wastewater by aluminum and low melting point metals (Al-Ga-In-Sn) alloy. J. Environ. Chem. Eng. 2021, 9, 106339. [Google Scholar] [CrossRef]
- Kang, J.; Wu, W.; Liu, W.; Li, J.; Dong, C. Zero-valent iron (ZVI) Activation of Persulfate (PS) for Degradation of Para-Chloronitrobenzene in Soil. Bull. Environ. Contam. Toxicol. 2019, 103, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Z.; Xu, X.; Liang, J.; Xia, S. Bioreduction of para-chloronitrobenzene in a hydrogen-based hollow-fiber membrane biofilm reactor: Effects of nitrate and sulfate. Biodegradation 2014, 25, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Li, H.; Zhang, Z.; Zhang, Y.; Yang, X.; Jia, R.; Xie, K.; Xu, X. Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor. J. Hazard. Mater. 2011, 192, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Pieper, G.M.; Halligan, N.L.N.; Hilton, G.; Konorev, E.A.; Felix, C.C.; Roza, A.M.; Adams, M.B.; Griffith, O.W. Non-heme iron protein: A potential target of nitric oxide in acute cardiac allograft rejection. Proc. Natl. Acad. Sci. USA 2003, 100, 3125–3130. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Yi, J.; Richter-Addo, G.B. Linkage Isomerization in Heme−NOx Compounds: Understanding NO, Nitrite, and Hyponitrite Interactions with Iron Porphyrins. Inorg. Chem. 2010, 49, 6253–6266. [Google Scholar] [CrossRef]
- Yin, Y.; Yan, J.; Gao, C.; Murdoch, F.K.; Pfisterer, N.; Löffler, F.E. Nitrous Oxide Is a Potent Inhibitor of Bacterial Reductive Dechlorination. Environ. Sci. Technol. 2019, 53, 692–701. [Google Scholar] [CrossRef]
The Membrane Materials | Feature | Reference | |
---|---|---|---|
Organic membranes | Polysulfone (PSF) | It exhibits excellent chemical stability and mechanical strength, rendering it applicable for diverse water treatment applications. | [17] |
Polyethersulfone (FES) | It possesses outstanding heat resistance and chemical resistance, along with good film-forming performance and cost-effectiveness. | [18,19] | |
Polyvinylidene fluoride (PVDF) | It exhibits excellent chemical and physical durability, as well as biocompatibility. | [20,21] | |
Polyaniline (PANI) | It exhibits high electrical conductivity and is frequently utilized as a component in blends/composites or as a coating on polymer films. | [22] | |
Polypropylene (PP) | It is a lightweight, low-cost thermoplastic polymer that exhibits good chemical stability and mechanical performance. | [23] | |
Inorganic membranes | Ceramic | It is known for its high-temperature stability, excellent chemical stability, and long service life, making it suitable for filtration in high-temperature processes and aggressive corrosive environments. | [24] |
Metal | Due to its exceptional mechanical strength and temperature resistance, it is frequently employed in gas separation and certain specific chemical processes. | [25] |
Hollow Fiber Membrane Types | Shared Pollutants | Environmental Pressure (MPa) | pH | T (°C) | HRT (h) | Influent Concentration (mg/L) | Influent Flux (g·m−2 d−1) | Removal Flux (g·m−2 d−1) | References | ||
---|---|---|---|---|---|---|---|---|---|---|---|
NO3− | H2-MBfR | Non-porous PDMS fibers | None | 0.104 | 7–8 | 22 | 4 | - | 13.6 | 3.300 | [37] |
CH4-MBfR | Non-porous PP fiber | None | 0.114 | - | - | 12 | 25 | - | 0.460 | [48] | |
ClO4− | H2-MBfR | Non-porous PP fiber | 3 mg/L NO3− 30 mg/L SO42− | 0.223 | 7.4–7.8 | - | - | 0.09 | 0.0065 | 0.0065 | [49] |
CH4-MBfR | Microporous polyethylene fiber | None | 0.020 | 7.2–7.6 | 31 ± 1 | 24 | - | 0.1068 | 0.093 | [50] | |
SO42− | H2-MBfR | Non-porous PP fibers | None | 0.138 | 8–8.86 | 21 ± 3 | - | - | 1.9 | 0.830 | [51] |
CH4-MBfR | Mitsubishi Rayon (model MHF-200TL, Mitsubishi Rayon Co., Ltd., Tokyo, Japan) | 1 mg/L Cr(VI) | 0.069 | 7.0–7.5 | 29 ± 1 | - | 1 | 2.55 | 1.004 | [52] | |
Cr(VI) | H2-MBfR | Mitsubishi Rayon (Model MHF 200TL, Mitsubishi Rayon Co., Ltd., Tokyo, Japan) | 5 mg/L NO3− 80 mg/L SO42− | 0.017 | - | - | - | 0.25 | - | 0.034 | [53] |
CH4-MBfR | Mitsubishi Rayon (Model MHF 200TL, Mitsubishi Rayon Co., Ltd., Tokyo, Japan) | None | 0.069 | 6.8–7.5 | 35 ± 1 | - | 2 | - | 0.070 | [46] | |
Se(VI) | H2-MBfR | Mitsubishi Rayon (Model MHF 200TL, Mitsubishi Rayon Co., Ltd., Tokyo, Japan) | 5 mg/L NO3− 80 mg/L SO42− | 0.017 | - | - | - | 0.25 | - | 0.031 | [53] |
CH4-MBfR | Microporous polyethylene fiber | None | 0.069 | 7.0–7.4 | 35 ± 1 | 2.7 | 5 | 0.529 | 0.182 | [54] |
Pollutants | Chemical Reaction | ΔGo’ (kJ e−1) |
---|---|---|
Nitrate (NO3−) | 2NO3− + 6H2 → N2 + 6H2O | −112 |
Nitrate (NO3−) | 8NO3− + 5CH4 + 8H+ → 5CO2 + 4N2 + 14H2O | −765 |
Perchlorate (ClO4−) | ClO4− + 4H2 → Cl− + 4H2O | −118 |
Perchlorate (ClO4−) | ClO4− + CH4 → Cl− + 2H2O + CO2 | −941 |
Sulfate (SO42−) | SO42− + 5H2 → H2S + 4H2O | −19 |
Chromate (Cr(VI)) | CrO42− + 1.5H2 + 2H+ → Cr(OH)3 + H2O | −9 |
Chromate (Cr(VI)) | 8CrO42− + 3CH4 + 16H+ → 3CO2 + 4Cr2O3 + 14H2O | −708 |
Celenate (SeO42−) | SeO42− + CH4 → Se0 + 2H2O | −71 |
Tetracycline (TC) | C22H24N2O8 + 43H2 → 22CH4 + 2NH3 + 8H2O | / |
p-chloronitrobenzene (p-CNB) | p-CNB +2H2 → p-CAN + 2H2O | −122.7 |
Functional Enzymes | Gene | Genus | References |
---|---|---|---|
Nitrate reductase | NapA, NarG | Thauera | [74,75] |
Nitrite reductase | NirK, NirS | Thauera, Mesorhizobium, Cycloclastes | [75,76] |
Nitric oxide reductase | NorB, NorC | Ps. Stutzeri, Paracoccus denitrificans | [75] |
Nitrous oxide reductase | NosZ | Paracoccus pantotrophus | [75,77] |
Perchlorate reductase | PcrA | Dechloromonas | [78] |
Sulfate reductase | DsrA | Desulfovibrio, Desulfomicrobium | [79,80] |
Chromate reductase | ChrR | Pseudomonas putida | [81] |
Selenite reductase | SerA | T. Selenatis, Pseudoxanthomonas | [82,83] |
Tetracycline-degrading enzyme | Tet(X) | Pichia pastoris | [84] |
Nitroreductase | Psntr | Psychrobacter sp. | [85] |
Dehalogenase (enzyme) | PcbA4, PcbA5 | Dehalococcoides, Dehalobacter | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Huang, Z.; Li, H.; Wang, D.; Yao, Y.; Dong, K. Impact of Nitrate on the Removal of Pollutants from Water in Reducing Gas-Based Membrane Biofilm Reactors: A Review. Membranes 2024, 14, 109. https://doi.org/10.3390/membranes14050109
Zhang Z, Huang Z, Li H, Wang D, Yao Y, Dong K. Impact of Nitrate on the Removal of Pollutants from Water in Reducing Gas-Based Membrane Biofilm Reactors: A Review. Membranes. 2024; 14(5):109. https://doi.org/10.3390/membranes14050109
Chicago/Turabian StyleZhang, Zhiheng, Zhian Huang, Haixiang Li, Dunqiu Wang, Yi Yao, and Kun Dong. 2024. "Impact of Nitrate on the Removal of Pollutants from Water in Reducing Gas-Based Membrane Biofilm Reactors: A Review" Membranes 14, no. 5: 109. https://doi.org/10.3390/membranes14050109
APA StyleZhang, Z., Huang, Z., Li, H., Wang, D., Yao, Y., & Dong, K. (2024). Impact of Nitrate on the Removal of Pollutants from Water in Reducing Gas-Based Membrane Biofilm Reactors: A Review. Membranes, 14(5), 109. https://doi.org/10.3390/membranes14050109